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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 September 6, 2018

1.1 Example 1.2 solution

Use the definition of the Markov property to show that

P(Xn—i-l = Tn+1 | Xn = xn’Xn—l = Tn—1y--- aXn—k+1 = xn—k—&—laXn—k—l = Tn—k—15--- 7XO = -730)
=P Xpnt1=2n+1 | Xn=2n), k=12,...,n

(i.e. we are missing one past observation).

Solution. Applying the definition of conditional probability, our expression is equivalent to

P(Xn+1 = Tnp+1, X, = Tn, Xnp_1 = Tp—1y--- 7ank+1 = Tn—k+1, ankfl = Tn—k—1y--- 7X0 = IL'()) _ E
P(Xy =2, Xn1=Tn-1, ., Xp—kt1 = Tn—kt1, Xn—k—1 = Tn—k—1,-- -, X0 = 0) D
By the law of total probability
N = Z P(Xpy1 =241, Xk = Tnp, - -, Xo = 0)
Ty €S
= Z P(Xn—H = Tp+1 | Xn :$n,...,Xn,k = mn,k,...,Xo :xo) X P(Xn = a:n,...,Xn,k = xn,k,...,Xo :LL’())
T,_RES
By the Markov property
= P(Xns1 = @it | X =20) S P(Xn = @ny-os X = T -, Xo = 20)
Tp_kES
= P(Xn—H = Tn+1 | Xn = xn)P(Xn =Tn,.., Xnk € 57--~7X0 = .Z'())
Since X,,_j € S is an event with probability 1
= P(Xn—i-l = Tn+1 ‘ Xn = xn)P(Xn =Tnyes Xkl = Tn—kt1ly Xn—k—1= Tn_k—1,---,X0 = JI())

:P(Xn—H = Tn+1 ‘ Xn :xn) -D

The result follow.

2 September 11, 2018

2.1 Section 1.2: Transitivity of communication relation

Prove that if i <> j and j <> k, then i <> k (and thus the communication relation “«“ is an equivalence relation).
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Proof. dn,m € N such that PZ(?) > 0 and p](?]:b) > 0.

Note that
P =3 PR > BV > 0
les
Similarly we can show k — ¢, thus ¢ <> k. O
2.2 Example 1.3 solution
Given the DTMC with TPM
0 1 2 3 4
o[02 08 0 0 O
1106 04 0 0 O
P=2 0 05 0 05 O
3 0 0 0 0.7 0.3
4 0 0 0 0.1 09

Use a state transition diagram to determine the equivalence classes.

Solution. We draw the following state transition diagram and note that there are three communication classes:

{0,1},{2},{3,4}.

2.3 Example 1.4 solution
Given the DTMC with TPM

0 1 2 3 4 5 6 71
o[ 0 1 0 0 0 0 0 0]
1 o o o0 o0 o 0 o0 1
2 0O 04 0 0O O 0 06 O
p_3 0 0o 0 0203 05 0 0
4 o o o0 o o0 1 o0 O
5 o o0 o0 1 o 0 0 O
6 0o 0 07 O O 03 0 O
7001 0 O O 0 0 05 04 ]
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Use a state transition diagram to determine the equivalence classes.

Solution. We draw the following state transition diagram and note that there are two communication classes:
{0,1,2,6,7},{3,4,5}.

2.4 Example 1.5 solution
Given the DTMC with TPM

0 1 2 3 4 5 6 7
o[ 0 1T 0 0 0 0 0 0]
1 o o o0 o0 o 0 o0 1
2 0o 04 0 O O 0 06 0
p_3 0o o0 0 02 03 05 0 O
4 o o o0 o0 o 1 o0 0
5 o o o0 1 0 0 o0 O
6 0o o0 o7 O 0 03 0 O
7001 0 O O O 0O 05 04 ]

Use sample paths to prove that all states within the communication classes found in Example 1.4 communicate.

Solution. class {3,4,5} Note that P3 4P 5P53 > 0 i.e. the sample path 3 — 4 — 5 — 3 has positive probability,

thus states 3,4, and 5 communicate since for any pair of states ¢,5 € {3,4,5}, 3n; ; < 3 such that P(n” ) > 0.

class {0,1,2,6,7} We have sample path 0 -1 —7 — 6 — 2 — 1 — 7 — 0 with positive probability.

By a similar argument as above the five states communicate.

2.5 Theorem 1.1 proof: periodicity is a class property
Theorem 2.1. If i +» j then d(i) = d(j) (equal periods).

Proof. Since ¢ «» j, then dn, m € N such that PiE?) > (0 and PJ(T) > 0.
VL € Z7 s.t. Pj(j) > 0, we have

7n+n+L (m+L)
ZszP,i
kesS

=> > B RAY

keS leS
(n) p(L) p(m)
2 P Py Py
>0
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Thus d(7) divides n +m + L.

Note that P;; (ntm) = kes P(n (m) > PZS?)P](,T) > 0, thus d(i) divides n + m.

Therefore d(i ) divides (n—l—m—I—L) —(n+m)=LVL s.t. Pj(f) > 0, thus d(i) divides ged{L € Z* | Pj(f) > 0} =d(j).
Similarly, d(j) divides d(7), thus d(i) = d(j). O

3 September 13, 2018

3.1 Example 1.6 solution
Given the DTMC with TPM

05 05 0
Show that d(i) = 1 despite the fact that Pﬁ) =P,;=0fori=0,1,2.
Solution. Consider state 0 where we have
Py) =0

1
Pé?o) = Z Py Pro > Po1Po1 = 1 0
kes

1
Pé?O) - Z Po e PreiPro = PoiPraPao = 3>0
kes

Therefore d(0) = ged{2,3,...} =1.
Since the sample path 0 — 1 — 2 — 0 has positive prob., all of the states communicate and the DTMC is irreducible,

thus d(2) = d(1) = d(0) =1 as well.

3.2 Theorem 1.2 proof: transience/recurrence are class properties

Theorem 3.1. Transience and recurrence are class properties i.e. if 4 <+ j and ¢ is recurrent, then j is recurrent.

Proof. Tt clearly holds if i = j, so assume i # j. i <> j so Im,n € ZT s.t. PJ(T) > (0 and PiS?) > 0.
Note that

o () = )
n
Y Py > Py
n=1 l—m+n+1
(m) pl )
> Y PRl
l=m-+n+1
(m) p) N~ pll—m—n)
=pP'Ry Y By
l—m+n+1

P(” Z

I
8
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. .. L .
since ¢ is recurrent thus 220:1 Pi(i) = 00, thus state j is recurrent.
Transience is proven similarly. O

3.3 Theorem 1.3 proof: recurrent classes with states ¢,j imply f;; =1

Theorem 3.2. If i <> j and state ¢ is recurrent, then
fi,j = P(DTMC ever makes future visit to state j | Xg =1i) =1

Proof. If i = j, then result follows by definition of recurrence.
Let i # j. Since i < j, then In € Z7 s.t. Pj(’?) > 0.

State j is recurrent by theorem 1.2 so f;; = 1.

Assume that f; ; <1 for a contradiction.

Method 1 Note that
fj,j = P(DTMC ever makes future visit to j | Xo = j)
= 1 — P(never visits j | Xo = j)
<1- PR fiy) Plnever visits j | Xo = j) = P (1 - fi;)
<1

which is a contradiction, so f;; < 1.

