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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 January 7, 2019

1.1 Introduction of thermodynamics

Definition 1.1 (Thermodynamics). Thermodynamics refers to the macroscopic scale: only bulk properties of
matter (e.g. pressure, temperature, volume) are needed for a complete thermodynamic description.

Definition 1.2 (Statistical Thermodynamics). Statistical Theormodynamics, also known as Statistical Me-
chanics, uses atomic and molecular properties to calculate therodynamic properties of bulk matter.
For example, heat capacity of substance is determined by available motional states of its constituent ules, such as
rotational and vibrational states.

Example 1.1. Suppose initial temperature of a cup of coffee is Tinitial = 85C.
The temperature would decay exponentially until it reaches the equilibrium temperature: the temperature of the
room.
The temperature of the room would be trivially increased and thus can be treated constant.

1.2 Ideal gas law

For a gas, we need only three macroscopic variables: P (pressure), V (volume), and T (temperature).
We refer to a piston model: pressure is the force due to the mass pushing down on the piston divided by the area of
the piston (force per area). Force in our piston model would simply be F = mg where m is the mass of the weight
and g is the gravitational constant 9.8s−2.
In equilibrium the external pressure Pext is equivalent to the pressure of the gas P .
Note that for a given particle of the gas in equilibrium, the particle with momentum with component mvx
perpendicular to the piston should be reflected and repelled, ultimately travelling with −mvx momentum. This
implies that ∆pwall = 2mvx (initial momentum absorbed and additional mvx exerted onto particle to reflect it).
From statistical mechanics we know that 3

2kT = 1
2mv

2, so the higher the velocity the higher the temperature of the
gas.
The total change in pressure of the wall is ∆ptotal = 2mvxNcoll where Ncoll the number of colliding particles. This
is simply

Ncoll =
# of particles
total volume

Vcoll
1

2

where the 1
2 since half the particles are directed towards the wall and Vcoll is the volume space for collisions.

Vcoll = Avx∆t where A is the area of the wall and vx is the velocity of the particles.
We let N be the number of particles per unit volume (our fraction above).
Thus we have

∆ptotal = mNAv2
x∆t

Note that force simply change in momentum over change in time or

Fwall =
∆ptotal

∆t
= mNAv2

x

1
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Finally pressure is simply the force divided by area thus

Pwall = mv2
xN

We observe that v2 = v2
x + v2

y + v2
z = 3v2

x so

Pwall =
mv2N

3

Recall that 3
2kT = 1

2mv
2 so mv2 = 3kT therefore

Pwall = NkT =
nNAkT

V

where NA is Avogadro’s number (number of particles per mole) and n is the number of moles. If we define NAk = R
to be the ideal gas constant, we note that this is exactly the ideal gas law

P =
nRT

V

2 January 9, 2019

2.1 Definition of a system

We can define the type of a system in terms of how it exchanges energy and matter:

Type Exchange of energy Exchange of matter
isolated no no
open yes yes
closed yes no

NB: it is not possible to exchange matter without exchanging energy.
Some examples include

System Type
animal open

airtight room containing beaker with boiling water closed
incadescent light bulb closed

lake open
greenhouse closed
the earth open

2.2 Properties of barriers

There are certain properties of barriers we care about:

moveable vs rigid allow/not allow P, V to change

adiabatic vs diathermal thermally insulating vs thermally conducting

permeable vs impermeable allow/not allow transport of matter

In order from most adiabatic to most diathermal, we have vacuum, cork, glass, copper.

2
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2.3 Equilbriums

We define thermal equilibrium when two systems A,B are at the same temperature i.e. TA = TB (e.g. two closed
systems in thermal contact).
We define thermodynamic equilbrium when TA = TB, PA = PB and xA = xB where xj is the mole fraction
(concentration) (e.g. two open systems in contact).
Once equilbrium is established systems do not spontaneously “unequilibriate”.
The Zeroth law of Thermodynamics states that if TA = TC and TB = TC , then TA = TB i.e. two systems that
are separately in thermal equilibrium with a third system are also in thermal equilbrium with each other.
Examples of equilbriums reached for two systems 1, 2 wherein all properties are not equivalent:

rigid, diathermal, impermeable wall T1 = T2 but P1 6= P2 and x1 6= x2

movable, adiabatic, impermeable wall P1 = P2 but r1 6= T2 and x1 6= x2

permeable, rigid, diathermal wall T1 = T2, P1 6= P2, x1 6= x2 (depends on which species it is permeable to)

2.4 Partial pressure

For a mixture of (ideal) gases, the total pressure is simply the sum of the partial pressures:

P =
∑
i

Pi =
∑
i

niRT

V

Note that since Pi
P = ni

n = xi (mole fraction) we have Pi = xiP . This assumes that the pressures of the individual
gases are independent.
For real gases, the van der Walls equation of state tries to approximate the ideal gas law for real gases

P =
nRT

V − nb
− n2a

V 2

where a account for the attractive interaction and b accounts for the finite molecular size (determined empirically).

3 January 11, 2019

3.1 Ideal gas law examples

Example 3.1 (Q1.14). Note the mass of a He atom is smaller than that of an Ar atom. At the same molar density,
volume, and temperature, does the Ar gas exert more pressure than the He gas?

Answer. No, they exert the same pressure. We know that from statistical mechanics (kT = mv2
x) for a fixed

temperature the Ar atoms would have a lower velocity squared.
Therefore the pressure is solely determined by temperature not by the mass and thus the ideal gas law applies to
any (ideal) gas regardless of atomic/molecular species.

Example 3.2 (Q1.3). Give an example of based on molecule-molecule interactions illustrating how the total
pressure upon mixing two real gases could be different from the sum of partial pressures.

Answer. If molecules from two gases form hydrogen bonds (attractive interaction) then total pressure will be
lower than sum of partial pressures (and vice versa for repulsive interactions).

