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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 May 8, 2017

1.1 IP: Discrete values

How would you represent a variable xC ∈ {0, 2} (This is not a valid LP constraint)?
Introduce a binary variable zC to indicate whether item C is used or not

0 ≤ zC ≤ 1, zC integer
xC = 2zC

Note in IP we are allowed to use zC ∈ {0, 1} to represent this constraint.
Similarly, for more than 2 discrete values e.g. x ∈ {A,B,C}, define binary variables yA, yB, yC ∈ {0, 1} for each
value in {A,B,C}.

x = AyA +ByB + CyC

yA + yB + yC = 1

2 May 10, 2017

2.1 Incident Edges Notation

To indicate all incident edges of a vertex v

S(v) = {e1, e2, . . . en}

where ei are all edges that have v as one of its vertices.

2.2 Matching Edges

A set of edges M is matching in a graph G with vertices V if and only if

|S(v) ∩M | ≤ 1 ∀v ∈ V

3 May 12, 2017

3.1 IP is LP?

Note Integer Programming (IP) is not a subset of Linear Programming (LP). It however uses linear constraints
with an integral restrition.

1
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4 May 15, 2017

4.1 Non-linear Programming (NLP)

Let f : Rn → R and gi : Rn → R for all i ∈ {1, . . . ,m}.
Non-linear programming (NLP) problem is an optimization problem of the form

min f(x)

subject to

gi(x) ≤ 0

...
gm(x) ≤ 0

Example 4.1. We have three different figures (or boundaries on 2D Cartesian plane) F1, F2, F3 ⊆ R2 and a point
x = (x1, x2)

ᵀ. Determine a point from F1 ∪ F2 ∪ F3 which is closest to the point x.
F1 is a circle of radius 3 centered at (−4, 0)ᵀ. F2 is a rectangle with bottom-left corner (1, 2)ᵀ and top-right corner
(6, 5)ᵀ. F2 is a triangle with corners (2,−1)ᵀ, (4,−5)ᵀ, (2,−5)ᵀ.
For two points x, y ∈ R2 the distance between them is√

(x1 − y1)2 + (x2 − y2)2

Define the variables

t = (t1, t2)
ᵀ ∈ F1

y = (y1, y2)
ᵀ ∈ F2

p = (p1, p2)
ᵀ ∈ F3

z1, z2, z3 indicates the figure in which the closest point to x lies

subject to
(t1 + 4)2 + t22 ≤ 9 (t1, t2)

ᵀ ∈ F1

y1 ≥ 1
y1 ≤ 6
y2 ≥ 2
y2 ≤ 5

}
(y1, y2)

ᵀ ∈ F2

p1 ≥ 2
p2 ≥ −3
p1 + p2 ≤ 1

}
(p1, p2)

ᵀ ∈ F3

z1, z2, z3 ∈ {0, 1}
z1 + z2 + z3 = 1

Finally, the objective function is

min z1
√

(x1 − t1)2 + (x2 − t2)2 + z2
√

(x1 − y1)2 + (x2 − y2)2 + z3
√

(x1 − p1)2 + (x2 − p2)2

2
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Note in order for our constraints to fit our definition of NLP (i.e. gi(x) ≤ 0, we must reformulate them

(t1 + 4)2 + t22 ≤ 9→ (t1 + 4)2 + t22 − 9 ≤ 0

y1 ≥ 1→ −y1 ≤ −1→ −y1 + 1 ≤ 0

...
z1 + z2 + z3 = 1→ z1 + z2 + z3 ≤ 1→ z1 + z2 + z3 − 1 ≤ 0

5 May 17, 2017

5.1 Feasibility, Optimal, and Unbounded

Example 5.1. Given an (LP) problem denoted by (P) where (P) is a maximization (LP) problem. Does (P) have
a feasible solution?

max 7x1 + 3x2

subject to

2x1 − x2 = 4

4x1 − 2x2 = 9

x1, x2 ≥ 0

This is clearly infeasible (divide 2nd equation by 2, same LHS as equation 1 but different RHS) thus (P) is infeasible.
We can fix this by changing equation 2 to

4x1 + 2x2 = 8

Note that x = (2, 0)ᵀ is now a feasible solution.
Optimal solution x̄ for (P) if for every feasible solution x′ the value of x̄ is not not smaller than the value of
x′. Note the value of x′ is the value of the objective function for (P). The complement is true for minimization
problems.
Note for (P), we can describe a feasible solution as

x′ = (2, 0)ᵀ + t(1, 2)ᵀ

for every t ≥ 0. Note

x′1 = 2 + t

x′2 = 0 + 2t

So the value of x′ is 14 + 13t. There is no maximum for a line.
If for every alpha there is a feasible solution which has value larger than α, then (P) is unbounded.

5.2 Certificate of Infeasibility

Example 5.2. Let our LP problem be
max x1 + 2x2 + x3

3
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subject to

(1)x1 − x2 − x3 = 1

(2)2x1 − x2 − x3 = 5

(3)x1 + x2 + 2x3 = 2

(4)x1, x2, x3 ≥ 0

Let’s simplify the three equations. Take (1) +−2(2) + 3(3) (arbitrary LC) which results in

0x1 + 4x2 + 7x3 = −3

Note this is obviously infeasible since one cannot produce a negative RHS given x2, x3 ≥ 0. Therefore this LP
problem is infeasible.

Proposition 5.1. (Prop 2.1, page 46)
Let A be a matrix and b be a vector. Then the system

Ax = b x ≥ 0

has no solution if there is a vector y such that

1. yᵀA ≥ 0 AND

2. yᵀb < 0

where in the above example y = (1,−2, 3)ᵀ. Such a y that satisfies (1) and (2) is called a certificate of infeasibility
for the given system (or constraints).

Proof. Assume there is a solution for this system denoted by x̄. We have

Ax̄ = b x̄ ≥ 0

note the constraint is because our quantities must be non-negative. Then

yᵀAx̄ = yᵀb

Let z = yᵀA, which we know z ≥ 0 by (1). So z = (z1, . . . , zn) where zi ≥ 0 for all 1 ≤ i ≤ n. Note

yᵀAx̄ = zx̄ = z1x̄1 + z2x̄2 + . . .+ znx̄n ≥ 0

since xi ≥ 0 for all 1 ≤ i ≤ n. Therefore the RHS ≥ 0 and the LHS < 0 which is a contradiction.

6 May 19, 2017

6.1 Other Ways to Show Infeasibility

Example 6.1. Let there be an optimization problem such that our objective function is

max x1 + x2 + x3

4
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subject to

2x1 + x2 + 3x3 = 5

x1 + x2 + 2x3 = 4

x1 ≥ 0, x2 ≤ 0

Let us sum the equalities multiplied by the corresponding coefficients in y = (2,−3)ᵀ. We get

1x1 − 1x2 + 0x3 = −2

1x1 + (−1)x2 + 0x3 = −2

Let us assume that there is a feasible solution denoted by x̄. Then

1x̄1 + (−1)x̄2 + 0x̄3 = −2

Note x̄1 ≥ 0, (−1)x̄2 ≥ 0 and 0x̄3 = 0 (from our constraint x1 ≥ 0, x2 ≤ 0. The LHS is therefore ≥ 0 but the RHS
is < 0. We obtain a contradiction to the assumption that there is a feasible solution, therefore this problem is
infeasible.

6.2 Unbounded Solutions

Example 6.2. Recall from a previous example

max 7x1 + 3x2

subject to

2x1 − x2 = 4

4x1 − 2x2 = 8

x1 ≥ 0, x2 ≥ 0

Note that we found x̄ = (2, 0)ᵀ is a feasible solution. More generally, we note x̃ = (2, 0)ᵀ + t(1, 2)ᵀ is feasible for
every t ≥ 0 with value 14 + 13t.