Method 2 Note that

{X,, = i,never visits j after i} C {never returns to state j}

=P(X,, = i,never visits j after i | Xo = j) < P(never returns to j | Xo = j)
:>P](,?)(1 — fig) £1—fi;
=P (1= fi) <0

which is a contradiction since Pj(?) >0and 1~ f;; >0, so we must have f; ; = 1.

3.4 Theorem 1.4 proof
Theorem 3.3. If state ¢ is recurrent and state ¢ does not communicate with state j, then P; ; = 0.

Proof. Assume i # j. State 7 is recurrent so f;; = 1.
Assume that P;; > 0 for a contradiction so ¢ — j. Since ¢ and j don’t communicate and ¢ — j, then 7 is not
accessible from j (j /4 1).

Method 1 Note that

fii = P(DTMC ever makes future visit to i | Xo = 7)
=1 — P(never visits i | Xo = 1)
<1-P; P(never visits i | Xo = 1) > P; j since j /4 i
<1
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which is a contradiction so P; ; = 0.
Method 2 Note that

{X; = j,never returns to i after j} C {never returns to state i}
=P(X1 = j,never visits i after j | Xo =14) < P(never return to i | Xy = 1)
=P ; <1— fi

where the last line follows since 7 is not accessible from j.

Since f;; = 1, we have F; ; < 0 which is a contradiction, thus P;; = 0.

4 September 18, 2018

4.1 Example 1.7 solution
Consider the DTMC with one-step transition probabilities

Pij=o; j=2" nezt

Pi1=1 1=23,4,...
Show that all states are null recurrent and check that a stationary distribution does not exist.

Solution. It is clear that evey state communicates an the DTMC is irreducible. By Theorem 1.5, we only need to
check one state for null reucrrence.
For state 1, note that

=Y 1= P
n=1 n=1
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So state 1 is indeed recurrent. To show it is null recurrent, we look at its mean recurrent time m;

State 1 and hence the entire DTMC is null recurrent.
Does a stationary distribution exist? We observe p = pP where p = (p1, p2, ...) by vector-matrix multiplication

P1=Dp2
1
p2 = 5171 + p3

1
pam = 2711?1 + pom4q mez"

Also note that
Di = Pi+1 i # 2™ for some m € Z*
thus we have
Poamyl = Pamy = ... = Pom+l_9 = Pom+1_1 = Pom+1

So our p vector is now

p = (p1,D2, D3, D4, D5, D6, P7, PR D9, - - -)
= (p17p21p47p47p8>p87p81p87p167 .. )
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If we expand out our pam

1
pam = 271291 + pam41
1 1
= omP1 + gmT1P1 + pam+2
o) 1 .
=n)(3)
l=m
Lim s~ 1yn
=n(3)" > ()
2 2
n=0
1\ m—
=P (i)m
We need pe’ = >~ | p, = 1. Note that
an =p1+ Z Z D recall we have 21 of each pam
m=1]=2m~— 1+1
=p1+ Z Z Dam
m=1]=2m—-141
> 1
— pl + Z 2m712m_1p1 2m _ 2m71 — 2m71(2 _ 1) — 27)’1,7].
m=1
(0.)
=p1+ Z D1
m=1
[e.e]
= Z P
m=0

which is 0 if py = 0 or oo if p; > 0. It can’t hold that pe’ = 1 while satisfying p = pP, thus a stationary distribution
does not exist.

4.2 Example 1.8
Consider a DTMC with TPM

— O O o
O = O =
O O = N

0
P=1
2
Show that more than one stationary distribution exists.

Solution. We have two equivalence classes: {0,2} and {1} and they are positive recurrent:

P(N1:1|X0:1):1¢m1:1<oo
P(N;=2|Xo=j)=2=m =2<o00 j=0,2

Consider p = (%,O, 3) and ¢ = (0,1,0).
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For the former:

0 0 1
1 1 1 1
1 00
and
6,_1+1_1
pe =579 7

Similarly for g, thus both p and ¢ are both stationary.
In fact, any convex combination ap + (1 — a)q, a € [0, 1] is a stationary distribution.

That is any (§,1 — «, §) is stationary, thus there are infinitely many stationary distributions.

4.3 Theorem 1.7: Irreducible DTMC positive recurrent iff stationary distribution
Theorem 4.1. An irreducible DTMC is positive recurrent iff a stationary distribution exists.

Proof. Proof deferred. O

4.4 Uniqueness of stationary distributions

Theorem 4.2. Once we have theorem 1.7 we can prove uniqueness of stationary distributions i.e. the stationary
distribution will not be unique if the DTMC has more than one positive recurrent equivalence class.

Proof. Consider a DTMC with two positive recurrent classes c¢1,ca. We can write the TPM as

c1 c2
o [P0
P_CQ[O PQ]

where P; and P, are irreducible TPMs when considered in isolation.
So if we had A DTMC {y,,n € N} with TPM P, then {y,,n € N} would be irreducible and positive recurrent i.e.
dp1 such that p1 Py = p; and pie’ = 1.
Similarly 3ps for Ps.
Consider
[apl7 (1 - a)p?] = [(apl,la ey O[pl,n)u ((]- - a)p?,lv ey (]- - a)p2,n)]
thus we have
P 0
pP = lomn, (1=l |1

= [ap1P1, (1 — a)p2 P

= [ap1, (1 — a)p2]

=D
And note pe’ = apre’ + (1 —a)pee’ =a+ (1 —a) =1.
Thus we do not have a unique stationary distribution. O
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5 September 20, 2018

5.1 Example 1.11 solution
Consider a DTMC with TPM

o 1 2

0 1 0 O

_ 1 2 1
P=117 3 12
2 0 0 1

Solve the limit TPM lim,,_ oo P"™. Does the limiting distribution of X,, depend on the initial distribution?

Solution. Clearly the equivalence classes are {0} and {2} (recurrent) and {1} (transient).
Poo = P> = 1 so states 0 and 2 are absorbing states.
We’d like to build up our matrix lim,, pn),

Note Py = Pyy =1 for all n € N thus

- () _ (n) _
i 100 = 1, Foz =1
fhus (n) (n) (n) (n)
. n) __ . n) __ . n) __ . n) __
w3 Tor = 0, Fo = i, P = g, Por =0
Note that 9
. (n) 4. a\n
Am, P =l (5)" =0
Also

P = P(X, =0] Xo=1)

n
= > P(DTMC first visits state 0 at time m | Xo = 1)

m=1

=Y P(Xp=0,X,1=0,....,X,, =0] Xo = 1)

m=1

n
=Y P(Xp=0,X,1=0,....Xn=0,Xp1=1,.... X1 =1] Xo=1)
m=1
n

=Y P(Xn=0|Xpn=0)PXp, =0 Xppo1 = )P(Xpp1=1|Xpp2=1)...P(X1 =1| Xo=1)

m=1
_ Z 1 i (%)m—l
m=1
n—1
=i 6)
=0
1—-(3)"
:%( 1—(33) )
3 2.n
=, 0- (g) )

10
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Similarly P(g’) =11-(3)".

Taking the limit of either, we get lim,,_, Pl%) = % and lim,, oo Pl(g) = =, thus we have

1
4

n—o0

ORIWw kL ©
OO O =
—a— O N

0
lim P(™ = 1
2

5.2 Theorem 1.8: Limiting probability of transient states
Theorem 5.1. For any state i € S and transient state j € .S of a DTMC, lim,, P,L(?) =0.