3
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Example 3.3 (P1.5). There is a gas mixture of ethane and butane in a sealed container having 230cm3 capacity
filled to a pressure of 97.5× 103Pa at 23.1C. If the total mass of the gas is 0.3554g what is the mole % of butane
in the mixture?

Solution. Note that n = n1 + n2 = PV
RT = 9.1× 10−3mol where n1 and n2 are the number of moles of ethane and

butane, respectively.
We also know that n1M1 + n2M2 = 0.3554g. Solving the system of two equations (two unknowns) we have

n2 =
9.1× 10−3mol − 0.3554g

M1

1− M2
M1

= 2.915× 10−3mol

Therefore the mol % of butane is n2
n1+n2

= 0.32 or 32%.

Example 3.4 (P1.29). A balloon filled with 11.5L of Ar at 18.7C and 1atm rises to height in the atmosphere where
pressure is 207Torr and the temperature is −32.4C. What is the final volume of the balloon? Assume pressure
inside and outside are the same.

Solution. Note that

PiVi
PfVf

=
nRTi
nRTf

⇒ Vf =
PiTf
PfTi

Vi

where Ti = 18.7C = 291.9K, Tf = −32.4C = 240.8K, Pi = 1atm, Pf = 207Torr = 0.272atm. Solving for Vf we
get 34.8L.

3.2 First law of thermodynamics

The first law of thermodynamics states that the internal energy U of an isolated system is constant: energy is
conserved.
That is isolated system = system of interest + surroundings where

∆Utotal = ∆Usystem + ∆Usurroundings = 0

⇒ ∆Usystem = −∆Usurroundings

3.3 Energy, work and heat

Note energy can be thought of as capacity of one physical system to do work on another physical system. Work
is defined as

w =

∫ yf

yi

~F · d~y

one can always model work as raising a mass m up or down in Earth’s gravitational field by height ∆h or mg∆h.
For example, a gas expanding and moving a piston of mass m of area A up (which exerts Pexternal = mg

A ) does work

w =

∫ yf

yi

~F · d~y = −
∫ yf

yi

PexternalAdy = −
∫ yf

yi

Pexternal dV = −mg∆y

Where did the energy come from to do the work? This may be from a heat source that heated up the gas to cause
it to expand.

4
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Heat is defined as the energy that flows across the system/surrounding boundary because of a temperature difference
between the system and surroundings.

Remark 3.1. Work is the transfer of energy as a result of force acting through a distance.

Note that both heat and work are transitory: in equilibrium states one cannot quantify heat or work but only
the energy.
Restating the first law, we note that beyond chemical reactions, the change in internal energy is only a function of
work and heat:

∆U = ∆Usystem = q + w = −∆Usurroundings

where q is the heat and w is the work associated with a process.
Note that q > 0 is when the system temperature is raised and w > 0 denotes work done on the system.

4 January 14, 2019

4.1 Calculating work (at constant P, V, T ) example

Note the following terms are used for descripting constant properties:

isochoric constant volume

isothermal constant temperature

isobaric constant pressure

Example 4.1. A 1.5 mole sample of ideal gas at 28.5C exapnds isothermally from an initial volume of 22.5dm3 to
a final volume of 75.5dm3. Calculate w for this process for expansion against an external pressure of 0.498× 105Pa

Solution. Note that Pexternal is constant to integrating over the change in volume we have

w = −Pexternal(Vf − Vi) = −0.498× 105Pa(75.5− 22.5)× 10−3m3 = −2.64× 103J

(NB: dm = 10−1m so (dm)3 = 10−3m3).

4.2 Heat capacity

How much does a certain heat flow change affect the temperature of a system? We define

C = lim
∆T→0

q

Tf − Ti

=
dq

dT

C is an extensive property (depends on molar amount), so usually the molar heat capacity Cm (units JK−1mol−1)
(intensive) is used in calculations. Note that C = C(T ) in general depends on temperature.
C depends on the material and on the conditions which it is measured. We define

CV,m molar heat capacity at constant volume

CP,m molar heat capacity at constant pressure

5
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We can calculate heat flow into/out of a system at constant volumes or pressures e.g.

qP =

∫ Tf

Ti

CP (T ) dT

qV =

∫ Tf

Ti

CV (T ) dT

Let us look at the microscopic origin of heat capacity. A small molecule have a number of ways to store
energy/heat:

1. Putting electrons into higher energy levels (quantum mechanical excited states)

2. Vibration (CO (carbon monoxide) has one vibrational degrees of freedom (DOF), stretch along bond axis)

3. Rotation (CO has two rotation DOFs: rotation axes perpendicular to bond axis)

4. Translate (3 DOFs)

Energy can be stored into each DOF. Each DOF of translate and rotation contributes ≈ R/2 heat capacity (R is
the ideal gas constant). For vibration, if ∆E

kT < 0.1 (low excitation) then it contributes ≈ R; if ∆E
kT > 10 then it

contributes ≈ 0 heat capacity (high energy excitation).
For energy states, we know that the relative probability of being in state i and j is

Pr(Ei)

Pr(Ej)
= e−

Ei−Ej
kT

notice that if Ei ≈ Ej then Pr(Ei) ≈ Pr(Ej).
Molecules exchange energy by collisions where a colliding molecule gain or loses ≈ kT energy.

4.3 Heat transfer for isothermal ideal gases

Note that ∆U is proportional to ∆T so in an isothermal process ∆T = 0 thus ∆U = 0. If work is done by an ideal
gas e.g. expansion) then we know that q = ∆U − w 6= 0.
So while a process is isothermal and ∆T = 0, q 6= 0 (for an ideal gas) since heat is transferred from an external
thermal reservoir to maintain the temperature.

4.4 Heat capacity vs temperature and phase

For solids, it is much easier to measure CP,m. Note that in the solid-state energy can be taken up in lattice
vibrations (phonons). As temperature increases the number of phonon states increases.
Liquids have even a greater heat capacity: in addition to local vibrational modes it also has additional low energy
modes and more degrees of freedom.
CP,m drops for gas since a lattice no longer exists (no phonons).

