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Spring 2017 CO 250 Final Exam Guide 1 MODELLING

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 Modelling

Word problems can be modelled or formulated into mathematical programming problem.
In general, to formulate an programming problem, we identify the variables, max or min objective function,
and the constraints.

1.1 Linear Programming

A linear program has linear (affine) constraints and objective function. The constraints must be:

1. Inequalities/equalities (but not strict inequalities <,>)

2. Degree of at most 1 terms

For multiperiod models (e.g. modelling oil supply/demand per month, we can introduce ti variables to denote
the leftover oil that is carried over per month, where each month’s supply and demand is an equality constraint
with supply and demand).

1.2 Integer Programming

Similar to linear programming but there are integral constraints on certain variables. Note one can specify a integer
constraint as

x1 integer

To bound the value e.g. x1 ∈ {0, 2}, one can write

z1 ∈ {0, 1} or 0 ≤ z1 ≤ 1, z1 integer
x1 = 2z1

1.3 Graph Problems

One can also model graph problems like the minimum cost perfect matching as an LP. For a given graph G = (V,E)
with vertices V and edges E, the minimum cost matching problem is

min
∑

(cexe : e ∈ E)

subject to ∑
(xe : e ∈ δ(v)) = 1 v ∈ V

xe ≥ 0 e ∈ E
xe integer e ∈ E

1



Spring 2017 CO 250 Final Exam Guide 2 SOLVING LINEAR PROGRAMS

where ce is the cost of edge e and δ(v) is the cut of vertex v.
The cut δ(v) of a vertex v or a set of vertices V are all the edges that have exactly one endpoint in v.

1.4 Nonlinear Programming

Optimization problem of the form
min z = f(x)

s.t.

g1(x) ≤ 0

g2(x) ≤ 0

...
gm(x) ≤ 0

where f : Rn → R and gi : Rn → R. That is the functions may be nonlinear.

2 Solving Linear Programs

Linear programs can have three outcomes:

Infeasible There are no feasible solutions.

Optimal There are optimal solution(s) that give the optimal value.

Unbounded There is no “best” solution and there is at least one feasible solution.

A solution x is feasible if all the constraints hold.
Note that the following propositions and insights are derived by looking at the signage of the constraints and the
signage of x.
Since they are specific to the signage and max/min type of the LP, use them with discretion (try to derive/prove
the propositions to gain an intuition of why they work).
We will later show how to derive all of these with the Simplex method.

2.1 Infeasibility

For a given system (constraints) Ax = b, x ≥ 0, the LP is infeasible if there exists a certificate of infeasibility or
vector y such that:

1. yTA ≥ 0T , and

2. yT b < 0

This follows from the signage of x and the equality.

2.2 Unboundedness

For a given LP max{cTx : Ax = b, x ≥ 0}, it is unbounded if there exists certificate of unboundedness (x̄, d) where
x̄ is a feasible solution such that:

1. Ad = 0

2



Spring 2017 CO 250 Final Exam Guide 2 SOLVING LINEAR PROGRAMS

2. d ≥ 0

3. cTd > 0

which gives us the unbounded solution x = x̄+ td, t ≥ 0. Note that cTd < 0 if the LP is a min problem (to ensure
that the solution x tends towards −∞ as t→∞) and d ≤ 0 if x ≤ 0 (so x remains < 0).

2.3 Optimality

For a given LP max{cTx : Ax = b, x ≥ 0} it is optimal if there exists a certificate of optimality y such that:

1. yTA ≥ cT , and

2. cTx = yT b

2.4 Standard Equality Form (SEF)

An LP max{cTx : Ax = b, x ≥ 0} is in Standard Equality Form (SEF) since it is:

1. A maximization problem

2. Other than nonnegativity constraints, constraints are equalities

3. Every variable has nonnegativity constraint

The SEF are equivalent (that is SEF of an LP is unbounded if and only if the LP is unbounded, similarly for the
other states).
To put an LP in SEF:

1. If minimization problem, multiply objective function by −1 and change to maximization

2. Add slack variables for inequalities. If αx ≤ β, introduce xn+1 ≥ 0 where the modified constraint is αx = β
where αn+1 = 1. Similarly for αx ≥ β, introduce xn+1 ≥ 0 where αn+1 = −1.