Proof. Note that

o
§1+ZP-@ fij <1
oo
< 00 since j is transient Z Pj(lj) < o0
=1

Therefore lim,, oo PJ(ZL) = 0 by the nth term test for infinite series (i.e. otherwise the sum above will be infinite). [

6 September 25, 2018

6.1 Example 1.12 solution

Consider the DTMC with TPM
0 1

0|01
P=, { 10 }
which clearly has period d = d(0) = d(1) = 2. Confirm that the extended BLT for periodic DTMCs holds true for
this DTMC.

Solution. Clearly my = m; = 2. We will check the LHS and RHS of the extended BLT equation.

11
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Note that

n—oo 1 0|1 O

= hm H 1[2><2

lim P®") = hm H? 1 [O 1} {0 1]

= Izx2

5o lim,, 00 P](in) =1= % = 1.

6.2 Theorem 1.10: null recurrence has limiting probability of 0
(n)

Theorem 6.1. If state ¢ is null recurrent, then lim,,_, Pi’j = 0 for any state j.

Proof. Case 1: i = j By the extended BLT lim,, P(nd) mi = 0 since 7 is null recurrent so m; = co.

(3

Also PZ-E ) — 0if k is not divisible by d, thus lim,_, P(n)

Case 2: i # j i 4 j Since i is recurrent and it does not communicate with state j, then Pi(?) =0Vn € Z" so the
statement holds.

1 <> j Since 4, j communicate, j is also null recurrent.

— lim ZfJP(" k) P =0ifs <0

n—o00 s

—Zf hmPnk))

67 oo Jid

-0 lim P

= 0 by case 1 since j is null recurrent
n—oo I

Remark 6.1. Note that case 2(b) implies that lim,_, P! ]) = 0 if j is null recurrent (regardless of 7).

Remark 6.2. We can exchange order of limit and infinite summation by applying the dominated convergence
theorem (DCT) Y, = P\" " with probability £\, ¥ =0 and Z = 1.

O

6.3 Theorem 1.5: positive/null recurrence is a class property
Theorem 6.2. If i <+ j and state i is positive recurrent, then state j is also positive recurrent (null/positive
recurrence is a class property).

Proof. Since i < j, d(i) = d(j) = d. Since i is positive recurrent (m; < oo) by the extended LT lim,, P(nd)

L >0
Since i <+ j, 3a,b € Z* such that P\ > 0 and P\ > 0, thus P4 > P P > 0, 50 d must divide a + b i.c.
ke Zt st. a+b=kd.

12
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Let l=n—k —n=1[0+k thus

lim P( 4 _ h ((Hk)d)

n—oo J:J JJ

— lim P(a+ld+b)

=00 7

> lim P )P“d)P( )

oo Ji

= P.(i)(hm

S

>0

Thus we have % = limy, 0 P-(?d)
J P

7 September 27, 2018

7.1 Theorem 1.6: Finite DTMCs have no null recurrent states

Theorem 7.1. In a finite-state DTMC, there can never be any null recurrent states.

> (0 so mj < oo thus j is positive recurrent.

Proof. Assume there exists a null recurrent state i. By theorem 1.10, lim,,_, P(n) =0 forall j €58S.

We have 1 =) P (™) Take the limiting of both sides

jes

L= Jim 3 R

jes

=2 i

jes

:ZO

=
=0

a contradiction.

7.2 Theorem 1.7: Irreduicle DTMC positive recurrent iff stationary distribution

Theorem 7.2. An irreducible DTMC is positive recurrent iff a stationary distribution exists.

Proof. Forwards = Assume the DTMC is positive recurrent. For some state i, define v = (y9,71,...) where

(n)

i = limy, 00 Vi and

n 1 )
’71'(7j) = E[ﬁ Z Lixe=jy | Xo =1]

k=1
1~ (k)
“n Z Fij
k=1

Suppose that S = N (state space). For any m = 1,2, ..

13

. (so up to some state m) we have
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So Z?io vj

We want to show that v =~P.

1 n
N pk)

, 1
Note that the ith row of =%

1
; = E (k)
nh_r)rolo [n P+

row sum of n-step TPM up to state m, so <1

i <11Infact, 372 v = 1:

Z’Vi = lim ;ZPM
n
, 1
=2
k=1
—1

Note that the RHS is

:lzpwmp_z)
n

n

1 (k
PP

E:;MHJ Pk
k 1

n+1)

PW) telescoping

(n) (1)

L P%) s (Vig's Vi1 s---)- Taking the limit of the ith row of the RHS

n

L pmtn

— P(l))}

) =7 H0
k=1

=7

where the second line follows since every element of a TPM is € [0, 1] where

HP(H+1) o

pt }<1:1m74ﬂ“0—

n—oo N

14
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Now taking the limit of the (7,1)th element of the LHS

n

. 1
nlbnéo;Z[P(k)Phu):?}L%Z > P P

k=1 = J€S

:Z; nh_)n;OEZPJ o DCT
—Z’Y] 5,0

JjeS
= [yP);

where DCT is applied where Y,, = P;; with probablhty py P( Ve YV = Pj; with probability v;, Z = 1.

So the jth row of the LHS converges to yP.

v =P and so v satisfies the stationary condition and is a stationary distribution (actually: we let 7 = - to
ye

make it a true distribution).

Backwards < Assume there exists a stationary distribution. Assume the DTMC is null recurrent or transient.

In either case, lim,, .o, P, ( ) — 0 for all jEeSs.

We have m = 7P = 1; =3, ¢ TI'ZP( ") for all j € S, for all n € N.

Taking the limit of both sides as n — oo

= " m(lim P DCT

JjES
=0 Vjes

where the second line follows from applying DCT where Y,, = Pl( ]) with probability 7;, where ¥ = 0 and
Z =1.

Thus 7 = (0,0,...) which is not a distribution, thus we have a contradiction.

8 October 2, 2018

8.1 Example 1.13 solution
Consider a DTMC with TPM

0o 1 2 3

ofp 0 1—-p O

1 0 r 0 1—r
P:

21 q 0 1—gq 0

310 s 0 1-—s

15
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with o < p,q,7,s < 1 so that it has two positive recurrent communication classes C; = {0,2} and Cy = {1, 3}.
Rewrite P according to its canonical decomposition and solve for lim,, .o, P".

Solution. We can rearrange the TPM as

0 2 1 3
o|lp 1—p 0 0 G G C1 Oy
x 2 q 1*(] 0 0 _C1 P1 0 *n_Cl Pln 0
=110 0 ri-r|"alo 7TV =0 pp
310 0 s 1—s

We can find the limiting probabilities within each class in isolation.
C7 The conditions of the BLT are satisfied so 371 such that 7 Py = 1 and e’ =1 (7 = (7o, m2)). We have

Ty = PpTo + qm2

=Ty = )
q
and also
1 =my+ mo
q 1—p
=7y = g =
Ta+1-p 7 g+1-p
Cy Similarly (as above) m = ST T3 = S}Jir.

Returning to our original TPM

o 1 2 3 1 2 3
0 0 0 0 1-p 0
0] ™o m2 gti-p atl-p
s —r
lim P"™ = 1 0 ™ 0 3 1 s+1—r 10 s+1—r
q —-p
n—00 2 760 0 762 0 2 Fi=p 0 +1i—p 10
TT T S —T
3 1 3 3 0 s+1—r 0 s+1—r

8.2 Random walk transience/recurrence

1

Theorem 8.1. The simple random walk is transient if p # ¢, and null recurrent if p = g = 3.