6.3 Certificate of Unboundeness

Proposition 6.1. Given the optimization problem

max cᵀx

subject to
Ax = b x ≥ 0

Let x̄ be a feasible solution for the above system. Let d be a vector such that

(1) Ad = 0

(2) d ≥ 0

(3) cᵀd > 0

5
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Then the system is unbounded. Such a pair x̄, d is called a certificate of unboundedness.

Example 6.3. In our previous example

A =

[
2 −1
4 −2

]
and c = (7, 3)ᵀ. Then in this example d = (1, 2)ᵀ or the “slope” of our general equation for all feasible solutions.

Proof. Let us assume the contrary, that Ax = b is not unbounded.
In other words, there exists α such that for every feasible solution x̃ the value of x̃ is at most α.
Define x̃ such that

x̃ = x̄+ td for some t ≥ 0

Then x̃ is a feasible solution for Ax = b. Indeed this is true when we check this

Ax̃ = A(x̄+ td)

= Ax̄+A(td)

= Ax̄+ tAd

= b

Remember that for any particular feasible x̄, Ax̄ = b and from (1) Ad = 0. So Ax̃ = b thus x̃ is a valid solution set.
Going back our definition x̃ = x̄+ td, note that x̄ ≥ 0 (part of problem x ≥ 0, t ≥ 0 (by definition), and d ≥ 0 from
(2). Inserting x̃ into our objective function

cᵀx̃ = cᵀ(x̄+ td)

= cᵀx̄+ cᵀ(td)

= cᵀx̄+ tcᵀd

where cᵀd > 0 from (3).
If we choose t ≥ 0 so that

cᵀx̃ = cᵀx̄+ tcᵀd > α

for our chosen “fixed” α value, then we obtain a contradiction. Solving for this t

t >
α− cᵀx̄
cᵀd

7 May 23, 2017

7.1 More Unbounded Examples

Example 7.1. Let there be a minimization optimization problem

min x1 + x2 + x3

6
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subject to

6x1 − x2 + 4x3 = 39

2x1 − x2 + 2x3 = 15

x1 ≥ 0, x2 ≤ 0

A feasible solution is x̄ = (3,−7, 1)ᵀ where d = (1,−2,−2)ᵀ. Note other feasible solutions can then be written as

x̃ = x̄+ td for some t ≥ 0

Define x̃ = x̄+ td for some t ≥ 0. Note that x̃ is a feasible solution. We can check this

x̃1 = 3 + t · 1
x̃2 = −7 + t · (−2)

x̃3 = 1 + t · (−2)

Plugging into our constraints

6x̃1 − x̃2 + 4x̃3 = 6(3 + t)− (−7− 2t) + 4(1− 2t) = 29 + 0t = 29

2x̃1 − x̃2 + 2x̃3 = 2(3 + t)− (−7− 2t) + 2(1− 2t) = 15 + 0t = 15

moreover note our constraint x1 ≥ 0, x2 ≤ 0, so

x̃1 = 3 + t ≥ 0 for every t ≥ 0

x̃2 = −7− 2t ≤ 0 for every t ≥ 0

therefore x̃ is a feasible solution for every t ≥ 0. The value of x̃ is therefore x̃1 + x̃2 + x̃3 = −3− t which becomes
arbitrarily small as t increases.

7.2 Optimal Solutions

Example 7.2. Suppose we have
max 5x2 − 9x3 + 7x4

subject to

(1) x1 + 2x2 − 3x3 + x4 = 6

(2) 2x1 − x2 + x3 − 5x4 = −5

x ≥ 0

Note that x1 is missing from the objective function. We want to combine our constraints such that it looks similar
to the object function. Eliminate x1 by summation of our two constraints i.e. 2(1)− 1(2) we get

0x1 + 5x2 − 7x3 + 7x4 = 17

Let us suppose x̄ = (1, 2, 0, 1)ᵀ is the most optimal solution. Suppose that (from the objective function)

5x̄2 − 9x̄3 + 7x̄4 = 17

7
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To show that x̄ is the optimal solution we need to prove that for every feasible solution x̃

5x̃2 − 9x̃3 + 7x̃4 ≤ 17

since this is a maximization problem and we supposed x̄ is the most optimal.
From our constraint we have

5x̃2 − 7x̃3 + 7x̃4 = 17

Since x̃ is feasible, then from our constraint x ≥ 0→ x̃3 ≥ 0. Thus

5x̃2 − 7x̃3 + 7x̃4 − 2x̃3 ≤ 17

since −2x̃3 ≤ 0.

7.3 Certificate of Optimality

Proposition 7.1. Suppose we are given an LP problem

max cᵀx

subject to

Ax = b

x ≥ 0

and a feasible solution x̄. If there is a vector y such that

(1) Aᵀy ≥ c
(2) cᵀx̄ = yᵀb

then x̄ is an optimal solution for the LP problem.

Proof. We need to prove that for every feasible solution x̃, we have

cᵀx̃ ≤ cᵀx̄

Let us compute cᵀx̄

cᵀx̄ = yᵀb from (2)
= yᵀAx̃

= cᵀx̃+ yᵀAx̃− cᵀx̃
= cᵀx̃+ (yᵀA− cᵀ)x̃

Note that yᵀA− cᵀ ≥ 0 from (1) and x̃ from x ≥ 0. Thus the right sumamnd is always ≥ 0 so

cᵀx̄ = cᵀx̃+ (Aᵀy − c)ᵀx̃ ≥ cᵀx̃

such a vector y is called a certificate of optimality for x̄.

8
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7.4 Harder Example for Optimality

Example 7.3. Let there be
max 14x1 + x2 + 10x3 + 3x4

subject to

(1) 2x1 + x2 + 3x3 − x4 = 3

(2) 4x1 − x2 + x3 + 2x4 = 9

x1, x3 ≥ 0

x2, x4 ≤ 0

taking y = (3, 2)ᵀ or 3(1) + 2(2) we get

14x1 + x2 + 11x3 + x4 = 27

we claim x̄ = (2,−1, 0, 0)ᵀ is a feasible solution. Let us show that x̄ is also the optimal solution. Going back to
our combined constraint, every feasible solution x̃ we have

14x̃1 + x̃2 + 11x̃3 + x̃4 = 27

→ 14x̃1 + x̃2 + 10x̃3 + 3x̃4 + x̃3 − 2x̃4

Note that x̃3 ≥ 0 and −2x̃4 ≥ 0. So from the objective function

14x̃1 + x̃2 + 10x̃3 + 3x̃4 ≤ 14x̃1 + x̃2 + 11x̃3 + x̃4 = 27

Thus every feasible solution x̃ ≤ 27 thus x̄ is the most optimal since cᵀx̄ = 27.

8 May 24, 2017

8.1 Standard Equality Form

An LP problem is in Standard Equality Form if it is of the form

max cᵀx+ z̄

subject to

Ax = b

x ≥ 0

where cᵀ, z̄, A, b are fixed numbers, matrices, or vectors. That is it must satisfy

(1) Maximization problem

(2) Every variable has a non-negativity constraint

(3) Except for non-negativity constraints, all constraints are equations

9
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8.2 Equivalent LP problems

What does it mean for two LP problems (P) and (Q) to be equivalent?

(1) (P) is infeasible ⇐⇒ (Q) is infeasible

(2) (P) is unbounded ⇐⇒ (Q) is unbounded

(3) from an optimal solution for (P), we can construct an optimal solution for (Q) (and vice versa)

Example 8.1. Given
min 7x1 + 3x2 − 2x3

subject to

x1 + x2 + x3 ≥ 7

2x1 − x2 + 7x3 ≤ −1

−x1 + x2 − x3 = 0

x1 ≤ 0

x2 ≥ 0

x3free

convert this to Standard Equality Form.