6
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4.5 Difference in CP and CV for a gas

At constant pressure, work is done on the surrounds where ∆U = q + w (piston can move). On the contrary at
constant volume, no work is done so ∆U = q, so the energy is transferred into heat that is stored in the molecules.
In other words for a given heat flow dq we have dTP < dTV (change in temperature when pressure is constant is
less than change in temperature when volume is constant).
We must conclude that CP > CV (we will prove that CP,m − CV,m = R for an ideal gas).

4.6 Heat capacity example

Example 4.2. An electric motor connected to drilling machinery can heat 11.6kg of ice water (T = 273K) to
T = 355K in 2.5 hours. Assuming the same rate of work how high could the same motor raise a 225kg weight in
2.5 minutes? Assume the heat specific heat capacity of water is 4.18JK−1g−1.

Solution. We first calculate the rate of energy from the motor

rate(energy/s) = power =
CPmH2O∆T

2.5hours
= 442Js−1

now relating the work done in 2.5 minutes to the potential of gravity

mgh = 442Js−1 · 150s⇒ h = 30m

4.7 State functions vs path functions

A system can take many paths in moving from an initial state to a final state

7
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A state function only depends on the initial and final states, not on the path taken.
For example, internal energy U is a state function where U = U(P, V ) and

dU =
(∂U
∂P

)
V

dP +
(∂U
∂V

)
P

dV

If the second partial derivatives are symmetric( ∂
∂P

(∂U
∂V

)
P

)
V

=
( ∂
∂V

(∂U
∂P

)
V

)
P

it can be proven that dU is an exact differential where∫ Uf

Ui

dU = Uf − Ui = ∆U

thus U and ∆U are state functions (Note that U is not easily measureable whereas ∆U is).
Note that work w is a path function since we integrate over the change in volume of time (w = −

∫
Pext dV ).

Consider path 1 and path 2 in the figure above:

path 1: w1 = −
∫
Pext dV = −PfδV

path 2: w2 = −
∫
Pext dV = −PiδV

since volume changes when Pext = Pf for path 1 and when Pext = Pi for path 2, thus w1 6= w2.
Since w is not a state function, then q is not a state function since q = ∆U − w.

5 January 16, 2019

5.1 Review of calculus

Coverage: integration, partial derivatives, and the total differential, defined as

df =
(∂f
∂x

)
dx+

(∂f
∂y

)
dy

As previously stated if the second partial derivatives are symmetric i.e. ∂2f
∂x∂y = ∂2f

∂y∂x then f is a state function.

6 January 18, 2019

6.1 Cyclic integrals

Note that there are no quantities qi, qf , wi, wf (initial and final states of heat or work) as discussed before (they are
transitory).
We define the cyclic integral corresponding to a cyclic path where the initial state is equal to the final state.
Note that for any state function e.g. U its cyclic integral is always zero i.e.∮

dU = 0

8
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But the above may not hold for path functions like w or q i.e.∮
dw 6= 0

∮
dq 6= 0

6.2 Specifying state functions P, V, T

Note that for any system of a fixed mass any state can be characterized by any two of the three P, V, T : e.g. internal
energy U can be expressed as only U(V, T ), U(P, T ) or U(P, V ).
This however does not hold for path functions like heat q or work w.

6.3 Reversibility

In thermodynamics we assume the system and surroundings are separately in internal equilbrium (otherwise
they may not have unique values of P, V, T ,etc.).
Hence any process we consider must be a quasi-static process i.e. the system moves through succession of
equilbrium states.
We ask ourselves: are all such processes reversible i.e. can the system and surroundings return to the initial state)?

Figure 6.1: A piston with mass m containing some ideal gas where we apply an additional dm small weight then
remove it. Note that this system is reversible. NB: The w > 0 and w < 0 in the diagram should be dw > 0 and
dw < 0.

In a reversible isothermal (dT = 0) cyclic process we have∮
dw = 0

i.e. no net work was done on the system. That is in the above example wcompression = −wexpansion.

Remark 6.1. In a reversible process, the system and external pressures must be the same i.e. P = Pext.

Consider the following isothermal process with both liquid and gas forms:

9
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Figure 6.2: An irreversible process since we have both gases and liquids which causes change in phase.

Note that isothermal compression causes some of the gas to condense to liquid state: this reduces the internal
pressure so P 6= Pext. Thus this is an irreversible processs: we expect ngas to not necessarily return to its original
value (we will see later condensation is not quite reversible).

6.4 Example of irreversible piston

Consider the following process

Note that while
∮

dU = 0 (the initial and final state of the system is the same), we show that work is done on the
system and heat flows out of the system.
We examine an indicator diagram of the process which maps the change in pressure and volume during each
stage:

10
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Note that

wtatal =
∑
i

−Pext∆Vi = −P2(V2 − V1)− P1(V1 − V2)

= −(P2 − P1)(V2 − V1) > 0

so net work is done on the system.

Remark 6.2. The reason why this example is irreversible is because there is a long enough time period where
Pext 6= P !

Aside. The work corresponds to the area inside the rectangle. Note if the process was performed the other way (i.e.
mass removed then placed back) then w < 0.

Note that since ∆U = qtotal + wtotal = 0, then qtotal = −wtotal < 0 so heat flows out of the system.