Proof. Case 1: p # q Without loss of generality, p > ¢q. By the strong law of large numbers
1 n
lim —ZXi —E[X)|=p—q>0

n—o0 N 4
=1

16
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thus we have

lim S, = lim ZXi
n—00 4

n—oo

There is a last visit to state 0 (since we may go off to infinity) thus 0 is transient hence the DTMC is transient
(class property).

Case 2: p=q = % We want to show » >, Pé,%) = 0o to show that state 0 is null recurrent.
We know Pé?onﬂ) =0,n € Nand

Po(?on) = P(n steps to the right and n steps to the left)

This is in fact BIN(2n, 1) thus

nln!

2n\ ,1y2n (2n)! 1\
P(2n) _ L _ eyt
0,0 n (2) (4)
By Stirling’s Formula for large n: n! = +/ 2we*”n”+%, thus

(2n)!  v2me21(2n) >3

nln! (3 /Qﬂe—nnnJr%)z

Thus for large n, P()(i)”) = \/%, therefore
o b1 _ N p(2m)
n 2m
> Foo =D Pog
n=1 m=1
> L
L= /nT
1 o 1
> _
BERVAS Z m
m=1
=00

Thus state 0 is recurrent.

17
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We consider m = wP and me’ = 1 for this DTMC i.e.

m = Pi_1imio1 + Pip1,mig

1 1
=M = -1+ =T
% 2 i—1 2 i+1
=M1 — T = T — Ti—1 Vi € Z
=m; = m +id d=m —m

Since m; € [0,1] for all ¢ we must have d = 0, so m; = mp, but e/ = >>° _m = > .2 m which is 0 if

w9 = 0 or oo if mg > 0.

Therefore there is no stationary distribution and hence state 0 is not positive recurrent.

9 October 4, 2018

9.1 Section 1.7.2: conditions for positive recurrent G/M/1 queue

Question 9.1. What are the conditions for a G/M/1 queue and its associated DTMC where by > 0 (can transition
to the right) and by + b; < 1 (can transition to the left) to be positive recurrent?
Note under the above two conditions the DTMC is irreducible and aperiodic.

Claim. The DTMC with the above two conditions is positive recurrent iff E[B] = Y .2, kby > 1. That is, the
expected number of potential service completions during a single interarrival time is greater than 1.

The stationary distribution p = (po,p1, . ..) when it exists, satisfies p, = r§(1 — o) for k € N where ro € (0,1) is
the solution to 79 = ®p5(ry) and ®p(z) = E[zP] = 3272 2Fby is the probability generating function of B.

Proof. Recall from theorem 1.7 that a DTMC is positive recurrent iff a stationary distribution exists.
We will confirm that stationary distribution exists to prove the claim. Note that we want p = pP, thus

po =po(l —bo) +pi1(1 —byp—b1)+...
= pi(1-)_ b))
i=0 =0

Also

p1 = pobo + p1b1 + pabs + . ..
p2 = p1bo + pab1 + p3ba + . ..

o
Pk=Y  Dk-14ibi
i=0

We also want pe’ =11ie Y 2 p; = 1.
Assume py = r§(1 —rg), k € N (geometric distribution), where r € (0, 1).
We want to check under what conditions this equation for pj satisfies our three equations for pg, pr and pe’ = 1.

18
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Note that

o 1_
1=0

0

For our p; we have

o0
Pk = Z Pr—1+4ibi

:>r0 (1—=7r9) = Z k= 1+l (1 —70)b;

oo
=Ty = Z ’I“%)bZ
=0
=19 = ®p(ro)
since ®p(2) = E[2P] is the pgf of B.
When does ro = ®5(rp) have a solution for rg € (0,1)? If ¢ is a solution to z = ®p(z) then it is the intersection of

the lines y = z and y = ®p(2).
Properties of ®p(z) = Y50 2b;:

1. ®p(z) is continuous

2. .
= 2 l.mo=1bo > 0
=0
3.
Zzb |— 1_21)-:1
=0
4, . N
Py(z) = %(Zzibi) => i >0 Vze(0,1)
=0 =0
Note that -
(1) =Y il"'b; = E[B]
=0
5. .
Op(z) =Y i(i — 1)z >0 Vze(0,1)

=0

therefore y = ®p(2) is convex.
We have two cases from E[B]:

Case 1 E[B] > 1 We are guaranteed an intersection at z € (0, 1) since the slope y = ®p(z) is greater than that of
y=zat z=1 (from ®3(1) = E[B]).

Case 2 F[B] <1 There is not intersection before z = 1.

19
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6y oy cm<!

i SR seaen ".,47(0‘6 L\C ‘;\?'&—]N’
I

Figure 9.1: Diagram of y = z and y = ®p(z) when E[B] < 1 and E[B] > 1. Note that E[B] is exactly the
derivative ®'5(z) at z = 1.

Thus we have a solution for r¢ € (0, 1) iff E[B] > 1.
We verifying that our equation for pg is satisfied

POZZPi(l—ij)
= rg(1—rp) = sz ZZPZ

=0 j=0
<:>1—r0:1—ijZré(l—ro) pe' =1
i=0 =
= 1l-rg=1- Z bird ZrB(I — 1r0) = 1) (geometric series)

<:>1—7°0:1—(I)B(’/“0)

<~ 1l—rg=1-—r179

So when E[B] > 1 py = r§(1 — 1) for k € N is a stationary distribution hence the DTMC is positive recurrent. [

10 October 11, 2018

10.1 Example 1.14 solution
Consider a DTMC with the following TPM

o9 ~ o
o O =
— 2 O N

0

P=1

2

where a, 8,7 > 0 and o +  + v = 1. Clearly state 1 is transient and 0 and 2 are absorbing. Define

T=min{neN| X, =0or X,, =2}

as the time until absorption (a random variable). Solve for
(a) u=P(X7r=0|Xp=1), the absorption probability to state 0

(b) w=E[T| Xo = 1]

20
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(c) the distribution of T | (Xo = 1)
Solution. We solve for these using first-step analysis.

(a) Note that
2
u=PXr=0[Xo=1)=> P(Xr=0|X1=iXo=1)P(X1=i|Xo=1)
i=0
:1Oz—i—ﬂP(XT:O’Xl:l,XQ:O)IB—FO’Y
=a+ fu
So (1= Bu=athusu= 1% = 1.

(b) Note that

2
w=E[T|Xo=1]=) E[T|X1=4,Xo=1P(X1=1i| Xo=1)

i=0
=l-a+(14+E[T|Xo=1)3+1-v
=a+p+7+pw
=14 pw
1 1
Sow:m:m

(¢) Note that

P(T=Fk|Xo=1)=P(X; €{0,2},X3_1=1,.... X1 =1| Xg=1)
=P(X1=1|Xo=1)PXo=1|X;=1)... P(X, €{0,2} | X)_1 = 1)
=" a+9)
=pgt1-p8) kez"

Thus T'~ GEO(1 — ): tracking the number of trials until 1st success.

11 October 16, 2018

11.1 Example 1.15 solution

Consider a DTMC with TPM
0 1 2 3

o [1/2 1/4 1/4 0
1| 1/2 0 1/4 1/4
2|12 0 0 1/2
3| 1/2 1/4 1/4 0

Assuming that Xg = 0, calculate the expected number of transitions until the DTMC makes its first visit to state 3,
the expected number of visits to state 2 prior to its visit to state 3, and the probability of visiting state 2 before
state 3.