Step 1 Change minimization to maximization (if necessary). That is negate every term

min 7x1 + 3x2 − 2x3 → max − 7x1 − 3x2 + 2x3

Step 2 Convert all inequalities to equations. In the example, for every feasible solution we have

x1 + x2 + x3 ≥ 7

create a temp variable x4 ≥ 0 such that

x1 + x2 + x3 − x4 = 7

At the end of step 2, we have for our example

max − 7x1 − 3x2 + 2x3

subject to

x1 + x2 + x3 − x4 = 7

2x1 − x2 + 7x3 + x5 = −1

− x1 + x2 − x3 = 0

x1 ≤ 0, x2 ≥ 0, x3 free , x4 ≥ 0, x5 ≥ 0

Step 3 Replace all non-positive variables by non-negative variables. In the example, x1 → −x1

max 7x1 − 3x2 + 2x3

10
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subject to

− x1 + x2 + x3 − x4 = 7

− 2x1 − x2 + 7x3 + x5 = −1

x1 + x2 − x3 = 0

x1 ≥ 0, x2 ≥ 0, x3 free , x4 ≥ 0, x5 ≥ 0

Step 4 Replace all free variables by a difference of two non-negative variables. In our example

x3 = x+3 − x
−
3

where x+3 , x
−
3 ≥ 0. Thus at the end of step 4 we have for our example

max 7x1 − 3x2 + 2x+3 − 2x−3

subject to

− x1 + x2 + x+3 − x
−
3 − x4 = 7

− 2x1 − x2 + 7x+3 − 7x−3 + x5 = −1

x1 + x2 − x+3 + x−3 = 0

x1, x2, x
+
3 , x

−
3 , x4, x5 ≥ 0

9 May 26, 2017

9.1 Simplex Iteration

Example 9.1. Given
min 5x1 − x2 − 4x3 − 4x4

subject to

− 4x1 + x2 + 3x3 + 3x4 ≤ 17

− x1 + x3 + x4 ≤ 4

− 2x1 + x2 + 2x3 + 3x4 ≤ 10

x1 ≤ 0, x2, x3, x4 ≥ 0

First we must transform this LP problem to Standard Equality Form (SEF).

max − 5x1 + x2 + 4x3 + 4x4

subject to

− 4x1 + x2 + 3x3 + 3x4 + x5 = 17

− x1 + x3 + x4 + x6 = 4

− 2x1 + x2 + 2x3 + 3x4 + x7 = 10

x1 ≤ 0, x2, . . . , x7 ≥ 0

11
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Then we modify x1 → −x1 and get
max 5x1 + x2 + 4x3 + 4x4

subject to

(1) 4x1 + x2 + 3x3 + 3x4 + x5 = 17

(2) x1 + x3 + x4 + x6 = 4

(3) 2x1 + x2 + 2x3 + 3x4 + x7 = 10

x ≥ 0

which is our 1st iteration.
An obvious solution is x = (0, 0, 0, 0, 17, 4, 10)ᵀ (just look at the free variables in each equation). Is this optimal?
Probably not (no). This is because from our objective function, we see that x1, . . . , x4 contribute to the optimal
value, but we have set them to 0 in favor of x5, . . . , x7. What if we try to find x1, . . . , x4 > 0 that fits within our
constraint?
In practice, we choose the first variable with a coefficient > 0 to optimize (Bland’s Rule). Let’s try to increase
(and maximize) t = x1, t ≥ 0 first and modify x5, x6, x7 accordingly hwhile leaving x2, x3, x4 = 0. Solving for x5 in
each of the constraints

4x1 + x5 = 17→ x5 = 17− 4t

x1 + x6 = 4→ x6 = 4− t
2x1 + x7 = 10→ x7 = 10− 2t

Note we cannot simply set t = 100 for example since x5, x6, x7 ≥ 0.
Solving for t in each of the new constraints ≥ 0, we get t ≥ 17

4 , t ≥ 4, t ≥ 5, respectively. Since ALL of them have to
be non-negative, we take the min. of these bounds ie. t ≤ min{174 , 4, 5} = 4.
Letting t = 4 we get the new solution x = (4, 0, 0, 0, 1, 0, 2)ᵀ with the value of 20.
Note that our t was bounded by equation (2). Let us eliminate x1 from the other equations (1) and (3) by subtracting
each with (2). For the objective function, we can write (2) in terms of 0 then subtract/add 0 from/to the objective
function. So we get

max x2 − x3 − x4 − 5x6 + 20

subject to

(1) x2 − x3 − x4 + x5 − 4x6 = 1

(2) x1 + x3 + x4 + x6 = 4

(3) x2 + x4 − 2x6 + x7 = 2

x ≥ 0

which is our 2nd iteration.
This allows us to keep x1 = 4 but now optimize for x2. Setting x3, x4 = 0 and solving for the free variables

x2 + x5 = 1→ x5 = 1− t→ 1− t ≥ 0→ t ≤ 1

x1 = 4 ≥ 0

x2 + x7 = 2→ x7 = 2− t→ 2− t ≥ 0→ t ≤ 2

Thus we have t ≤ min{1, 2} = 1. Increasing x2 in the current solution to the value t, t ≥ 0 (leaving x3, x4, x6 = 0)
we obtain the more optimal solution x = (4, 1, 0, 0, 0, 0, 1)ᵀ with value equal to 21.

12
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By subtracting all functions by (1) to eliminate x2

max − x5 − 5x6 + 21

subject to

(1) x2 − x3 − x4 + x5 − 4x6 = 1

(2) x1 + x3 + x4 + x6 = 4

(3) x3 + 2x4 − x5 + 2x6 + x7 = 1

x ≥ 0

which is our 3rd iteration.
Observe our last solution x = (4, 1, 0, 0, 0, 0, 1)ᵀ with value 21 is optimal since x ≥ 0 and Z3(x) ≤ 21 (Z3 is the
objective function of the 3rd iteration). To prove this, we can find a certifiate of optimality for x from the final LP:
that is y ∈ R3 s.t.

1. yᵀA ≥ cᵀ

2. yᵀb = cᵀx

we get y by taking the negative vector of coefficients of (x5, x6, x7) in the final objective function so y =
−(−1,−1, 0)ᵀ = (1, 1, 0)ᵀ. Multiplying out y with our initial LP:

(1, 1, 0)(17, 4, 10)ᵀ = 17 + 4 = 21 = Z3(x)

= cᵀx = (5, 1, 4, 4, 0, 0, 0)(4, 1, 0, 0, 0, 0, 1)ᵀ = 20 + 1 = 21

Note that in the 3 iterations in our example, the LPs were in a special form: The columns of the constraint matrix
corresponding to the non-zero entries of the current solution (for a given iteration) are LI (linearly independent).

9.2 Basis

Definition 9.1. Suppose A is an m× n constraint matrix of an LP in SEF, such that rank(A) = m. Then any
subset of m column indices that are LI are called a basis.

Example 9.2. {1, 5, 7} is clearly a basis for the LP in the 2nd iteration. Also {1, 5, 6}.

10 May 31, 2017

10.1 Basic and Non-Basic

We also say that xj for j ∈ B is a basic variable and xj with j 6∈ B is called non-basic. Let us denote
N = {1, 2, . . . , n} −B.
We’ll also consider restrictions of A, x, c to B,N respectively, denoted as AB, xB, cB, and AN , xN , cN respectively
for the basic and non-basic parts.

Example 10.1. In the previous example, one basis is {5, 6, 7}.

13



Spring 2017 CO 250 Course Notes 10 MAY 31, 2017

Note that wiht B = {5, 6, 7}, then N = {1, 2, 3, 4}. Thus we have (from the 1st iteration)

AB =

1 0 0
0 1 0
0 0 1

 cb = (0, 0, 0)ᵀ

AN =

4 1 3 3
1 0 1 1
2 1 2 3

 cN = (5, 1, 4, 4)ᵀ

Note that in our 1st iteration we had the naive solution x̄ = (0, 0, 0, 0, 17, 4, 10)ᵀ. Thus x̄B = (17, 4, 10)ᵀ and
x̄N = (0, 0, 0, 0)ᵀ. This is a basic solution.