3. If variables are negative (e.g. xi ≤ 0), flip the signs of all the correspond coefficients αi and make xi ≥ 0

4. If variables are free (no constraint on xi or xi free), replace xi with x+
i , x

−
i ≥ 0 where xi = x+

i − x
−
i . The

coefficients corresponding to x+
i is +αi and coefficients corresponding to x−i is −αi (thus the one column Ai

becomes two columns).

2.5 Bases and Canonical Form

Given that A ∈ Rm×n, a basis B for A are n linear independent columns of A (1 for each dimension of x ∈ Rn).
It can be represented as the set of the column indices e.g. B = {1, 2, 4}.
The other column indices {1, . . . , n} \B is denoted as N .
Note all bases have a unique basic solution. That is ABx = β (A restricted to the basis B or the columns of A that
correspond to the B) has one and only one solution x.
Whether x is feasible depends on the nonnegativity constraint.
The canonical form of an LP in SEF max{cTx+ z̄ : Ax = b, x ≥ 0} satisfies:

1. AB = I (identity matrix)

2. cB = 0 (objective function coefficients corresponding to B is 0)

3
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One can use row operations or inverse matrices (A−1
B ) to derive AB = I. One can subtract a linear combination

(vector y) of the LHS of the canonical constraints (A−1
B Ax−A−1

B b = 0) to get cB = 0.
More formally, for a given LP in SEF max{z(x) = cTx+ z̄ : Ax = b, x ≥ 0} and a given basis B of A, we find A−1

B

and vector y such that we get the canonical form:

max z̄ + yT b+ (cT − yTA)x

subject to

A−1
B Ax = A−1

B b

x ≥ 0

where we want the parentheses expression in the expression to result in cB = 0, or

cTB − yTA = 0

y = A−TB cB

Note: This y is the certificate of optimality and infeasibility for the final basis we get when doing Simplex Iteration
(see below).
Note that the basic solution x̄ for a basis B is

x̄B = b

x̄N = 0

2.6 Simplex Iteration

Given a feasible basis B (we can derive this later using an auxiliary LP in Two-Phase Simplex), the Simplex
Algorithm is as follows:

1. Convert the LP to canonical form corresponding to the current basis B

2. If cN ≤ 0 (all coefficients in objective function are non-positive), then we found the optimal solution (the
basic feasible solution).

Otherwise by Bland’s Rule, find the first non-neagtive coefficient in objective function cTx+ z̄. We choose
the correspond xk variable to pivot on. Set xk = t ≥ 0 (we use this t to figure out which xB we need to act
on).

3. If Ak ≤ 0 (that is all coefficients corresponding to xk is non-positive), then the LP is unbounded (the d ≥ 0
vector consists of the coefficient corresponding to Ak).

For each row i of the constraint, there is one xiB ∈ xB where αiB = 1. For that row, we have xiB +Aikxk = bi
or xiB = bi − tAik. We let

t = min
{ bi
Aik

: Aik > 0
}

Thus the corresponding xiB leaves the basis and the corresponding xk enters the basis. We return to step 1
for the new basis.

2.7 Two-Phase Simplex Algorithm/Method

We first need to find the feasible basis of B of A which we can iterate on. To do this, we create an auxiliary LP
by introducing m additional variables. That is for a given LP in SEF max{cTx+ z̄ : Ax = b, x = 0}, the auxilliary

4
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LP is
max − xn+1 − . . .− xn+m

subject to (
A
∣∣Im)x = b

x ≥ 0

We perform Simplex iteration on this auxiliary LP to find an optimal solution.
Intuitively if the original basis is feasible, there is a solution where xn+1 = . . . = xn+m = 0 giving an optimal value
of 0.
That is: if the optimal value is 0, then the original LP is feasible for the final optimal basis B. Otherwise the
objective value is < 0 and the original LP is infeasible.

3 Geometry of LPs

Note in LPs, we had linear constraints of the form αx = β and WLOG αx ≤ β. They correspond to hyperplanes
(plane in n-space) and halfspaces (the space under the plane), respectively.

3.1 Feasible Regions

Constraints that are αx ≤ β or halfspaces are interesting since they form feasible regions in n-space. That is: the
feasible region of an LP is a polyhedron or equivalently the intersection of a finite number of halfspaces.
To convert αx = β to halfspaces, we can let introduce αx ≤ β and −αx ≥ −β.
To convert non-negativity constraint x ≥ 0 to a halfspace, we simply reverse the sign (−x ≤ 0).