21
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Solution. We treat state 3 as an absorbing state

0 1 2 3
o [1/2 1/4 1/4 0
1] 1/2 0 1/4 1/4
2| 1/2 0 0 1/2
sl 0 0 0 1

P*

The expected number of transitions until absorption into state 3 is simply w; = 1 + ZM 'p, jw;, and we want to
solve for wy.
We thus have

1 1 1
w0:1+§w0+1w1+1w2
1+ ! + 1 + !
wy = —w —w —w
1 5 Wo T W2+ W3
1 1
wo =1+ §w0 =+ +§w3
Solving we get
5.2 1 25 25
Thus wy = 570

So the expected number of transitions until the first visit to state 3 is ?.

Note that the expected number of visits to state k from ¢ before absorption is given by S; = 6; 1 + ZM ! P; ;S;
and we want to find Sp

1 1 1
So2 =0+ 550,2 + 151,2 + 152,2
1 1
5172 =0+ 55072 + 15272
1
Sao =1+ 550,2

Solving we get

25
0.2 = T¢

50 Sp2 = % the expected number of visits to state 2 before visiting state 3.
Finally, the probability of visiting state 2 before 3 is fy2 or

—(1+ 502)

So2—do2 10/7 5

foo= g =BT 6

We can also calculate this probability by making 2 also an absorbing state and find Up 2 or the probability of being
absorbed into state 2 starting from state 1 where

0 1 2 3
1/2 1/4 1/4 0
1/2 0 1/4 1/4

0 0 1 0

o 0 0 1

P** —

w N = O

22
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Note that

U=I-Q) 'R
- g [1}2 1721 E?i 1(/)4]
_ [5/6 1/6]
2/3 1/3

Thus Up 2 agrees with our previous answer.

12 October 18, 2018

12.1 Limiting transition probability from transient to absorbing states

Adjusted derivation for lim,, o Rx(n) from slides:

n—oo

. T m—1 n—m
lim Ry(n) = nh_g)lo X_:IQT QK Py

oo
= lim Y Q7 'QgPp ™
o

o0
_ Lim m—1 pnr—m
S i 0570

m=

o
= E lim
n—
m=1

let Pg =0,5 <0

DCT

12.2 Example 1.16 Discrete Phase-Type Distribution (DPH) solution
Consider again a DTMC with the following TPM

Solution. We can rearrange the TPM as

0 1 2

o[ 1 0 O
P=1|a B v
2| 0 0 1

1 0 2

1|8 a v
P=0o|0 10
2|10 0 1

23
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Note that @ = 8, ¢ = a+ v =1— § (where ofy = p). Thus for T~ DPH (p, 3) we have
PT=0)=1-aj=1-p

and we have
P(T=k) =a)Q" ¢ =pp"'(1-p) kez"

thus T is a zero modified geometric distribution where if p = 8, we have T' ~ GEO(1 — 3) (tracking number of
failures) which is also T'~ GEO(1 — p) = DPH (p,p).
If p=1then T~ GEO(1 — B) (tracking number of trials until success is observed). This means T'~ DPH (1, 3).

12.3 Sum of two independent DPH distributions

Let X ~ DPHy(af,Q) and Y ~ DPHy(f],S) be independent DPHs. Then Z = X + Y is also a DPH with
corresponding DTMC with TPM
Q ¢85 (L-p5e)d
P={0 S s
0 0 1

where ¢/ = (I — Q)¢ and s’ = (I — S)~ !¢’
Z is essentially the time it takes for both X and Y to be absorbed.
What do these entries mean? Intuitively, suppose we start at some transient point in X with probability o).

/ Dk 7
> '\"' _Ea _e; )
Peexch +he o
absorprion | qitialize.

+ime X Zz‘ V>o

\

@)

Y
]‘J
!

Figure 12.1: Diagram of the transitions (and their probabilities) we get for Z = X + Y, where we initially begin
in some transient state of X with probability ag.

The probability we stay in the transient states of X is @ (top-left entry). The probability we leave X is precisely
the absorption probability ¢’: we then either transition to a transient state of Y (with probability 5§) or to an
absorption state of Y (with probability 1 — 5ge’), hence we get our top-middle and top-right entries.

If we end up in a transient state of Y, we have S probability to stay within Y and s’ probability of finally being
absorbed (hence the middle-middle and middle-right entries).

24
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13.1 Example 1.17 solution

Let X, Y ~ DPH; (5, ) be independent GEO(1 — ) random variables. Find the DPH representation of Z = X +Y.
If we let {X;}%_, denote a sequence of iid random variables with distribution DPH;(3,3) what is the DPH
representation of Zle X;7?

Solution. Note that Z = X +Y ~ DPH5(d;,C) where we have

5 = [6.(1— B)f
and 8 (1-B)8
C:{o 8 ]

Since Z is the sum of iid GEO(1 — ) random variables (tracking # of failures before first success), this is the DPH
representation of a NB(2,1 — () (tracking # of failures before two successes).
Thus Z = Y% | X; ~ NB(k,1 — 8) ~ DPHy,(~§, D) where

% =16,1=5)8,(1=8)8,....(1=p) 5]

and

B 1=p)3 (1=5)P3 ... 1=B)F28 (1-p)r14]
0 B 1=p)B ... A1=pF38 1-p)"28
0

_ a\k—4 _ a\k—3
p=| (:) 5 (1 é) B (1 B:) B
0 0 0 3 (1-8)8
0 0 0 0 3

which is the DPH form of a NB(k,1 — f3).

13.2 Order statistics on DPH distributions

For X ~ DPHy(af,Q) and Y ~ DPHN(S5,S) be independent random variables. Consider min{X,Y} and
max{X,Y}.

We employ the concept of coupled DTMCs again {(X,,Y,),n € N}. That is min{X,Y} = min{n € N| X, >
M and/or Y, > N}.

Note that if

i
S s
=[]

25
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Then we have Px ® Py as

'Q®S Q@Sl q/®S q’®s’-
lQ®0 Q®l (o0 ¢®1
- 0 0 S s’

.| O 0 0 1]

_Q®S Q@S/ q/®S q/®sl'
_| 0 Q 0 q
- 0 0 S s

0 0 0 1

14 OCTOBER 25, 2018

Note that since we only care about the transient portion (Q ®.S) for min{X, Y} (since once it reaches any absorption
state for either X or Y we are done), we can collapse the 3x3 matrix in the top-right into one term. First note that

q/:(I—Q)elzel—QeliQe/:e/—q/

Secondly note that

Thus we have in the top-right entry

I-Q®S) =¢— () (2s)—(d2)+(d 25
— @+ Rs —¢d®s

thus we can find the time until absorption to find min{X,Y} from the TPM

B Q®S q/®e’+e’®s’—q’®s’

P 0 1

14 October 25, 2018

14.1 Example 1.18 solution
Find two different DPH representations for a rv X ~ BIN(3,p).

Solution. Recall for X ~ BIN(3,p) the pdfis P(X = z) = (2)]95‘3(1 —p)37% for x = 0,1,2,3. Applying our known
result X ~ DPH3(og, @), where

3)) = (3p(1 — p)*,3p*(1 — p),p°)

and

26
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We can also represent X ~ DPH3(35,S) where