Definition 10.1. We say a solution x̄ ∈ Rn is basic for basis B if x̄N = 0, Ax̄ = b.

Note that
A =

[
AB AN

]
by permuting columns if necessary. AB has m columns and AN has m− n columns. Note we can show that x̄B
always exists given a basis and AB

Ax̄ = b

⇐⇒
[
AB AN

] [x̄B
x̄N

]
= b

⇐⇒ AB · x̄B +AN · x̄N = b

Note that AN · x̄N = 0 since x̄N = 0 so

ABx̄B = b ⇐⇒ x̄B = A−1B b

where AB is invertible since its columns are LI.
So given a basis, we can always find a basic solution corresponding to it. Suppose we take B = {1, 2, 5} then by
permuting columns we write them in order (1, 2, 5, 3, 4, 6, 7) or

A =

4 1 1 | 3 3 0 0
1 0 0 | 1 1 1 0
2 1 0 | 2 3 0 1


Example 10.2. x ∈ R6, x ≥ 0 and [

0 −2 1 0 2 6
1 1 −1 1 3 −3

]
x =

[
2
4

]
Are the following bases?

1. {2, 3} yes

2. {2, 6} no

3. {1} no, similarly for {3, 4, 5} not a basis

14
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A basis solution for B = {2, 3} is

ABx̄B = b[
−2 1
1 −1

] [
x̄2
x̄3

]
=

[
2
4

]
which gives us

−2x̄2 + x̄3 = 2x̄2 − x̄3 = 4

Solving gives us x̄2 = −6 and x̄3 = −10. Thus the solution would be x̄ = (0,−6,−10, 0, 0, 0)ᵀ.
Note however that x ≥ 0 thus this solution is infeasible.

Definition 10.2. We say that a basic solution x̄ (for basis B) is feasible (a basic feasible solution) if x̄ ≥ 0.

Note that if we chose B = {3, 4} then we get x̄ = (0, 0, 2, 6, 0, 0) which is a basic feasible solution for B.

10.2 Canonical Form

Note that in our example from the day before in the 1st iteration, the LP satisfies

1. AB = I

2. cB = 0

Definition 10.3. Whenever an LP
max cᵀx

s.t.

Ax = b

x ≥ 0

satisfies AB = I, cB = 0 for a basis B, then we say that the LP is in canonical form for B.
In the 2nd iteration, we had a solution (4, 0, 0, 0, 1, 0, 2) a basic feasible solution for basis {1, 5, 7}.

AB =

4 1 0
1 0 0
2 0 1

 6= I

(even up to permutations of columns). This is not canonical.

11 June 2, 2017

11.1 Converting to Canoncial Form

To bring an LP in SEF to canonical form for a basis B

1. Multiply the constraints Ax = b by A−1B on both sides to get A−1B Ax = AB
−1b (note these are equivalent to

each other) Therefore on the LHS we have

A−1B A = A−1B
[
AB | AN

]
=
[
A−1B AB | AN

]
so in the constraint matrix Ã = A−1B A, thus ÃB = I.

15
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2. We multiply Ãx = b̃ (where b̃ = A−1B b) by cᵀB (objective coefficient restricted to B) to get

cᵀBÃx = cᵀb̃

⇐⇒ cᵀB b̃− c
ᵀ
BÃx = 0

If we add the LHS to the objective function z(x) = cᵀx (adding 0) we get

z(x) = cᵀx+ cᵀB b̃− c
ᵀ
BÃx

for every feasible solution x Z̃(x) = Z(x). Observe that

Z̃(x) =
[
cᵀB | cᵀN

] [xB
xN

]
− cᵀB

[
I | ÃN

] [xB
xN

]
+ cᵀB b̃

= cᵀBxB + cᵀNxN − c
ᵀ
BxB − c

ᵀ
BÃxn + cᵀB b̃

= cᵀNxN − c
ᵀ
BÃxn + cᵀB b̃

So the coefficients of the basic variables in c̃, where c̃ᵀ = cᵀ − cᵀBÃ = cᵀ − cᵀBA
−1
B A, are all 0.

So in summary, starting with
max Z(x) = cᵀx

s.t.

Ax = b

x ≥ 0

we get
max (cᵀ − cᵀBA

−1
B A)x+ cᵀBb

s.t.

A−1B Ax = A−1B b

x ≥ 0

This is in canonical form for B.

Example 11.1. Given the first iteration of our previous example

max 5x1 + x2 + 4x3 + 4x4

subject to

4x1 + x2 + 3x3 + 3x4 + x5 = 17

x1 + x3 + x4 + x6 = 4

2x1 + x2 + 2x3 + 3x4 + x7 = 10

x ≥ 0

our solution is (4, 0, 0, 0, 1, 0, 2)ᵀ.

16
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1. Let

AB = A(5,1,7) =

1 4 0
0 1 0
0 −2 1


thus A−1B would be

A−1B =

1 −4 0
0 1 0
0 −2 1


Multiplying out A−1B A

A−1B A =

0 1 1 0 1 −4 0
1 0 1 1 0 1 0
0 1 0 1 0 −2 1


where we have (A−1B A)(5,1,7) = I as desired.

2. Note that cᵀ = (5, 1, 4, 4, 0, 0, 0) thus cᵀ(5,1,7) = (0, 5, 0) (mind the order, must match AB).

So that gives us

c̃ᵀ = cᵀ − (0, 5, 0)Ã

= cᵀ − (5, 0, 5, 5, 0, 5, 0)

= (0, 1,−1,−1, 0,−5, 0)

3. With c̃ᵀ and Ã, we can rewrite our LP problem in canonical form

max x2 − x3 + x4 − 5x6 + 20

subject to

x2 + x3 + x5 − 4x6 = 1

x1 + x3 + x4 + x6 = 4

x2 + x4 − 2x6 + x7 = 2

x ≥ 0

where the RHS of the constraints is b̃ = A−1B b.

11.2 Simplex: Better Feasible Solution

1. Start with LP in canonical form for a basis B and basic feasible solution x̄ for B.

2. If cj > 0 for some non-basic variable xj , then we try to find a new feasible solution with xj > 0 (say xj = t)
with all the remaining non-basic variables = 0.

So for a given constraint Ax = b that is

⇐⇒
[
I | AN

] [xB
xN

]
= b

note the I contains AB and the jth column Aj is in AN .

17
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Setting xj = tj and all other non-basic variables = 0 we get

xB + tAj = b

we take the max t such that xB = b− tAj ≥ 0 (and t ≥ 0).

12 June 5, 2017

12.1 Simplex from Canonical Form

Example 12.1.
max 5x1 + 3x2

subject to

x1 + x2 + x3 = 4

5x1 + 2x2 + x4 = 10

x ≥ 0

Note that B = 3, 4 (canonical form) with the corresponding basis solution (0, 0, 4, 10)ᵀ.
Since the corresponding basic solution is feasible, B is a feasible basis. The value of the basic solution is 0.
Increasing x1 to the value t ≥ 0 while keeping x2 equal to 0 Then

x3 = 4− t
x4 = 10− 5t

So for x3 and x4 to be non-negative, we get t ≤ 4 and t ≤ 2. Thus we need t ≤ 2.
Setting t = 2 we get a new solution (2, 0, 2, 0)ᵀ with value 10. Let us update the basis, where x1 enters the basis
and x4 leaves the basis. Thus the new B = {1, 3}. We need to update our LP such that it is in canonical form
again. Thus for B = {1, 3} we have

max x2 − x4 + 10

subject to

3

5
x2 + x3 −

1

5
x4 = 2

x1 +
2

5
x2 +

1

5
x4 = 2

x ≥ 0

This was derived by noting that 5x1 + 2x2 + x4 − 10 = 0 (from the second constraint), subtracting this (0) from
z(x) = 5x1 + 3x2 to get rid of x1, and similarly subtracting one fifth of that equation from the first constraint to
get rid of x1 from the first constraint. Finally, dividing the second constraint by 5 such that AB = I.
Now we can optimize for x2 = t ≥ 0 similar to what we did before, fixing x1 and x3 and setting everything else (x4)
to 0.