3.2 Convexity

There are certain nice properties to convex feasible regions (which we will see later).
We can define a line through points x(1), x(2) ∈ Rn as a set of points

{x = λx(1) + (1− λ)x(2) : λ ∈ R}

To constrain this into a line segment between the two points, we limit λ (the factor that creates the linear
combination)

{x = λx(1) + (1− λ)x(2) : 0 ≤ λ ≤ 1}

A region or subset C of Rn is convex if the line segment between every point x(1), x(2) ∈ C is inside C (we can
demonstrate this by algebraic manipulation).
Halfspaces are convex. The intersection of a finite or infinite set of convex sets is also convex. Thus feasible regions
for LPs are convex.

3.3 Extreme Points

What is the geometric interpretation of basic feasible solutions? Think of the very extreme points of our feasible
region.
x ∈ C is not an extreme point of C if and only if

x = λx(1) + (1− λ)x(2)

5
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for some distinct points x(1), x(2) ∈ C and 0 < λ < 1.
Thus in order for x to be an extreme point, it cannot be properly contained in any line segments of C (it must be
one of the end points).
Note the points along a boundary curve are extreme points. The point along a straight boundary line is obviously
not extreme.
Note for a given polyhedron P = {x ∈ Rn : Ax ≤ b}, and A=x = b= be the set of tight constraints for x̄ ∈ P . Then
x̄ is an extreme point if and only if rank(A=) = n.
Relating this back to LPs, x̄ is an extreme point if and only if x̄ is a basic feasible solution to Ax = b.

4 Duality

The purpose of duality is to create a sister (dual) LP to a given LP that helps bound the optimal value. For example,
given an LP max{cTx : Ax = b, x ≥ 0}, note we previously derived a nice certificate of optimality where yTA ≥ cT
(or AT y ≥ c) and cTx = yT b (or xT c = bT y).
Thus to find such optimal solution, we can formulate another LP where AT y ≥ c is one of the constraints and we
want to provide an upper bound on xT c = bT y. Thus the dual for such an LP is

min bT y

subject to

AT y ≥ c
y free

4.1 Finding the Dual

For a given LP (P) (our primal), how exactly do we find the dual (D)? Obviously, the dual must have a
complementary objective function(min if original is max and vice versa).
If the objective function of (P) is cTx (with constraints Ax = b), we’ve shown previously that we’d like bT y to
bound (P), thus bT y is always our objective function in (D).
The signage of the constraints of (D) require some intuition. Suppose for a (P) that is max cTx, we rewrite it in
SEF such that we have something like

max z̄ + yT b+ (cT − yTA)x

Ideally we want z̄ + yT b to be the optimal value, hence

(cT − yTA)x ≤ 0

The expression in the parentheses depends on the bound on x:

x ≥ 0 Then cT − yTA ≤ 0 thus our dual (D) would have constraint yTA ≥ cT (or AT y ≥ c).

x ≤ 0 cT − yTA ≥ 0 thus our dual (D) would have constraint AT y ≤ c.

x free cT − yTA = 0 thus our dual (D) would have constraint AT y = c.

A similar procedure can be used for a primal (P) that is a minimization problem (but with (cT − yTA)x ≥ 0).
To figure out the signage of the dual variables y, we need to perform the same process using the partially constructed
dual, where instead of (cT − yTA)x we have (bT − xTA)y.
The results can be summarized in the following table:

6
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4.2 Weak Duality

Continuing from the maximization primal (P) and minimization dual (D), weak duality states that for feasible
solutions x̄ and ȳ for (P) and (D), respectively

1. cT x̄ ≤ bT ȳ

2. If cT x̄ = bT ȳ, then x̄ and ȳ is an optimal solution to (P) and (D), respectively

A corollary to this is that if (P) is unbounded, then (D) must be infeasible (since (D) was an upper bound to (P)).
Similarly if (D) is unbounded, then (P) is infeasible. Thirdly, if (P) and (D) are both feasible, then they must both
have optimal solutions (by Fundamental Theorem of Linear Programming).