6.5 Reversible expansion and compression

For a reversible process note that P = Pext. Let V2 < V1, then

wcompress = −
∫
Pext dV

= −nRT
∫ V2

V1

dV

V

= −nRT ln
(V2

V1

)
> 0

so wcompress > 0. similarly

wexpand = −nRT ln
(V1

V2

)
= −wcompress < 0

so wexpand < 0. Therefore reversible expansion then compression results in∮
dw = 0

6.6 Example of reversible vs irreversible process

Consider the following reversible isothermal expansion and two-step irreversible isothermal expansion:

11
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Note that

reversible: wrev = −
∫
Pext dV = −nRT ln

(V3

V1

)
irreversible: wirrev = −P2(V2 − V1)− P3(V3 − V2)

Suppose we plug in n = 1mol, P1 = 10bar, P3 = 1bar, V1 = 3L, V2 − V1 = (V3 − V1)/2. Solving we get wrev =
−6.907kJ and wirrev = −3.8kJ .
Notice that

1. Work is negative in both cases (expansion does work on surroundings)

2. |wirrev| < |wrev|: geometrically the area of the irreversible rectangles is strictly smaller than the area of the
reversible process).

We could have approximated a reversible process with small irreversible steps:

7 January 21, 2019

7.1 Change in internal energy

Recall we can write U in terms of two variables for a fixed amount of ideal gas (we can use the ideal gas law to
solve for P afterwards)

dU =
(∂U
∂T

)
V

dT +
(∂U
∂V

)
T

dV

For an isochoric process (constant volume) we can simplify to

dU =
(∂U
∂T

)
V

dT

which we know simplifies to dU = dq = CV dT .

Question 7.1. Does this hold in non-constant volume processes? For an ideal gas we know the molecules do not
interact so it should not depend on volume anyways, thus

dU = CV dT

holds as well.

12
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7.2 Enthalpy

We define the enthalpy of a process as
H = U + PV

thus in general the change in enthalpy is
∆H = ∆U + ∆(PV )

We consider two cases:

Constant volume Under constant volume we know that w = 0 (since ∆V = 0) so ∆U = q = CV ∆T (for an ideal
gas or in general).

Thus ∆H = q + V∆P .

Constant pressure From above we have ∆H = ∆U + ∆(PV ). Since pressure is constant and we assume it is
reversible (P = Pext) then ∆H = q − Pext∆V + Pext∆V = q = CP∆T .

That is the change in enthalpy is equal to the heat transfer for a reversible constant pressure process.

For an ideal gas, we have the simplification

∆H = ∆U + ∆(PV ) = CV ∆T + ∆(nRT ) = CP∆T

since CP − CV = nR.

Remark 7.1. In constant volume processes, heat flow qP is exactly ∆U .
In constant pressure processes, heat flow qV is exactly ∆H.

Recall that we have CP − CV = nR and CP,m − CV,m = R (molar heat capacity).

7.3 Change calculations in internal energy, enthalpy, heat and work example

Example 7.1. Given the following indicator diagram:

where there is 2.5mol of an ideal gas with CV,m = 20.79Jmol−1K−1. Also T1 = T3.
Find q, w,∆U,∆H for each segment.

13
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Solution. We have

∆U(kJ) ∆H(kJ) q(kJ) w(kJ)

isobaric: 1→ 2 99.6 139.4 139.4 -39.8
isochoric: 2→ 3 -99.6 -139.4 -99.6 0
isothermal: 3→ 1 0 0 -5.35 5.35
total 0 0 34.5 -34.5

where we have since 1→ 2 is constant pressure

∆U12 = nCV,m(T2 − T1)

= nCV,m

(
P2V2

nR
− P1V1

nR

)
=

20.79Jmol−1K−1

0.08314 L·bar
K·mol

· 16.6bar(25L− 1L)

= 99.6kJ

Also note that

w12 = −
∫
Pext dV = −16.6bar

105Pa

bar
(25× 10−3m3 − 1× 10−3m3) = −39.8kJ

q12 = ∆U − w12 = 99.6kJ − (−39.8kJ) = 139.4kJ

∆H12 = ∆U12 + ∆(PV ) = 99.6kJ − (P2V2 − P1V1) = (CV + nR)(T2 − T1) = 139.4kJ

note that ∆H = q which make sense since 1→ 2 is isobaric.
For 2→ 3 we note it is constant volume so

∆H23CP δT = −139.4kJ

Also we have
∆U23 = CV ∆T = CV

(
P2V2 − P3V3

nR

)
= −99.6kJ

and ∆U = q so q = −99.6kJ .
Finally for 3→ 1 where the temperature is constant, we have T1 = T3 = P1V1

nR = 73.3kJ

w31 = −
∫
Pext dV = −

∫ V1

V3

nRT

V
dV

= −nRT ln

(
V1

V3

)
= −(2.5mol)(8.314Jmol−1K−1) · 73.3× 103J · ln

(
1L

25L

)
= 5.35kJ

7.4 Reversible adiabatic expansion

For an adiabatic process there is no heat flow : that is q = 0 and thus ∆U = w.
For an ideal gas we have dU = CV dT , regardless of the path (i.e. even if q = 0). Therefore CV dT = −Pext dV .
Since the process is reversible we have P = Pext and thus CV dT = −nRT dV

V .

14
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Taking the integral from initial to final we have∫
Cv

dT

T
= −NR

∫
dV

V

⇒CV ln

(
Tf
Ti

)
= −nR ln

(
Vf
Vi

)
⇒
Tf
Ti

=

(
Vf
Vi

)−nR
CV

Note that for an ideal gas CP − CV = nR so we define γ = CP
CV

> 1, thus

Tf
Ti

=

(
Vf
Vi

)1−γ

or if we substitute Tf
Ti

=
PfVf
PiVi

then
PiV

γ
i = PfV

γ
f

Since γ > 1 we see that as volume increases, pressure must decrease proportionally faster in an adiabatic process
than in a isothermal process

We also note that during example we see Vf > Vi and thus Tf < Ti so an adiabatic expansion actually cools the
gas (compression raises T ).

Remark 7.2. For an adiabatic process even though there is no heat flow, temperature changes!