x3 +
3

5
t = 2 ⇐⇒ x3 = 2− 3

5
t

x1 +
2

5
t = 2 ⇐⇒ x1 = 2− 2

5
t

18
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where t = min{103 , 5} we obtain solution (23 ,
10
3 , 0, 0) with value 40

3 (note we “overrode” the previous value of x1
where it’s lower than before but gives us a better value).
Let us update the basis: x2 enters B and x3 leaves B. The new basis is B = {1, 2}. Computing the canonical form
for B.
Subtract 5

3 of (2) (second constraint) from z(x), multiply 5
3 with (1) to get, and subtracting 2

3 of (1) from (2) to get

max − 5

3
x3 −

2

3
x4 +

40

3

subject to

x2 +
5

3
x3 −

1

3
x4 =

10

3

x1 −
2

3
x3 +

1

3
x4 =

2

3
x ≥ 0

Note that in our objective function, −5
3x3 and −2

3x4 are both ≤ 0, thus z(x) ≤ 40
3 . Thus (23 ,

10
3 , 0, 0)ᵀ is an optimal

solution with value 40
3 . (We only stop once the coefficients are negative since x ≥ 0.

Note that the certificate of optimality is y = (53 ,
2
3)ᵀ (derived from negative coefficient of final objective function

with respect to the initial LP (where x3, x4 had coefficients of 1). Note if we plug y into our initial LP, it satisfies
yᵀA ≥ cᵀ and cᵀx̄ = yᵀb.

13 June 7, 2017

13.1 Bland’s Rule

Increase the variable with the smallest index that has a non-zero coefficient.

13.2 Unboundedness from Simplex

Example 13.1.
max x1 + x2 = z(x)

subject to

− 2x+ 3x2 + x3 = 9

x1 − 2x2 + x4 = 2

x ≥ 0

where B = {3, 4} with the corresponding basis solution (0, 0, 9, 2) with value 0.
Increase x1 (Bland’s Rule) to the value t ≥ 0 keeping x2 equal to 0. Then

− 2t+ x3 = 9 ⇐⇒ x3 = 9 + 2t

t+ x4 = 2 ⇐⇒ x4 = 2− t

Note x3 has no role in the constraint (it will always be non-negative for all t ≥ 0 since the coefficient of x1 in the
first constraint is negative). Thus t = 2 from x4 = 2− t ≥ 0. x1 enters B and x4 leaves B, thus the basis is now
B = {1, 3}.

19
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The canonical form for this basis is as follows

max 3x2 − x4 + 2

subject to

− x2 + x3 + 2x4 = 13

x1 − 2x2 + x4 = 2

x ≥ 0

Increase x2 to value t ≥ 0 keeping x4 = 0

x3 = 13 + t ≥ 0

x1 = 2 + 2t ≥ 0

for all t ≥ 0. Since t is unbounded, then this tells us the problem is unbounded.
We must thus find a certificate of unboundedness. Note that a feasible solution is x̄ = (2, 0, 13, 0)ᵀ (the constant in
the above f(t)). Note for for every increase of x2 by 1, x3 increases by 1 and x1 increases by 2 (from the coefficient
of t). Thus d = (2, 1, 1, 0)ᵀ.
We must check

1. cᵀd > 0: cᵀd = 3 > 0.

2. d ≥ 0 which holds.

3. Ad = 0 which also holds.

14 June 9, 2017

14.1 From SEF to Simplex (Given a Feasible Basis)

Given
max (3, 2, 1, 1, 0)x

subject to [
8 3 4 1 1
10 4 4 2 1

]
x =

[
16
20

]
x ≥ 0

Note that we need to convert this to canonical form for a feasible basis B. We are given a hint that B = {1, 5} is
feasible (It is important that the initial basis is feasible). Thus the canonical form for B is

max (0,
1

2
, 1,−1

2
, 0)x+ 6

subject to [
1 1

2 0 1
2 0

0 −1 4 −3 1

]
x =

[
2
0

]
x ≥ 0

20
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The current solution is x = (2, 0, 0, 0, 0)ᵀ. Bland’s rule and solving for x2 = t, we get x2 = 4. x2 enters and x1
leaves the basis leaving us with B = {2, 5} and the corresponding canonical form

max (−1, 0, 1,−1, 0)x+ 8

subject to [
2 1 0 1 0
2 0 4 −2 1

]
x =

[
4
4

]
x ≥ 0

Bland’s rule implies x3 = t, and solving we get x3 = 1. x3 enters and x5 exits the basis where B = {2, 3}.

max (−3

2
, 0, 0,−1

2
,−1

4
)x+ 9

subject to [
2 1 0 1 0
1
2 0 1 −1

2
1
4

]
x =

[
4
1

]
x ≥ 0

Since all coefficients are negative, x = (0, 4, 1, 0, 0)ᵀ is an optimal solution.
What is the certificate of optimality? It is y = A−TB cB from proposition 2.4, where B is the final basis B = {2, 3}.
So note that

AB =

[
3 4
4 4

]
, cB =

[
2
1

]
Thus

y = A−TB cB = −1

4

[
4 −4
−4 3

] [
2
1

]
=

[
1
−5

4

]
We can check that yᵀA ≥ cᵀ and cᵀx̄ = yᵀb where x̄ = (0, 4, 1, 0, 0)ᵀ.

14.2 Two-Phase Simplex

How do we use Simplex iteration if we are not given the feasible basis B to iterate on?
Phase I we create an auxiliary LP by adding two dummy variables x5, x6

max − x5 − x6

subject to [
−3 8 −6 2 1 0
−2 2 −4 1 0 1

]
x =

[
9
5

]
x ≥ 0

Note that the negative signs bound the LP to have a max value 0. So we can either have an optimal value of 0 or
< 0. Note that if b is negative, we need to first convert it to positive by multiplying rows by −1 since x5, x6 ≥ 0
and the basic feasible solution must be positive.
If the optimal value of the auxliary LP is < 0, then the original LP is infeasible.
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Proof. Assume that the original LP has a feasible solution x̃ = (x̃1, x̃2, x̃3, x̃4)ᵀ, then (x̃1, x̃2, x̃3, x̃4, 0, 0)ᵀ is feasible
too for the auxiliary LP which will have an optimal value of 0. So an optimal value of 0 in the auxiliary LP implies
a feasible solution.

For the auxiliary LP, the basis B = {5, 6} is feasible. Thus we convert to the canonical form

max (−5, 10,−1, 3, 0, 0)x− 14

subject to [
−3 8 −6 2 1 0
−2 2 −4 1 0 1

]
x =

[
9
5

]
x ≥ 0

15 June 12, 2017

15.1 Infeasible LP from Auxiliary LP

Example 15.1. From last time, we have the auxiliary LP in canonical form for B = {5, 6}

max (−5, 10,−1, 3, 0, 0)x− 14

subject to [
−3 8 −6 2 1 0
−2 2 −4 1 0 1

]
x =

[
9
5

]
x ≥ 0

Note x2 enters and x5 exits yielding us the new basis B = {2, 6}. Converting to its canonical form we get

max (−5

4
, 0,−5

2
,
1

2
,−5

4
, 0)x− 11

4

subject to [
−3

8 1 −6
8

2
8

1
8 0

−5
4 0 −5

2
1
2 −1

4 1

]
x =

[
9
8
11
4

]
x ≥ 0

Now x4 enters and x2 leaves. So we get B = {4, 6} with the canonical form

max (−1

2
,−2,−1, 0,−3

2
, 0)x− 1

2

subject to [
−3

2 4 −3 1 1
2 0

−1
2 −2 −1 0 −1

2 1

]
x =

[
9
2
1
2

]
x ≥ 0
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Note the optimal value for this auxiliary LP is −1
2 < 0 which by our previous theorem means that the original LP

is infeasible. How do we find a certificate of infeasibility for the original LP?
Note the certifiate of optimality of the auxliary LP is a certificate of infeasibility for the original LP !