4.3 Strong Duality

Very similar to Weak Duality, except it provides a stronger argument that if (P) has an optimal solution x̄ then
there exists an optimal solution ȳ of (D). Moreover, the value of x̄ in (P) equals the value of ȳ in (D).

4.4 Possible States of Primal-Dual Pair

From Weak and Strong Duality, we have the following possible states:

Dual
Primal Infeasible Unbounded Optimal

Infeasible Yes Yes No
Unbounded Yes No No
Optimal No No Yes

4.5 Complementary Slackness

Recall from Weak Duality, we showed that if cT x̄ = bT ȳ for feasible solutions x̄, ȳ for (P) and (D) respectively, then
they are optimal solutions.
For the primal (P) such as max{cTx : Ax ≤ b} and dual (D) min{bT y : AT y = b, y ≥ 0}, we introduce a slack
variable s to (P)

{cTx : Ax+ s = b, s ≥ 0}

Assume our feasible solutions x̄, ȳ and s̄ = b−Ax̄. Then we have

bT ȳ = ȳT b = ȳT (Ax̄+ s) = (ȳTA)x̄+ ȳT s = cT x̄+ ȳT s

7
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In order to maintain the invariant of Strong Duality, we need

ȳT s =

m∑
i=1

ȳisi

where ȳi, si ≥ 0 for all i. Thus either (or both) must be 0 in order for our condition to hold.
That is, Complementary Slackness states that feasible solutions x̄, ȳ are optimal if and only if for every row i
of A, constraint i is tight for x̄ and/or corresponding dual variable ȳi = 0.
The reverse for the dual must hold too.

5 Geometry of Optimal Solutions

With a better understanding of optimal solutions via Weak and Strong Duality, we can investigate the geometric
interpretation.

5.1 Cones

A cone generated by a(1), . . . , a(k) ∈ Rn as the set

C =
{ k∑

i=1

λia
(i) : λi ≥ 0 for all i = 1, . . . , k

}
Note a feasible solution x̄ to the primal (P) is optimal if and only if c is in the cone of the tight constraints of x̄.
This follows from complementary slackness and how we have either tight constraint for x̄i or ȳi = 0.

5.2 Farka’s Lemma

Essentially, Farka’s Lemma states a solution either has a feasible solution or there exists a certificate of optimality
y. That is one of the following statements hold:

1. The system Ax = b, x ≥ 0 has a solution

2. There exists a vector y such that AT y ≥ 0 and bT y < 0

The proof is done by contradiction and the use of a Primal-Dual pair.

6 Minimum Cost Perfect Matching

6.1 Matching

A matching is a set of edges in a graph where every vertex is incident to at most one edge in the matching.
A perfect matching is a matching where every vertex in the graph is matched.

6.2 Intuition for Lower Bound

In any graph, we want to find the perfect matching (assuming one exists) with the minimum cost given costs ce per
edge e ∈ E.
The proof for why the algorithm works is derived from a primal-dual pair (where primal (P) is a minimization
problem for the cost of the edges, and the dual (D) maximizes the cost reduction or the sum of the potentials y).

8
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Intuitively, we want to iteratively reduce the costs of the edges (maintaining that the edges have cost ≥ 0) in the
graph by assigning potentials to each vertex and reducing the cost of each edge e by the potentials of its incidental
vertices u, v. That is, the reduced cost of an edge e = uv is

c̄uv = cuv − yu − yv

Eventually we end up with equality edges (edges with a reduced cost of 0).
If the potentials y are feasible (yu + yv ≤ cuv) and all edges of a perfect matching M are equality edges with respect
to y, then M is a minimum cost perfect matching.
The respective Primal-Dual pair for min-cost perfect matching is the primal

min{cTx : Ax = 1, x ≥ 0}

and
max{1T y : yu + yv ≤ cuv}

where c is the vector of edge costs, and matrix A has vertices as rows and edges as columns and Av,e = 1 if the
vertex v is an endpoint of e, otherwise 0.
x corresponds to which edges we choose in our perfect matching.

6.3 Bipartite Graphs

A bipartite graph is a graph that be bipartitioned in sets of vertices U,W where every edge has an end in U and an
end in W .
Thus a perfect matching must have |U | = |W |.