7.5 Irreversible adiabatic expansion

Let’s assume an adiabatic expansion isagainst a constant external pressure that is P 6= Pext so it is an irreversible
process.
We still have CV dT = −Pext dV . Suppose CV is also constant then

CV

∫ Tf

Ti

dT = −Pext
∫ Vf

Vi

dV

⇒CV (Tf − Ti) = −Pext(Vf − Vi) = −Pext
(
nRTf
Pf

− nRTi
Pi

)
rearranging we have

Tf

(
CV + Pext

nR

Pi

)
= Ti

(
CV + Pext

nR

Pf

)
So we can solve for the final temperature if the initial and final pressures are known.

15
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Question 7.2. What happens if a gas expands in a vacuum? (Pext = 0). Note that Pext = 0 thus dT = 0 so it is
actually an isothermal process!

7.6 Internal energy of ideal gases and volume vs temperature

Note for U(V, T ) the differential is

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV

note for a constant volume process we’ve seen

dU

(
∂U

∂T

)
V

dT = dqV = CV dT

In chapter 5 of the text the following is derived(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P

so we have
dU = CV dT +

[
T

(
∂P

∂T

)
V

− P
]

dV

Question 7.3. Does ∆U depend more strong on temperature or volume?
Note for an ideal gas

T

(
∂P

∂T

)
V

− P = T

(
∂nRT/V

∂T

)
V

− P =
nRT

V
− P = 0

therefore dU = CV dT or U = U(T ) as shown before.

In general for real/van der Waal gases
(
∂U
∂V

)
T

6= 0, however it is still small compared to CV , i.e. ∆UT=const <<

∆UV=const for a real gas.
What about solids and liquids?
Typical dV is small for a liquid or solid (density does change much over range of pressure these phases are stable)
hence

∆UT =

∫ V2

V1

(
∂U

∂V

)
T

dV ≈
(
∂U

∂V

)
T

∆V ≈ 0

since ∆V ≈ 0.

Remark 7.3. In nearly all circumstances for any phase of matter it is a good approximation to take

∆U =

∫ Tf

Ti

CV dT = n

∫ Tf

Ti

CV,m dT

7.7 Enthalpy as a function of temperature and pressure

Note the total differential of H(T, P ) is

dH =

(
∂H

∂T

)
P

dT +

(
∂H

∂P

)
T

dP

Let us consider two cases:

16
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Constant pressure dP = 0 We’ve already showed that ∆H = qP , therefore

dH = dqP =

(
∂H

∂T

)
P

dT

therefore (
∂H

∂T

)
P

= CP

therefore CP can be obtained by measuring heat flow at constant pressure.

Constant temperature dT = 0 We need to calculate
(
∂H
∂P

)
T

which is (derivation in section 3.6)

(
∂H

∂P

)
T

= V − T
(
∂V

∂T

)
P

What about for an ideal gas? We note that V = nRT
P thus(

∂H

∂P

)
T

= V − nRT

P
= 0

thus dH = 0 for an isothermal process involving an ideal gas! (it is only a function of pressure).

Remark 7.4. The lack of intermolecular interactions in ideal gases means enthalpy does not depend on pressure
when temperature is fixed.

7.8 How are CP and CV related?

From 1st law of thermodynamics we have

dQ = dU − w.

⇒dqP =

(
CV dT +

(
∂U

∂V

)
T

dV

)
− (−P dV )

⇒CP dT = CV dT +

(
∂U

∂V

)
T

dV + P dV

⇒CP = CV +

(
∂U

∂V

)
T

(
∂V

∂T

)
P

+ P

(
∂V

∂T

)
P

⇒CP = CV +

[(
∂U

∂V

)
T

+ P

](
∂V

∂T

)
P

⇒CP = CV + T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

where the last line follows from
(
∂U
∂V

)
T

= T

(
∂P
∂T

)
V

− P as previously mentioned before (proved in chapter 5).

This can be rewritten as

CP = CV + TV
β2

κ

17
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where the isobaric volumetric thermal expansion coefficient β is defined as

β =
1

V

(
∂V

∂T

)
P

If temperature increases (∂T > 0) volume also increases (∂V > 0) then β > 0 so it measures expansion due to
increase in thermal energy. One can think of β as the percent increase in volume due to an infinitessimal increase in
T .
Also isothermal compressibility κ is defined as

κ =
−1

V

(
∂V

∂P

)
T

If when pressure increases (∂P > 0) volume decreases (∂V < 0) then κ > 0 so it measure “compressibility”. Similar
to β one can think of κ as the percent decrease in volume due to infinitessimal increase in pressure.

Remark 7.5. Note that there is a + in CP = CV + TV β2

κ even though κ has a − sign since we use the cylic or
triple product rule here where (

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

Note that for an ideal gas

β =
1

V

(
∂V

∂T

)
P

=
nR

PV
=

1

T

κ =
−1

V

(
∂V

∂P

)
T

=
nRT

P 2V
=

1

P

therefore

CP − CV = TV
β2

κ
=
TPV

T 2
= nR

Thus we have derived CP − CV = nR or CP,m − CV,m = R for an ideal gas.

Remark 7.6. For solids and liquids βV =

(
pderivV T

)
P

is much smaller than a gas (i.e. does not expand as

much when temperature increases) so CP ≈ CV .

7.9 Example of change in enthalpy calculations

Example 7.2. Calculate the change in enthalpy when 124g of liquid methanol initially at 1bar and 298K
undergoes a change of state to 2.5bar and 425K. Use the following: density of liquid methanol = 0.701gcm−3, and
CP,m = 81.1JK−1mol−1.

Solution. Note that for liquids we have
dH = CP dT + V dP

and since ∆H will be the same for any path we have:

∆H = n

∫ 425K

298K
CP,m dT +

∫ 2.5bar

1bar
V dP

≈ nCP,m∆T + V∆P

= 39.9kJ + 26.6J
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note that the contribution from the change in T is much larger than ∆P .

7.10 Joule-Thompson experiment

We want to measure
(
∂U
∂V

)
T

which we know is 0 for ideal gases but non-zero for real gases.