16 June 14, 2017

Example 16.1. From last time, we can find the certificate of infeasibility from y = A−TB cB, the certificate of
optimality of the auxiliary LP. That is

AB =

[
2 0
1 1

]
, cB =

[
0
1

]
Therefore

y = A−TB cB =
1

2

[
1 −1
0 2

] [
0
−1

]
=

[
1
2
−1

]
which is the certificate of infeasibility for the original LP.

16.1 Prove Certificate of Optimality of Auxiliary is Certificate of Infeasibility of Original
LP

The original LP is
max cᵀx

subject to

Ax = b

x ≥ 0

And the auxiliary LP is
max − xn+1 − xn+2 − . . .− xm

subject to [
A Im

]
x = b

x ≥ 0

where A ∈ Rm×n, b ∈ Rm, b ≥ 0, c ∈ Rn and

Im =

1 0 0 . . .
0 1 0 . . .
0 0 . . . 1

 ∈ Rm×m

Let x̄ be an optimal solution for the auxiliary LP with negative objective value. Let y be the certificate of optimality
for x̄. Then y is also a certificate of infeasibility for the original LP.

Proof. Note c′ = (0, 0, 0, . . . , 0,−1,−1, . . . ,−1)ᵀ where there are n 0s and m -1s.
Note a certifiate of optimality has yᵀA′ ≥ c′. Note

yᵀ
[
A Im

]
=
[
yᵀA yᵀIm

]
so we know yᵀA ≥ cA = 0 and yᵀb = c′x̄ < 0. Thus this will be the certificate of infeasibility for the original LP.
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16.2 Feasible Two-Phase Simplex

Example 16.2.
max (2,−1, 2)x

subject to [
1 2 −1
1 −1 1

]
x =

[
1
3

]
x ≥ 0

Phase I: Construct the auxiliary LP
max − x4 − x5

subject to [
1 2 −1 1 0
1 −1 1 0 1

]
x =

[
1
3

]
x ≥ 0

where B = {4, 5} is feasible for the auxiliary LP.

max (2, 1, 0, 0, 0)x− 4

subject to [
1 2 −1 1 0
1 −1 1 0 1

]
x =

[
1
3

]
x ≥ 0

Note we when solve this using Simplex, we’ll get B = {1, 5} then B = {1, 3}.
Note the same objective function can be used from before!!!

max − x4 − x5

subject to [
1 1

2 0 1
2

1
2

0 −3
2 1 −1

2
1
2

]
x =

[
2
1

]
x ≥ 0

Phase II: Use the feasible basis B = {1, 3} for the original LP.
The canonical form correspond to B = {1, 3}

max 6 + x2
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subject to [
1 1

2 0
0 −3

2 1

]
x =

[
2
1

]
x ≥ 0

x2 enters and x1 leaves thus we get B = {2, 3}. So we get

max − 2x1 + 10

subject to [
2 1 0
3 0 1

]
x =

[
4
7

]
x ≥ 0

thus the optimal basis for the original LP is x̄ = (0, 4, 7)ᵀ is an optimal solution.

16.3 Summary of Two-Phase Simplex

1. Phase I: Construct and solve for basic feasible solution of auxiliary LP.

(a) If optimal value is 0, continue to phase II.

(b) Otherwise, the original LP is infeasible and the certificate of infeasibility is y = A−TB cB.

2. Phase II: Use the feasible basis from Phase I to solve for the solution of the original LP.

17 June 16, 2017

17.1 Fundamental Theorem of LP (SEF)

If (P) is an SEF has does not have an optimal solution, then (P) is either infeasible or unbounded. If (P) is feasible,
then it has a basic feasible solution. If (P) has an optimal solution, then (P) has a basic feasible solution that is
optimal.

17.2 Fundamental Theorem of LP

Exactly one of the following holds for an LP (P):

1. (P) is infeasible

2. (P) is unbounded

3. (P) has an optimal solution

which follows from the fundamental theorem of LP (SEF).

17.3 Geometry

Linear problems (or systems of equations) can be interpreted geometrically. Note in the follow example
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Example 17.1.
max (c1, c2)x

s.t. 1 1
0 1
1 0

x ≤
3

2
2


The set of points (x1, x2)

ᵀ satisfying the second row with equality is the line in row 2. Set of points that satisfies
the constraint is all points to the left of the line in row 2. A similar argument holds for the rest of the constraints.
These constraints will form a shaded region of feasible solutions.
Recall that the dot product aᵀb = ‖a‖‖b‖cos(θ) where θ is the angle between a and b. Note that aᵀb = 0 when a, b
are orthogonal, > 0 when the angle is less than 90 degrees, and < 0 when the angle is larger than 90 degrees.

18 June 19, 2017

18.1 Hyperplane and Halfspace

Note that for linear constraints, we can either have = (equality) or ≤ (inequality). Let β ∈ R, a a non-zero vector
with n components. Then

Hyperplane H = {x ∈ Rn : aᵀx = β}

Halfspace F = {x ∈ Rn : aᵀx ≤ β}

In the above example, H is the set of points satisfying the constraints with equality and F is the set of points
satisfying the constraints in general.
Note if x̄ ∈ H, then aᵀx̄ = β. Thus aᵀ(x− x̄) = 0. Thus we get the following remarks. Let x̄ ∈ H

• H is the set of points x for which a and x− x̄ are orthogonal

• F is the set of points x for which a and x− x̄ form an angle of at least 90 degrees (since aᵀx̄ = β, subtracting
β from a value < β would result in a negative number, which translates to an angle greater than 90 degrees).

Hyperplanes are all n− 1 dimension. Note that the halfspace is a polyhedron.

18.2 Converting to Halfspaces (a polyhedron)

Note we can convert aᵀx ≥ β constraints to −aᵀx ≤ −β and for equalities aᵀx = β to aᵀx ≤ β and −aᵀx ≤ −β.
Hence any set of linear constraints can be written as aᵀx ≤ b for some A and some b. Thus all linear constraints
can be mapped to a polyhedron.

18.3 Convexity

Note we define the line through x(1) and x(2) to be the set of points

{λx(1) + (1− λ)x(2) : λ ∈ R}

If we would like to bound the line to a line segment with ends x(1) and x(2), then we get

{λx(1) + (1− λ)x(2) : 0 ≤ λ ≤ 1}
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We define a set C of Rn to be convex if for every pair of points x(1) and x(2) in C the line segment with ends
x(1), x(2) is included in C.

Theorem 18.1. All halfspaces are convex.

Proof. Let x1 and x2 be two arbitrary points in the half space H = {x : aᵀx ≤ β}. Let x̄ be an arbitrary point on
the line segment between x1 and x2, such that (from our definition) x̄ = λx1 + (1−λ)x2 where 0 ≤ λ ≤ 1. So we get

aᵀx̄ = aᵀ(λx1 + (1− λ)x2) = λaᵀx1 + (1− λ)aᵀx2 = λβ + (1− λ)β = β

where x̄ ∈ H.

Theorem 18.2. For every j ∈ J let Cj denote a convex set. Then the intersection

C =
⋂
{Cj : j ∈ J}

is convex. Note that J can be infinite.

Proof. Let x1 and x2 be two arbitrary points in C. For every j ∈ J where x1, x2 ∈ Cj since Cj is convex the line
segment between x1 and x2 is in Cj . It follows that the line segment between x1 and x2 is in C. Hence C is
convex.