ﬂgz(P(X>0),O,O):(1—(1—p)3,0,0)

and
0 PIX>1|X>0) 0
S=10 0 P(X>2|X>1)
0 0 0
P(X=1|X >0)
s=| P(X=2|X>1)
P(X=3|X>2)=1

Let’s confirm the accuracy of the second representation

PX=0)=1-8e=1-P(X >0)=P(X =0)

P(X=1|X >0)
P(X=1)=8s = (P(X >0),0,0) |[P(X=2|X>1)| =P(X >0)P(X=1| X >0)=P(X =1)

1
0 P(X>1|X>0) 0 P(X=1|X >0)

P(X =2) = 85Ss' = (P(X >0),0,0) |0 0 PX>2[X>1)| |P(X=2|X>1)|=(0,P(X >0
0 0 0 1
0()PX>MX>® P(X=1|X>0)

P(X =3) = 3552 = (P(X >0),0,0) |0 0 0 P(X=2|X>1)| =(0,0,P(X >0)P(X >2| X >
00 0 1

14.2 Example 1.19 solution

Find three different DPH representations for r.v. Z = X with probability p and Z =Y with probability 1 — p where
X ~ DPHs(af, Q) and Y ~ DPH3(f;,S) for 0 < ¢ <1 and

ap = (1,0), ergqlfJ

and
1—gq q 0
0 0 1—gq

Solution. Applying our known result for mixtures, we have Z ~ DPH5(65, C') where

58 = (p)o)l_pvovo)

1—gq q 0 0 0
0 1—¢q 0 0 0
C:[(g g]: 0 0 1—gq q 0
0 0 0 1—¢q q
0 0 0 0 1—gq

Due to similar structures of these DPHs, we can find alternative representations using fewer states Z ~ DPHjz(v;, D)
where

27
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1.
% = (1 —=p),p,0)
1—gq q 0
D= 0 1—gq q
0 0 1—gq
2.
% = (1,0,0)
1—¢q q 0
D=| 0 1-q q(1-p)

0 0 1—gq

14.3 Example 1.20 solution

Calculate the pgf of a geometric random variable X with pmf P(X = z) = (1 — 8)8* where z € N, 0 < 5 < 1 and
confirm it matches the pgf obtained by applying the formula

or(z) = B2 = 1 — age’ + zaj(I - 2Q) 7 (I - Q)¢
Solution. We calculate

ElzY]|=) 2"(1-8)p"
=0

o0

=(1-8)> (28"
=0
:(1—5)1_125 |z6| < 1

so |z| < % With T'~ DPH; (B, )

or(2) =1 —aje’ + zaf(I — 2Q) (I — Q)€
=1-B+28(1-28)""(1-p)
(1-8)(1 —2p) +=28(1 - p)
1—26

1-p

1—2p

with |z] < % as well.

15 October 30, 2018

15.1 Theorem 2.1: sum of two Poisson processes

Theorem 15.1. Let {Ny(t),t > 0} and {N2(t),t > 0} be two independent Poisson processes with intensities A, A2,
respectively. Then N(t) = Ny(t) + Na(t) is also a Poisson process with intensity A = A + Ao.

28
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Proof. We confirm N (t) satisfies the conditions of a Poisson process.

1. We show that N(0) = N1(0) + N2(0) = 0.

2. Independent increments: for 0 < t; < t9 < t3 < t4 we have

(t1) = (N1(t2) — Ni(t1)) + (Na2(t2) — No(t1))
(ts) = (N1(ts) — Ni(ts)) + (N2(ta) — Na(t3))

Note that N;(t2) — N;(t1) is independent of N;(t4) — N;(t3) for ¢ = 1,2 since Ny (t) is independent of Na(t),
thus N (t) also has independent increments.

=

3. Stationary increments: for 0 < s <t

N(t) = N(s) = (N1(t) — N1(s)) + (Na(t) — Na(s))
— POI(M(t — 5)) + POI(a(t — 5))
= POI((A1 + A2)(t — 5))

So N(t) has stationary increments.

From 3) we see that N (t) is a Poisson process with intensity A; + Ag. O

16 November 1, 2018

16.1 Theorem 2.1: sum of two Poisson processes (MGF method)
Theorem 16.1. X +Y ~ POI(a+b) if X ~ POI(a) and Y ~ POI(b), independent.

Proof. Note
¢x 1y (t) = B[] = B[] Ele™]

Note that

e t \n

tn —a — @ (6 a) _ a(et-1)
¢X( Z e = Z o =e

n=0

Thus
Ox 4y (t) = et

which is the MGF of POIS(a + b), so my the uniqueness property our claim follows. O

16.2 Theorem 2.2: multi-type Poisson processes are independent

Theorem 16.2. For N(t) a Poisson process with X intensity, let type 1 events occur with probability p and type 2
with probability 1 — p. Let Ni(¢) and Na(t) be the corresponding counting processes for each type.
We claim Nj(t) and Ny(t) are independent Poisson processes with intensities pA and (1 — p)A.

Proof. First we show that Nj(t) and Na(t) are Poisson processes with intensities pA and (1 — p)A, respectively.

1. Since N(0) = 0 then N;(0) = N(0) = 0.

29
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2. Since N(t) has independent increments, the number of events in interval (¢1,t2] and (¢3,t4] are independent.
Also the classification process is independent of everything.

Therefore the number of type 1 events inthe disjoint intervals are disjoint hence Nj(t) has independent
increments. Similarly for Na(¢).

3. Since N(t) has stationary increments, and the classification process does not change over time, then Ny (¢ +
d

h) — Ni(t) = N1(h) and Np(t) has stationary increments. Similarly for No(t).

Now to find their intensities: note that

P(Ny(h) = 1) = P(Ny(h) = 1| N(h) = 1
— p(\h + o(R)) + P(N1(h) = 1| N(h) > 2)o(h)
— pAh + o(h)

~
=
=
]
+
h

(Ni(h) = 1| N(h) = 2)P(N(h) = 2)

Also
P(Ny(h) >2) < P(N(h) =>2) =o(h) = P(Ny1(h) > 2) =o(h)

Thus N;(t) is a Poisson process with intensity pA (and similarly for Na(¢) with intensity (1 — p)\).
We now confirm N;(¢) and Na(t) are independent for any m,n € N
P(Nl(t) =m, Ng(t) = n) = P(Nl(t) =1m, NQ(t) =n, N(t) =m-+ 7’L)
= P(Ni(t) =m,Na(t) =n | N({t)=m+n)P(N(t) =m+n)

m+n\ ,, VD il
= 1— A
< n )p (1=p)"e (m +n)!

_ efp)\tlﬁef(lfp))\t(l _p)n
N m! n!