That is: how much does the internal energy change if we expand the gas at constant temperature?
The original Joule experiment involved releasing gas through a valve into a second chamber and measuring the
change in temperature in the surrounding water bath:

Joule noted dTwater = 0 so he concluded
(
∂U
∂V

)
T

= 0. However the experimental sensitivity was not good enough

(since the heat capacity of waterloo was 1000 times that of the gas).

The Joule-Thompson experiment improves on the sensitivity by measuring
(
∂H
∂P

)
T

instead, from which we can

obtain
(
∂U
∂V

)
T

:

The experiment pushes a gas at constant pressure P1 adiabiatically (q = 0) through a porous plug into a chamber
maintained at constant pressure P2, where P1 > P2.
The total work done is thus

w = −
∫ 0

V1

P1 dV −
∫ V2

0
P2 dV = P1V1 − P2V2

and since q = 0, we have ∆U = U2 − U1 = w.
Combining the above we have U2 + P2V2 = U1 + P1V1: enthalpy is constant (isenthalpic)!
Since we know ∆P = P2−P1 and we can measure ∆T experimentally, we define the Joule-Thompson coefficient
as

µJT lim
∆P→0

(
∆T

∆P

)
H

=

(
∂T

∂P

)
H
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Thus we have

dH =0 = CP dT +

(
∂H

∂P

)
T

dP

⇒CP
(
∂T

∂P

)
H

+

(
∂H

∂P

)
T

dP = 0

⇒
(
∂H

∂P

)
T

dP = −CPµJT

thus we can measure
(
∂H
∂P

)
T

directly.

Finally to derive
(
∂U
∂V

)
T

from above:

(
∂H

∂P

)
T

=

[(
∂U

∂V

)
T

+ P

](
∂V

∂P

)
T

+ V

⇒
(
∂U

∂V

)
T

=
CPµJT + V

κV
− P

Consider the following cases of µJT :

µJT =

(
∂T

∂P

)
H

> 0 for negative dP (expansion) ,dT is also negative (cooling)

µJT =

(
∂T

∂P

)
H

< 0 for negative dP (expansion) , dT positive (heating)

µJT = 0 true for ideal gas; expansion no change in T

It can be shown for van der Waal gases in the limit of zero pressure

µJT =
1

CP,m

(
2a

RT
− b
)

where µJT > 0 reflects dominance in attractive potential (constant a) and µJT < 0 reflects dominance of repulsive
potential (constant b).
We note that real gases have inversion points where µJT reverses signs:
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What is the intuition behind µJT ? When µJT < 0 molecules have enough kinetic energy (high temperature) so
repulsive forces dominant. As gas expands isenthapically average separation between particles increase so part of
potential energy converted to kinetic energy (gas warms).
Vice versa, when µJT > 0 attractive potential dominates so part of the kinetic energy is converted to potential
energy as gas expands (gas cools).
In fact we can use the Joule-Thompson effect to liquefy gases:

When the gas is below its inversion point (µJT > 0) prior to reaching the JT valve, it is possible to liquefy. Liquid
Ar, N2 and O2 are produced this way.
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8 January 28, 2019

8.1 Thermochemistry

So far we have looked at thermodynamics without chemical reactions.
Learning how energy and enthalpy changes upon breaking and forming chemical bonds can tell us whether certain
reactions will occur under given conditions and how much a reaction can produce.
Note that reactions carried out at constant volume implies ∆U = qV .
Reactions carried out at constant pressure implies ∆H = qP .
Some terminology:

endothermic heat flows from surroundings into system (q > 0)

exothermic heat flows out of system (q < 0)

When writing down reactions we must always specific phase (s, l, g) e.g.

Fe3O4(s) + 4H2(g)→ 3Fe(s) + 4H2O(l)

Note that the standard state of all chemical reactions is P = 1bar and T = 298.15K, where ∆Ho and ∆Uo

denotes change in H and U at standard pressure P = 1bar.
We define the follow terminology:

enthalpy of reaction ∆HR = qP at fixed P, T

standard enthalpy of reaction ∆Ho
R enthalpy reaction per mole at standard state (P = 1bar, T = 298.15K)

standard enthalpy of formation ∆Ho
f : this is exactly ∆Ho

R if the reactants are pure elements in their mmost
stable form and one mole of the species is formed under standard state e.g.

1

2
N2(g) +

3

2
H2(g)→ NH3(g)

Note that ∆Ho
f = 0 for a pure element in its standard state: this is our standard reference state (e.g. at

P = 1bar, T = 298.15K for 1 mole of N2(g)).

9 January 30, 2019

10 February 1, 2019

10.1 Bomb calorimeter

10.2 Entropy

Imagine the molecules in a glass of water have all their velocities align upwards simultaneously causes the volume of
water to be ejected from the gas.Although this does not violate the first law (conservation of energy), the probability
of this intuitively seems surely 0.
Similarly we never observe hot molecules (high velocity) and cold molecules (low velocity) segregate themselves to
form a spontaneous temperature gradient.
We never observe such spontaneous changes but they do not violate the conservation of energy. However, we do
observe that temperature of the whole volume reaches a thermal equilibrium.
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We first define entropy. Recall q and w are not state functions: recall for dq:

dq = dU − dw = CV dT + P dV

this is not an exact differential since(
∂CV
∂V

)
T

= 0 heat capacity independent of volume

but (
∂P

∂T

)
V

=
nR

V

In order to make this an exact differential and hence a state function, we divide by T :

dq

T
=
CV
T

dT +
P

T
dV

where we confirm it is an exact differential (
∂CV /T

∂V

)
T

= 0(
∂P/T

∂T

)
V

= 0

11 Assignment 1 notes

Pressure in bar and volume in L When calculating things, pressure may be given in bar and volume in L.

Note to calculate energy in J , we need to convert each to SI units where 1bar = 105Pa and 1L = 10−3m3.