Polyhedra are convex.
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19.1 Extreme Points

A point is properly contained in a line segment if it is in a line segment but it is distinct from its ends (not one of
the end points).
A point x is an extreme point of C if there are no line segments in C that properly contains x. That is

Definition 19.1. x ∈ C is not an extreme point of C if and only if

x = λx1 + (1− λ)x2

for distinct points x1, x2 ∈ C and λ with 0 < λ < 1 (Note non-equality).

How do we isolate for the boundaries of the half space for a given point x on the boundary? We know for some
rows of A, there we have aᵀx = β (equality). We call these constraints tight (or active) for x. These rows of A can
be represented by A=. That is

Theorem 19.1. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron and let x̄ ∈ P . Then A=x = b= be the set of tight
constraints for x̄. Then x̄ is an extreme point of P if and only if rank(A=) = n (Intuition: in Rn, there must be n
vectors from A that bounds a point by equality, sort of like a “corner”).

Proof. Backwards direction:
Suppose rank(A=) = n. Suppose x̄ is not an extreme point. Thus there exists x1 6= x2 ∈ P such that 0 < λ < 1
and x̄ = λx1 + (1− λ)x2, Thus

b= = A=x̄ = A=(λx1 + (1− λ)x2) = λA=x1 + (1− λ)A=x2 = λb= + (1− λ)b= = b=

27



Spring 2017 CO 250 Course Notes 19 JUNE 21, 2017

Hence we have an equality throughout which means A=x1 = A=x2 = b=. As rank(A=) = n, there is a unique
solution to A=x = b=, this is a contradiction thus x̄ is an extreme point.
Forwards direction (Contrapositive):
Suppose rank(A=) < n, then we will show x̄ is not an extreme point. Note since columns of A= are linearly
dependent, there is a non-zero vector d such that A=d = 0. We pick ε > 0 small and define

x1 = x̄+ εd

x2 = x̄− εd

Note that x̄ = 1
2x1 + 1

2x2 and x1 and x2 are distinct. Thus x̄ is in the line segment between x1 and x2. We need to
show that x1, x2 ∈ P for ε > 0 small enough. Note

A=x1 = A=(x̄+ εd) = A=x̄+ εA=d = b=

Similarly for A=x2 = b=. Let aᵀx ≤ β be any inequalities of Ax ≤ b that is not in A=x ≤ b=. It follows for ε > 0
small enough

aᵀx1 = aᵀ(x̄+ εd) = aᵀx̄+ εaᵀd ≤ β

since aᵀx̄ ≤ β and ε is small. Thus x1 ∈ P and similarly x2 ∈ P .

19.2 Linear Constraints to Polyhedron

We can convert linear constraints (or a polyhedron) to an intersection of halfspaces for which we can solve for the
extreme points.

Example 19.1. Consider the polyhedron P

P =

{
x ∈ R4 :

[
1 3 1 0
2 2 0 1

]
x =

[
2
1

]
, x ≥ 0

}
We claim x̄ = (0, 0, 2, 1)ᵀ the basic feasible solution is an extreme point. Note from before equalities can be converted
to ≤ and x ≥ 0 can be represented as −xi ≤ 0. Thus

1 3 1 0
−1 −3 −1 0
2 2 0 1
−2 −2 0 −1
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


x ≤



2
−2
1
−1
0
0
0
0


}

Thus the set of tight constraints A=x ≤ b= for x̄ is

A= =



1 3 1 0
−1 −3 −1 0
2 2 0 1
−2 −2 0 −1
−1 0 0 0
0 −1 0 0
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(This is derived by taking the two constraints, and ensuring that x1, x2 ≥ 0). Obviously rank(A=) = 4 = n. By the
theorem that rank(A=) = n→ x̄ is an extreme point, we have that the basic feasible solution is an extreme point.

Theorem 19.2. Let A be a matrix where the rows are linear independent and let b be a vector. Let P = {x :
Ax = b, x ≥ 0} and let x̄ ∈ P . Then x̄ is an extreme point if and only if x̄ is a basic feasible solution to Ax = b.

Proof. TODO (was in lectures, ask Boshen?)
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20.1 Non-Polyhedron Example

Example 20.1. If Q = {x ∈ R2, sin(α)x1 + cos(α)x2 ≤ 1} for all α ∈ R}. x̄ = (1, 0)ᵀ is an extreme point of Q.
Note however that Q is not a polyhedron so all our theorems before breaks.

20.2 Duality

Example 20.2.
max (1, 2, 0, 0)x

subject to [
2 1 1 0
1 1 0 1

]
x =

[
8
5

]
x ≥ 0

Solving this LP with simplex method, we will get an optimal solution x̄ = (0, 5, 3, 0)ᵀ and a certificate of optimatlity
ȳ = (0, 2)ᵀ.
We can check that

1. ȳᵀA ≥ cᵀ → (2, 2, 0, 2) ≥ (1, 2, 0, 0)

2. ȳᵀb = cᵀx̄→ 10 = 10

Another vector that satisfies (1) is ¯̄y = (12 , 2)ᵀ satisfies (1) then for every x feasible for the original LP we have

cᵀx = (cᵀ − ¯̄yᵀA)x+ ¯̄yᵀAx

where cᵀ − ¯̄yᵀA) ≤ 0 (from (1)) and x ≥ 0. Thus cᵀx ≤ ¯̄yᵀx = ¯̄yᵀb.

So if there’s a certificate of optimality ȳ in the original LP (primal) then yᵀA ≥ cᵀ implies that the upper bound is
yᵀb. Let us construct a dual LP where we minimize that upper bound. For a given Primal LP (P) with respect
to x

max cᵀx

subject to

Ax = b

x ≥ 0

then the Dual LP (D) with respect to y is
min bᵀy
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subject to
Aᵀy ≥ c

20.3 Weak Duality in SEF

Theorem 20.1. Consider the primal-dual pair (P), (D). Let x̄ be a feasible solution for (P) and let ȳ be a feasible
solution for (D).
Then cᵀx̄ ≤ bᵀȳ.

Proof. Note from our (P) we have
cᵀx = (cᵀ − ȳᵀA)x̄+ ȳᵀAx̄

where cᵀ − ȳᵀA ≤ 0 from the constraints of D, x̄ ≥ 0, so

cᵀx ≤ ȳᵀAx̄ = ȳᵀb = bᵀȳ

20.4 Primal vs Duality

(D) is unbounded (the upper bound bᵀȳ is unbounded downwards) if and only if (P) must be infeasible since it
would be pushed down indefinitely.
(P) is unbounded if and only if (D) is infeasible (by similar logic).
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21.1 Optimality of Primal and Dual

From last time using weak duality for SEF, we have cᵀx̄ ≤ bᵀȳ for some feasible solutions x̄ for (P) and ȳ for (D).

Theorem 21.1. If cᵀx̄ = bᵀȳ, then x̄ is an optimal solution for (P) and similarly ȳ is optimal for (D).

Proof. Indeed for every x̃ feasible for (P), we have

cᵀx̃ ≤ bᵀȳ = cᵀx̄

by weak duality, thus x̄ is optimal.
Similarly for every ỹ feasible for (D), we have

bᵀỹ ≥ cᵀx̄ = bᵀȳ

again by weak duality, so ȳ is optimal.

21.2 Infeasibility of Primal and Dual

It might happen that both (P) and (D) are infeasible, for example, let (P) be

max (0, 1)x
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subject to

(1, 0)x = −1

x ≥ 0

and let (D) be
min − y

subject to [
1
0

]
y ≥

[
0
1

]
21.3 Strong Duality in SEF

Let the primal LP (P) be
max cᵀx

subject to

Ax = b

x ≥ 0

then the dual LP (D) is
min bᵀy

subject to
Aᵀy ≥ c

Theorem 21.2. Let (P) and (D) be the LPs above. If (P) has an optimal solution then (D) has an optimal solution.
Moreover, the optimal value of (P) equals the optimal value of (D).