= P(N1(t) = m)P(Na(t) = n)

since Ni(t) and Na(t) are Poisson processes with intensities pA and (1 — p)A, respectively.
Therefore they are independent. O

17 November 6, 2018

17.1 Theorem 2.3: joint distribution of arrival times S,,’s

Theorem 17.1. Let {N(t),t > 0} be a Poisson process with intensity A. Conditional on N (¢) = n, the points of N
in [0, ¢] are distributed as the order statistics from a sample of size n from the uniform distribution U(0,t). That is

(51,... ,Sn) | (N(t) = n) ~ (U(l)a)U(n))

Proof. Remark for any continuous random variables X1, ..., X, we have

r1+Az1  pra+Axs Tn+Azy
P(XZ'G [mi,xi—i—Axi],i:l,...,n):/ / / th._.7XN(x1,...,xn)dxndxn_l...d1
1 T2 x

n

=~ fX1,...,Xn (3}1, RN .%'n)A.%'lA(L‘Q e A.Z‘n

So we have

s — lim P(X; € [z, + Axgl,i=1,...,n)
X Xn = A0 AziAzy ... Az,
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For
0<s51 <81 +As1 <893<89+Asy<83<...8,<58,+As, <t

Thus we have

P(S; € [si,si+Asil,i=1,...,n| N(t) =n)
P(SiE[SZ‘,Si—FASi],i:l, , N, N() )

P(N(t) = n)
P(SZ<SlSSl+A3172:177n7N(t):n> 1
= continuous =<
P(N(t) =n)
 P(N(s1) = 0, N(s1+ As) = N(s1) = 1., N(sp + As) — N(50) = 1, N(£) = N(sy + As = 0))
a P(N(t) = n)
_€—>\s1 ()\Asle—AAsl)e—A(sg—(sl—i—Asl)) S e—)xsn ()\Asne—)\Asn)e—)\(t—(sn—l-Asn)) . (e—)\t ()\;')n)_l
—e 81 ( ﬁ )\ASE*)‘AS H e A(sia1— SerAsi))) e~ At=(sn+Asn))
B Lo e N O
n n
i=1
So we have ' I
~T1? . As;  nl
_ : tn =1 1 _
TSt SalN@=n (51> 5n) = Alggo Asi...As, tn
for 0 <51 < s9 <...< s, <t which is the joint pdf of n iid U(0,¢) random variables. O

17.2 Example 2.1 solution

Apply Theorem 2.3 and use the joint pdf of n U(0,t) order statistics to confirm the result that P(N(s) = m |
N(t) =n) ~ BIN(n,s/t).

Solution. Note that

P(N(s) =m | N(t) =n)
P(Sm, <sSm+1>s|N() n)
P(Um) < 5, Ugngr1) > 5) Theorem 2.3

uz g
[l o o LT ——
Um+1 Up—2 J Up—1
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Note that the following is constant and has no references to u;

s Um us u2 |
/ / / / — duy dusg ... duy,—1 dum,
0 Jo t
s Um uz |
:/ / / U2 dus ... dum—1 dum,
0o Jo o t"
s Um U4 | u
:/O /0 .. ./0 m 2‘? dus ... dum,_1 duy,

Spl oum!
=[| ——"——du
/Ot"(m—l)! "
nls™

“ v m!

Thus we have

P(N(s) m\N

n! s
m. Um+1 Un—2 J Un—1
n! g™
= / / V.. / (t — up—1)dup—1 ... dumsa dim4
mmd Js U1 Un—2
n! g™

t t t
1
:t—nﬁ / / - / t(t — un,Q) — §(t2 — ui_Q) dup—2 ... dumto dums1
cJs Jumga Un—3

n! g™ t t t 1 9
=2 —(t — Up—92) duy_o...du du
) /5 /uerl /un3 2!( n 2) n—2 m—+2 m—+1

nls™ [t 1
2 . . n—m—1 d

t" m]! /5 (n—m— 1)!( Um+1) Hm+1
B n! st —s)nm
~m!(n—m)! tn

~(M)Gra-H

18 November 13, 2018

18.1 Proof: Poisson process is a birth and death process

Treating the Poisson process as a birth and death process, we can show

At)F
Pik(t) = efM( k') keN

That is the number of births (i.e. events) in the time interval [0, ] follows a POI(At) distribution.

Proof. We will prove this using induction.

32



Fall 2018 STAT 433/833 Course Notes 19 NOVEMBER 15, 2018

Base case: P(N(t) =0) = P, ;(t) = e~ which follows by the fact that this is a pure birth process (and which we
derived using Kolmogorov’s Forward Equations (KFE)).
Induction step: Assume that for some k =0, 1,... we have

e (A)F

Piir(t)=e X

Applying the recursive equation derived from KFE we have
t
Piitk+1(t) = )\i+k6A”’““t/ AP, g (s) ds
0

t k
_ )\e—At/ 6,\5_6—,\3()\3) )ds
0

k!

k+1 ot

:e_)‘t)\'/ sk ds
k' Jo

At )\k+1 tk+1
kKl kK+1
Y (At)F
(k11!

as desired. O

19 November 15, 2018

19.1 Proof uniformization DTMC is equivalent

Fact 19.1. Stochastic processes {X(¢),t > 0} and {X*(¢),t > 0} (modified DTMC with uniformization) are
probabilistically equivalent.

Proof. The time spent in state i is simply T; = EnN;1 T, where {T},}72, are iid with distribution 7} ~ EX P(v)
(from uniformization) and N; ~ (GEO(%) (# of trials) where P(N; = n) = (1 — %)"" (%), n € Z* (this is the
number of transitions until we leave state 7).
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The mgf of T; is

N,

E[e'T] = Elet Xnt1Tin]

&

> Ni s
=Y Ele'=n=1Tin | N; = m]P(N; = m)

= 3 [ Bl [ N(t) = m]P(N; = m)

I
M8
s
=
=
=

I
3

m=1n=1
= Z (o7 (1)) P(N; = m) T ~ T; since uniformization
m=1
_ - m Vivm—1 Vi
= S mora-9m )
= (@) Y [ery ) - 2"
m=1
Note that
” — * tx,, —vT d
oy (1) /o ve x
= e~ (N7 qg
0
v
v —t
and also
> Viyym—1 1
mZZI [(Cf’Tl* (t))(l - ;)} 1 ¢T1* (t)(l _ %)
SO
Vs v v UV —Vij\7-1
o) = (- () ()
= il t<wv
V1 — t

so T; ~ EX P(v;) as required.
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Now we need to verify the probability of transitioning to a different state j from ¢ are the same:

P(transition to j when X™(t) leaves i)
=P(X™(t)transition to j # i | X*(¢) does not transition to 7)
P(X*(t)transition to j # i)
~ P(X*(t) does not transition to i)
_ By
L= P
_ qi/v
1-(1-1%)
4y
Vi

=Fij

(we need to condition on “does not transition to i since P}, is no longer 0 anymore).
So X (t) and X*(t) are probabilistically equivalent. O

19.2 Example 3.1 solution

Consider a CTMC having infinitesimal generator

0o 1
Rzo[—)\ A]
I T

where A, u > 0. Use uniformization to calculate P(t).

Solution. Solution: let v = A + p > max{\, u}.

1
P*=I+-R=
" “u

Adp Atp

A
Ap A
u A

note that P*(™) = P* for all n € Z™.
So we have

— (n) A+ p)t)"
PO,O(t) — ZPO,(O )6 (>\+M)t(75))
n=0 ’

_ 6—(>\+,u)t + H e—(A—i—,u)t Z (A + M)tn

A+ o n!
=4t B Ot Ot )
A p
P A O
A+u A+p

Similarly Py (t) = ﬁ + ﬁuue_ﬂﬂ‘)t. Now since Py1(t) =1 — Pyo(t) and Py o(t) =1 — P;1(t) we have

M T oxame O g - spem e

Iz Iz Iz Iz

P(t) = B B o= (A p)t A B (At
Ap Ap Ap A+p
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20.1 Example 3.2 solution
Consider a CTMC whose embedded DTMC has a TPM given by

—
LR Q O o
S O = o=
o "V O W
TS oo w

with 0 < p <1 and ¢ = 1 — p. Show that while the embedded DTMC is always positive recurrent whether or not
the corresponding CTMC is positive or null recurrent depends on {v; }ies.