6.4 Hall’s Theorem

Let S ⊆ U . Denote N(S) as the adjacent vertices of S in W . A deficient set S occurs when |S| > |N(S)| in a
bipartite graph. It is called deficient because clearly one cannot form a perfect matching since there are not enough
edges for the vertices in S to be matched with.
Hall’s Theorem states that for a bipartite graph G with bipartition U,W and |U | = |W |: there exists a perfect
matching M in G if and only if there are no deficient sets S ⊆ U .

6.5 Min-Cost Perfect Matching Algorithm for Bipartite Graphs

The algorithm proceeds as such:

1. Fix bipartitions U,W . Initialize all potentials ȳv for v ∈ V (G) as

ȳv =
1

2
min{ce : e ∈ E}

2. Construct graph H with vertices V and only equality edges ({uv ∈ E : cuv = ȳv + ȳv)

3. If H has a perfect matching, we are done.

4. Find a deficient set S ⊆ U in H (note S can be just a vertex with no edges, still a deficient set!)

5. If all edges of G incident to S have endpoints only in NH(S), then S is deficient in G, no perfect matching.

6. Find the minimum reduced cost of an edge incident to S but not in H (that is, ε = {cuv − ȳu − ȳv : u ∈ S, v 6∈
NH(S)}

9
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7. We adjust the potentials of all vertices

ȳv =


ȳv + ε for v ∈ S
ȳv − ε for v ∈ NH(S)

ȳv otherwise

8. Return to step (2)

7 Solving Integer Programs

Note that we now know how to solve for feasible solutions (or infeasible or unbounded or optimal) for LPs. For IPs,
we would like to bound this to integral answers only.
The method we will be using is called cutting planes. The intuition comes from geometric interpretation of LPs
and their feasible regions.

7.1 Convex Hulls

Note for LPs, we have a convex polyhedron (all polyhedra are convex) as the feasible region.
For a set of pointsS in Rn, the convex hull of S (conv(S)) is the smallest convex set that contains S. One can
imagine this as the halfspaces that link the outer points in S.
We can form a convex hull inside the feasible region P for the set of integral points S. Note for a polyhedron
P = {x ∈ Rn : Ax ≤ b} where all entries A, b are rational, the convex hull of S set of integral points is a polyedron
Q also with rational entries.

7.2 LP Relaxation

Note the corresponding convex hull of integral points is called the LP relaxation.
Suppose there is an IP max{cTx : Ax ≤ b, x integer }.
For the convex set for S set of integral points satisfying the constraint Ax ≤ b in the IP

conv(S) = {x : A′x ≤ b′}

the LP relaxation is an LP max{cTx : A′x ≤ b′}. We can thus solve for the integral solutions as an LP problem.
The LP relaxation is equivalent to the original IP and satisfies:

1. IP is infeasible if and only if LP relaxation is infeasible

2. IP is unbounded if and only if LP relaxation is unbounded

3. every optimal solution to IP is optimal for LP relaxation

4. every optimal solution to LP relaxation that is an extreme point is optimal for IP

The last one is key (not every optimal solution to LP relaxation is optimal for IP). Note an LP relaxation can still
give fractional optimal solutions (this not valid for IP). It is up to one to come up with cutting planes!

10
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7.3 Cutting Planes

We want to construct halfspaces that form a convex set around all the integral solutions in the feasible region of our
IP.
The algorithm to do so is as follows:

1. Consider LP relaxation of IP problem

2. Solve LP relaxation with Simplex to obtain a final canonical form and basic solution x̄.

3. If x̄ is infaesible, LP relaxation and thus IP is infeasible. Otherwise x̄ is optimal.

4. If x̄ is integral, we have found our optimal solution for the IP.

5. Otherwise we need to derive cutting planes to bound our LP. One of the rows (just need one) in the final
canonical form has a fractional RHS. Use this row to derive a cutting plane.

6. Add cutting plane constraint to LP and go to step (2).

To find a cutting plane for a given row i where Ai1x1 + . . . Ainxn = bi and x ≥ 0 (this is important as you will see!)
the cutting plane is

bAi1cx1 + . . .+ bAincxn = bbic

This works since xi ≥ 0 so decreasing the coefficient decreases the LHS (it is ≤ bi.
The LHS is now fully integral, thus it has to be ≤ bbic.