Remark 11.1. NB: when given a in barL2mol−2, remember to convert L to m3 where

1000L = 1m3 ⇒ 1L = 10−3m3

Ideal isothermal problems We know ∆U = 0 so q = −w.
Calculat work first. Find Vi from ideal gas law Vi = nRT

Pi
. Since ∆T = 0, then PiVi = PfVf to calculate Vf .

Now if reversible, then we substitute in Pext = P = nRT
V then solve the integral. If Pext constant, then it’s

trivial.

q follows from q = −w.
∆H should be 0 since ∆U = 0 and ∆(PV ) = nR∆T = 0.

Real isothermal reversible problems ∆U 6= 0 but instead we use

dU = CV dT +
an2

V 2
dV

since isothermal we drop CV dT i.e. dU = an2

V 2 dV (then we inteegrate).

Calculate work next where

P =
nRT

V − nb
− an2

V 2
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so we integrate. Vf and Vi are usually given.

Heat is simply q = ∆U − w.
∆H is more involved: suppose

P =
nRT

V − nb
− an2

V 2

note that H = U + PV , thus

∂H

∂V
=
∂U

∂V
+
∂PV

∂V

=
∂U

∂V
+
∂
(
nRT V

V−nb −
an2

V

)
∂V

=
∂U

∂V
+

(
−n2RTb

(V − nb)2
+
an2

V 2

)
=
∂U

∂V
− −n

2RTb

(V − nb)2
+
an2

V 2

Integrating both sides with respect to V we get

∆H =

∫
dU −

∫
−n2RTb

(V − nb)2
dV +

∫
an2

V 2
dV

= −
∫
−n2RTb

(V − nb)2
dV +

∫
2an2

V 2
dV

since CV dT = 0.

Total differential To check if an expression is a total differential, simply take the partial derivation with respect
to the other variable, e.g.

(2y + 1/y) dx+ (2x− x/y2) dy

note that ∂2y+1/y
∂y = 2− 1/y2 and ∂2x−x/y2

∂x = 2− 1/y2 so it is a total differential.

Ideal adiabatic problems We know that q = 0. We simply calculate work as in the isothermal case.

∆U = w as well.

For ∆H, we need to find ∆(PV ) = nR∆T . To find Tf and Ti we use either the reversible or irreversible
adiabatic equations below.

Reversible adiabatic ideal gas We have
Tf
Ti

=

(
Vf
Vi

)−nR
CV

which we use to solve for Tf then for dU = CV dT .

Irreversible adiabatic ideal gas We have
Tf
Ti

=
CV + Pext

nR
Pf

CV + Pext
nR
Pi

Ideal ∆U calculations We can either use ∆U = q + w, some property of the process (e.g. isothermal implies
∆U = 0) or in general

dU = CV dT
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Enthalpy at constant pressure We note that

dH = CP dT

which is derived from the total differential of dH in terms of pressure (which is constant) and volume.

CP , qp vs CV , qV Note that qP 6= qV ! To convert between the two, we note the conversion

CP − CV = nR

12 Assignment 2 notes

Energy units Note that J = Pa ·m3, so when calculate work e.g. w = −Pext(Vf − Vi), make sure Vf and Vi are
in m3, not L!

∆S and ∆Ssurr (isothermal irreversible) Note that for constant T we have

∆S = nR ln
(Vf
Vi

)
For the surrounding, we simply take

dqsurr
T

=
w

T
=
−Pext(Vf − Vi)

T

∆S for constant P, V, T We have

∆S = nR ln
(Vf
Vi

)
constant T

∆S = nCV,m ln
(Tf
Ti

)
constant V

∆S = nCP,m ln
(Tf
Ti

)
constant P

For a process with three varying macro properties, we can simply draw out the diagram and add the
varying values. For example if we look at how V and T varies, we draw a reversible path first at constant V
then at constant T i.e.

∆S = nR ln
(Vf
Vi

)
+ nCV,m ln

(Tf
Ti

)
Note that if only two macro properties vary and one is constant, then only one is truly varying since the two
macro properties are related by PV = nRT .

Constant volume calorimeter Note that for constant volume calorimeteres we have

∆Uototal = nsol∆U
o
R + nH2OCH2O∆TH2O + Ccalo∆Tcalo

If we are given only ∆Ho
R, we must solve for

∆UoR = ∆Ho
R −RT∆ngas

where ∆ngas is the change in moles of gases per 1 mol of our target molecule.
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Equilbrium constant KP To find KP at some T (e.g. T = 961K), we can use either:

Method 1 (recommended) The van’t Hoff equation gives:

d ln(KP )

dT
=

∆Ho
R

RT 2

⇒ ln(KP )− ln(KP,298K) = −
∆Ho

R

R

( 1

T
− 1

298K

)
where the second equation only holds if ∆Ho

R is independent of T .

Method 2
KP = e

−∆Go
R

RT

We need to find ∆GoR which is
∆GoR = ∆Ho

R − T∆SoR

or given ∆GoR at T1 and ∆Ho
R at T1 then we have the Gibbs-Helmholtz equation

∆GoR,T2
= T2

[
∆GoR,T1

T1
+ ∆Ho

R,T1

(
1

T2
− 1

T1

)]
Another way: given ∆Ho

f , S
o
m, CP,m at standard conditions, we find

∆Ho
R = ∆Ho

R,298K +

∫ T

298K
∆CP,m dT

∆SoR = ∆SoR,298K +

∫ T

298K

∆CP,m
T

dT

and ∆Xo
R,298K is your

∑
i niproducti −

∑
j njreactantj .

Qp and Kp Note that form products (indexed by i) and n reactants (indexed by j) with corresponding stoichiometric
coefficients we have

Qp =

∏
i = 1m

(
Pi
P o

)αi∏
j = 1n

( Pj

P o

)αj
=

∏
i = 1m

(
xi
)αi∏

j = 1n
(
xj
)αj

( P
P o
)∑m

i=1 αi−
∑n

j=1 αj

where P o = 1bar and Pi, Pj are partial pressures. We only care about gases. xi, xj are the mole fractions.