Solution. For the embedded DTMC we have
fé,lo) = P(DTMC revists state 0 for the first time at time 1 | Xo =0) =0

also for n > 2

n—2

fé,%) =Py ( H Piit1)Paz10
=1

So we have

Therefore the DTMC is recurrent.
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Also

= (I+1)plq l=n—1

therefore state 0 is positive recurrent thus the entire DTMC is positive recurrent.

Consider a CTMC {X (t),t > 0} having this embedded DTMC, and let Ny denote the number of transitions to

return to 0 (given Xy = 0) therefore Nyg = ZZN:Ol_l T; (i.e. time until returning to state 0 is just the sum of the

sojourn times of the 1st transition (¢ = 1) up until the n — 1-th transition) where T; ~ EX P(v;) are independent.
Applying the law of total expectation

E[Noo] = E[E[Nop | Nol|

o
= E[Nog | No=n]P(Ng =n | Xo =0)

n=2

where

n—1
E[N(),o ‘ Ny = n] = E[ZTZ ‘ No = n]
=1
n—1
= E[Y T
i=1

n—1
= _EIT]

where we can drop the condition since individual sojourn times are independent of what happens in the future i.e.
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independent of Ny, so we have

oo n—1

E[Noo :ZZE

n=2 i=1

E[Ti] P
0 n=1+1

E z 1 Z pm 1
1 i—1 . m—1
—p > plg=

v m=1

tnqg

.
I

tllqg

-
Il
=)

!

s
Il
=)

Depending on our choices for {v;};cs we can make this sum finite or infinite.
For example if v; = p"~! then E[Nppo] = Y52, 1 = oo (null recurrent). For example if v; = p~! then E[Nyo] =
>ioq Pt = 15 < o0 (positive recurrent).

20.2 Theorem 3.3: irreducible positive recurrent CTMC implies positive recurrent embed-
ded DTMC

Theorem 20.1. If an irreducible CTMC is positive recurrent, then its corresponding embedded DTMC must also
be positive recurrent.

Proof. Assume state ¢ is positive recurrent (i.e. E[N;;] < 00).
Again let N; denote the number of transitions to return to state i for the first time and let v > max{v;, j € S}.

E[Ni;] = E[E[N;,; | Ni]|

N00|N0—TL]P(N(]:TL|X0:0)

No_nyXo_o) "1 n
> E[Ngo | No =n] > - =—
> [Noo | No n]_;v »
BN Xo=i
v
v
therefore m; < oo so state i is positive recurrent in the embedded DTMC. O

Corollary 20.1. Since E[N; ;] > m;/v, if state ¢ is null recurrent in the embedded DTMC (i.e. m; = c0) then
E[N;;] > oo or E[N;;] = 0o, and ¢ must be null recurrent in the CTMC.
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21.1 Example 3.3 solution
Recall the CTMC having infinitesimal generator

0 1
R [ A A ]
1 B R
with A, > 0. We already showed that its transition probability function matrix is

B A Ot A A (M)t
P(t) — | At Ap Atp A+p

B B (Mt A o —(Ap)t

Ap Ap A A+p

Show that this CTMC meets the conditions of the BLT for CTMCs, and find stationary distribution 7 using both
methods. Does this staionary distribution agree with lims_,o, P(t)?

Solution. Method 1: BLT for CTMCs Note that since P; j(t) > 0 for all t > 0 ¢ # j we now that the CTMC
is irreducible.
Clearly the embedded DTMC is recurrent so the CTMC is recurrent.

We have E[Ty] = 1, E[TY] = % Note that Noo = To + 11, N1,1 = T1 + T (since we only have two states, state
i can only exit state ¢ then re-enter state i again).

We thus have E[Noo]E[Ny 1] = E[Ty] + E[T1] = § +
So

1
L
E[Noo]  1/A+1/pn  A+p

T =

A

Similarly m = pwart

Method 2: stationary equations From 0 = 7R and 1 = we/ we have

0= —Amg + pm1

0= A\mg — pmy
l=my+m
which gives us
A
m = —Tg
I
At p
1= o
I
— P and m o= 2
s0 mp = 34 and m = 3o
Finally taking the limit as ¢ — oo
0 1
o [ X
lim P(t) = Afu M
t—o00 1 m m

which has identical rows that equal our stationary distribution 7.
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22.1 Example 3.4 solution

Determine the conditions for a M /M /1 queue to be transient, positive recurrent or null recurrent (i.e. a birth and
death process with \,, = A for n € N and p,, = p for n € Z1).

Solution. Note that for -
ZH v = Z V'
n=11i= 1
the above is < oo iff © < A and = oo otherwise. Also
o0
2 1 /\
S =20

e n=1

the above is < oo iff A < p and = oo otherwise.
Therefore it is

transient iff the first sum is < oo or p < A i.e. positive drift to infinity, births more frequent than deaths.
positive recurrent iff the second sum is < co or A < p i.e. negative drift to 0, deaths more frequent than births.

null recurrent iff the both sums are = co or A = p

22.2 Example 3.5 solution

Suppose a M /M /1 queue is positive recurrent. Confirm that its stationary distribution agrees with the distribution
of customers at arrival instants obtained in Exercise 1.7.2,

A

PX, =k =(1-2) keN
=k = () (1-2)
Solution. Recall that for
0o n A1
po=0+Y [
e
o n A _
(1
n=01i=1
_ 1 -1
_(1—A/u)
_ Hoy—1
_(M—/\)
A
e 1——
(1-2)
also i
Ni— A
pn=po]] u.l—(l—*)(*)k kezt
=1 ¢

as required.
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22.3 PASTA Property for M/M/1 queue

The PASTA (Poisson Arrivals See Time Averages) Property states that the long-run probability a queue observes a
certain state (i.e. number of customers) is simply the same as the long-run probability of that state observed by a
customer arriving. To show this for an M/M/1 queue:

Let

Ap, = {observe an arrival in the next h time units}
B; = {X(t) = j customers for large t}
P(Bj) = m;

Then (where \; = X for j € N)

P(X(t) =1 customers in queue immediately prior to an arrival for large t)
=lim P(B; | A

lim P(B, | 4))
. P4 | B)P(B)

h=0 372 P(An | Bj)P(B))
— lim OE)/\Zh + 0(h)>7ﬁ'

h=0 372 o(Ajh + o(h))w;

AT + O(}?)

I
>

:7" A

23 November 29, 2018

23.1 Example of infitessimal generator of coupled CTMC
Suppose {X (t),t > 0} and {Y (¢),t > 0}, independent CTMCs, with infinitesimal generators

0 1

o | -2 2
RX_1{3 —3]
0 1

0| -5 5
RY_1{1 —1]
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we have the coupled DTMC {(X (¢),Y(t)),t > 0} with infinitesimal generator Rxy = Rx ® I + IpotimesRy which

1S

(0,0) (0,1) (1,0) (1,1)

-2 0 2 0 -5 5 0 0 (0,0) -7 5 2 0
0 -2 0 2 1 -1 0 0| (o 1 -3 0 2
3 0 -3 0 + 0 0 -5 5| (10 3 0 -8 5
0o 3 0 -3 o o0 1 -1 (1,1) 0 3 1 -4

(note the Kronecker products and how they’re distributed).
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