8 Non-Linear Programming

NLP is hard. We only care for NLPs with convex feasible regions, or from the definition of convexity before and
given an NLP

min{cTx : gi(x) ≤ 0,∀i ∈ {1, . . . ,m}}

Every gi(x) is convex (thus the intersection of convex sets is convex).

8.1 Convex Functions

A function f(x) is convex if for every pair of points x(1), x(2)

f(λx(1) + (1− λ)x(2)) ≤ λf(x(1)) + (1− λ)f(x(2))

where 0 ≤ λ ≤ 1.
Graphically, the line between two points on the function always lies above or on the function between the two points.
We define the epigraph of a function f as the shaded region above the function. That is

epi(f) =
{( µ

x

)
∈ R× Rn : f(x) ≤ µ

}
Note a function is convex if and only if its epigraph is a convex set.
We also define the level set as domain (set of x) for a given β ∈ R where the function is below β. That is

{x ∈ Rn : g(x) ≤ β}

Note that the level set of a convex function is a convex set.

11
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However, if every level set is convex, this does NOT imply the function is convex (e.g. x3 level sets of negative and
positive x values).

8.2 Subgradients

How do we bound the convex set of feasible solutions to an NLP as an intersection of halfspaces so we can solve it
as an LP?
We introduce the idea of subgradients (think of them as halfspaces with a slope at a given point x). From calculus
(or the equation of a line), we define subgradient s ∈ Rn of f at x̄ where:

f(x̄) + sT (x− x̄) ≤ f(x)

The affine function on the LHS that we can use as a constraint in our LP relaxation.
We denote the gradient of a function f as ∇f (it will be the subgradient) and it is calculated as

∇f(x) =
[∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

]T
8.3 Karush-Kuhn-Tucker (KKT) Theorem

A Slater point x′ for an NLP satisfies gi(x′) < 0 (not tight) for every i ∈ {1, . . . ,m}.
Combining what we have learned, the KKT Theorem states that for a convex NLP of the form

min{f(x) : gi(x) ≤ 0,∀i ∈ {1, . . . ,m}}

that has a Slater point, x̄ a feasible solution is optimal if and only if

−∇f(x̄) ∈ cone{∇gi(x̄) : gi(x̄) = 0 (tight) }

That is the negative of the coefficients in the objective function is in the cone of the constraints tight for x̄.
We will show the reverse direction proof: that is −∇f(x̄) is in the cone of the subgradients of gi tight for x̄, then x̄
is optimal.
Note that by the definition of cones for yi ≥ 0 (where J(x̄) are the row indices tight for x̄):

−∇f(x̄) =
∑

i∈J(x̄)

yi∇gi(x̄)

Furthermore from the constraints we have

0 ≥ gi(x) = gi(x̄) +∇gi(x̄)(x− x̄)

Since gi(x̄) = 0 (tight for x̄)), we have ∇gi(x̄)(x− x̄) ≤ 0.
Combining the two equations, we get

f(x) = f(x̄) +∇f(x̄)(x− x̄) = f(x̄)−
∑

i∈J(x̄)

yi∇gi(x̄)T (x− x̄) ≥ f(x̄)

where the last inequality holds because yi ≥ 0 and ∇gi(x̄)T (x− x̄) ≤ 0.
The proof for the converse (x̄ optimal → cone equality) requires a Slater point.
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9 Tips

9.1 Auxiliary LP Objective Function

For an original LP with n variables, we add m additional variables in the auxiliary LP. Note that the final
canonical form of the auxiliary LP (after Simplex method) should have ci = 0 for i ∈ {1, . . . , n} and cj = −1 for
j ∈ {n+ 1, . . . , n+m}.
This is because in the objective function for the canonical form, we have

(cT − yTA)x+ yT b

→cTx− yT (Ax− b)
→(0, . . . , 0,−1, . . . ,−1)Tx− yT (Ax− b)

Note that yT = A−TB cB where cB = 0, thus yT = 0→ yT (Ax− b) = 0.

9.2 Complementary Slackness

One does not need to specify CS conditions for a constraint if it’s already an equality (e.g. in the primal for minimum
cost perfect matching).

9.3 Cutting Planes

To show something is a cutting plane for a solution of the LP relaxation, simply show it is violated by the fractional
solution to the LP relaxation. Otherwise, see if you can derive it from one of the established cutting planes.
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