To find P we can simply use P = nRT
V where n is the total moles of gases.

Kp is similar but with equilbrium partial pressures (or molar fractions).

∆GR and ∆GoR of mixture We have
∆GR = ∆GoR +RT ln(Qp)

where ∆GoR = −RT ln(Kp), so
∆GR = RT (ln(Qp)− ln(Kp))

Equilbrium pressure When solving for the equilbrium pressure i.e. if p =
∑m

i=1 αi −
∑n

i=1 αj then

P =
(
Kp

m∏
i=1

x−αi
i

n∏
j=1

x
αj

j (P o)p
) 1

p
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if we are solving for P in terms of bar, keep P o in terms of bar (or keep them in the same units).

13 Assignment 3 notes

Mixing We have

∆Gmix = nRT
∑
i

xi ln(xi)

∆Smix = −nR
∑
i

xi ln(xi)

Real gases Note: the following have different coefficients a, b (look up in corresponding tables).

van der Waal’s:

P =
nRT

V − nb
− n2a

V 2
=

RT

Vm − b
− a

V 2
m

where Vm = V
n .

Redlich-Kwong:

P =
RT

Vm − b
− a√

TVm(Vm + b)

Corresponding states and critical states Two gases are in corresponding states if their reduced variables:

Pr =
P

Pc

Tr =
T

Tc

Vr =
V

Vc

are equivalent, where Xc are the critical states.

Volume of real gases Note that for van der Waal gases:

Vm = 3b

and for Redlich-Kwong gases:

Vm = Vm,ideal zc =
1

3
Vm,ideal

since zc = 1/3 for Redlich-Kwong gases.

Phase questions Given vapor pressures at various temperatures Ti and Pi, one should draw out the P-T diagram
with the phase coexistence curves and triple point.
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Calculating vaporization or sublimation We can use the equation

ln

(
Pf
Pi

)
=
−∆Hvaporization

R

(
1

Tf
− 1

Ti

)

⇒∆Hvaporization =

−R ln

(
Pf

Pi

)
1
Tf
− 1

Ti

For example, given the normal boling point (Pi = 1atm) is Ti = 353K and vapor pressure is Pf = 1.19×104Pa
at Tf = 293K, we can solve for ∆Hvaporization.

Calculating ∆Svaporization We have

∆Svaporization =
∆Hvaporization

Tboil

For melting see below.

Calculating triple point We want to find Ptp and subsequently Ttp. We require a point on both the solid-gas
coexistence curve and the liquid-gas coexistence curve, then we can solve for where they intercept.

That is from Clasius-Clapeyron equations:

ln

(
P2

Ptp

)
=
−∆Hvaporization

R

(
1

T2
− 1

Ttp

)
ln

(
Ptp
P3

)
=
−∆Hsublimation

R

(
1

Ttp
− 1

T3

)

Note ∆Hsublimation ≈ ∆Hfusion + ∆Hvaporization, then we can solve for Ttp and subsequently Ptp.

14 Assignment 4 notes

Vapor pressure from ∆Gof We can write out the reaction of a substance that goes from (l) to (g), find the ∆Gof ,

then use the fact that Kp =

(
P(g)

P ∗

)
(assuming one mole to one mole) thus

P = P ∗ exp
(−∆Gof
RT

)
Freezing/melting point at different P Use Clapeyron’s equation given densities where

∆Vm =
Mf

ρf
− Mi

ρi

where M are the molar masses and ρ are the densities. For freezing point f is for the liquid and i is for the
solid.

Then
dP

dT
=

∆S

∆Vm
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where ∆S = ∆H/Tstandard. This should be mostly positive since ∆Vm > 0 except for water where ∆Vfusion < 0.

∆HX from vapour pressures and vice versa From Clasius-Clapeyron, given vapour pressures for a phase at
two temperatures we can calculate ∆Hvaporization (for liquids) or ∆Hsublimation for solids:

ln

(
Pf
Pi

)
=
−∆HX

R

(
1

Tf
− 1

Ti

)
Then ∆Hfusion ≈ ∆Hsublimation −∆Hvaporization.

Solute and freezing/boiling point depressions Note that given the molality of a solutemsolute (see next point)
then the change in melting/freezing point is:

∆Tf = −
RMsolventT

2
fusion

∆Hfusion
= −Kfmsolute

where Kf is the cryoscopic constant of the solvent. Similarly for boiling point:

∆Tb =
RMsolventT

2
boil

∆Hvap
= +Kbmsolute

Molar mass of solute msolute Note that molality of a solute msolute is actually equal to

msolute =
msolute/Msolute

msolvent

where m is the mass and M is the molar mass, thus

Msolute =
Kbmsolute

∆Tbmsolvent

Vapour pressure ratio of solvent

Psolvent
P ∗solvent

= 1− xsolute = 1− nsolute
nsolute + nsolvent

where P ∗solvent is the vapour pressure of the pure solvent.

Total pressure of gas from gas mole fraction Let y1 be the mole fraction of gas. Then for the total pressure
P and vapour pressures P ∗1 and P ∗2 (where 2 is the other substance)

y1 =
P ∗1P − P ∗1P ∗2
P (P ∗1 − P ∗2 )

Liquid mole fraction After finding total pressure P we can find x1 (mole fraction of liquid) from

P = x1P
∗
1 − x2P

∗
2 = P ∗2 + (P ∗1 − P ∗2 )x1

Gas mole fraction ⇐⇒ liquid mole fraction

y1 =
x1P

∗
1

P ∗2 + (P ∗1 − P ∗2 )x∗1
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Composition We have
z1 =

nl,1 + ng,1
nl,1 + ng,1 + nl,2 + ng,2

where if we are given the total nl and ng we can find the mole fractions using the above equations for gas and
liquid.
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