Proof. (We need the correctness of Simplex Method: the simplex with Bland’s rule terminates) So we assume that
the Simplex Method applied to (P) terminates with an optimal solution x̄. This means that x̄ is a basic feasible
solution for an optimal basis B. That is, the objective function corresponding to the canonical from for B has only
non-positive coefficients (Simplex method)

ȳᵀb+ (cᵀ − ȳᵀA)x

where ȳ = A−ᵀB cB. Since B is an optimal basis cᵀ − ȳᵀA ≤ 0ᵀ ⇐⇒ Aᵀȳ ≥ c. So ȳ is feasible for (D).
Now it is enough to show that cᵀx̄ = bᵀȳ because of weak duality (cᵀx̄ ≤ bᵀȳ). That is

cᵀx̄ = (cᵀ − ȳᵀA+ ȳᵀA)x̄

= (cᵀ − ȳᵀA)x̄+ ȳᵀb

where ȳᵀAx̄ = yᵀb because Ax̄ = b.
Note that x̄ is a basic feasible solution thus x̄N = 0. Furthermore, from (B), cᵀ − ȳᵀA is the objective function in
basis B, thus it has (cᵀ − ȳᵀA)B = 0.
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22.1 Primal and Dual Solution Types Matrix

Our final chart of possible solution types between the primal and dual LP is

Dual
Primal Infeasible Unbounded Optimal

Infeasible Yes Yes No
Unbounded Yes No No
Optimal No No Yes

22.2 Deriving Dual from Primal (non-SEF)

Example 22.1. Given the primal
min (1, 3, 5)x

subject to

(4, 0, 1)x ≥ 1

(7,−2, 3)x ≤ 3

(0, 1, 8)x = 4

(2, 6, 1)x ≤ 10

x1 free
x2 ≥ 0

x3 ≤ 0

We want a y such that
yᵀAx ≥ yᵀb

so we see that y1 ≥ 0, y2, y4 ≥ 0, and y3 free (based on the signs in the primal).
So, when can we say that yᵀAx ≥ yᵀb implies cᵀx ≥ yᵀb for every feasible solution x?
Let’s look at an example (1, 1, 6)x ≥ 7 (our yᵀAx ≥ yᵀb for x such that x1 free, x2 ≥ 0, and x3 ≤ 0. Does this
imply (1, 3, 5)x ≥ 7 (cᵀx ≥ yᵀb?
Let us subtract the two LHS

(1, 1, 6)x− (1, 3, 5)x = (0,−2, 1)x = 0x1 + (−2)x2 + x3

Note the domain of our xi implies that the above expression is ≤ 0.
So note for each variable xi

free we need the corresponding yᵀiAi to be equivalent to cᵀi (in the above, 1 = 1)

≥ 0 yᵀiAi ≤ c
ᵀ
i (in the above, 1 ≤ 3)

≤ 0 yᵀiAi ≥ c
ᵀ
i (in the above, 6 ≥ 5)

So our dual LP and its objective function bᵀy

max (1, 3, 4, 10)y
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subject to (Aᵀy ≥ c)

(4, 7, 0, 2)y = 1

(0,−2, 1, 6)y ≤ 3

(1, 3, 8, 1)y ≥ 5

y1 ≥ 0

y2, y4 ≤ 0

y3 free

Note the signage comes from the domain of x1, x2, x3 correspondingly (if xi is free, then use =; xi ≥ 0, then ≤;
xi ≤ 0, then ≥).
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23.1 Another Example of Dual from Primal

Given primal (P)
min (7, 13,−3,−5)x

subject to

(2, 1, 2, 0)x ≤ 4

(3, 5,−3,−2)x ≥ −5

(1, 3, 2,−1)x ≥ −4

(−1, 2,−4, 7)x ≤ 18

x1 ≥ 0

x2 ≤ 0

x3 ≥ 0

x4 ≥ 0

where x̄ = (2,−1, 0, 3)ᵀ is a feasible solution.
Thus our dual would be (P)

max (4,−5,−4, 18)y

subject to

(2, 3, 1,−1)y ≤ 7

(1, 5, 3, 2)y ≥ 13

(2,−3, 2,−4)y ≤ −3

(0,−2,−1, 7)y ≤ −5

y1 ≤ 0

y2 ≥ 0

y3 ≥ 0

y4 ≤ 0

where ȳ = (0, 2, 1, 0)ᵀ is a feasible solution.

33



Spring 2017 CO 250 Course Notes 23 JUNE 30, 2017

We can show that x̄ and ȳ are optimal for (P) and (D) respectively since x̄ is feasible for (P), ȳ is feasible for (D)
and

(7, 13,−3,−5)x̄ = 14− 13− 15 = −14

(4,−5,−4, 18)ȳ = −10− 4 = −14

by Weak Duality, since −14 = −14 then they are optimal.
The constraints in (P) that are tight for x̄ are the 2nd and 3rd row. This follows from the fact that the non-zero
coordinates of ȳ are the 2nd and 3rd.
Similarly, the constraints in (D) held tight for ȳ is the 1st, 2nd and 4th.

23.2 Dual of Dual is Primal

Note that (P) from the previous example is also the dual of (D).

23.3 Complementary Slackness (Special Case)

Theorem 23.1. Given primal (P)
max cᵀx

subject to

Ax ≤ b
x ≥ 0

(note the ≤ for the constraints) and the dual (D)

min bᵀy

subject to
Aᵀy ≥ c

Let x̄ be feasible for (P) and ȳ be feasible for (D). Then x̄ and ȳ are optimal for (P) and (D), respectively if and
only if (A ∈ Rm×n, b ∈ Rm)

(i) ∀i, 1 ≤ i ≤ m, either the i-th constraint in Ax ≤ b is tight for x̄ or ȳi = 0.

(ii) ∀j, 1 ≤ j ≤ n, either the j-th constraint in Aᵀy ≥ c is tight for ȳ or x̄i = 0.

Proof. Note that (remember x̄, ȳ ≥ 0)
cᵀx̄ ≤ AᵀAx̄ ≤ ȳᵀb

By Strong Duality, we need cᵀx̄ = bᵀȳ = yᵀb, that is

cᵀx̄ = ȳᵀAx̄

and
ȳᵀAx̄ = ȳᵀb

Since x̄ ≥ 0 and Aᵀȳ ≥ c, we have
cᵀx̄ = ȳᵀAx̄

only if condition (2) holds. Since ȳ ≥ 0 and Ax̄ ≤ b, we have

ȳᵀAx̄ = ȳᵀb
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only if condition (1) holds.

24 July 5, 2017

24.1 Cone

Definition 24.1. The cone generated by a(1), . . . , a(m) ∈ Rn is the set

cone{a(1), . . . , a(m)} = {
m∑
i=1

λia
(i) : λi ≥ 0∀i}

That is the cone is the linear combinations of the vectors a(i).
Note: We define the cone generated by the empty set to be the set containing only the zero vector i.e. the set {0}.

Graphically, the cone looks like a literal cone bounded by the given vectors a(i).
Note (5, 6) ∈ cone{(5, 2), (0, 1)} where λ1 = 1, λ2 = 4.
At the same time, (−1, 3) ∈ cone{(5, 2), (0, 1)}. To prove this, show that there are no coefficients λ1, λ2 ≥ 0 such
that (−1, 3) = λ1(5, 2) + λ2(0, 1).

24.2 Geometric Characterization of Optimality

Consider the LP (P)
max c1x1 + c2x2

subject to 
5 2
−1 1
0 1
−1 0
1 −4

x ≤


30
3
5
−1
−3


x free

Note c1 and c2 are constants.
Consider the feasible solution x̄ = (4, 5)ᵀ. For what coefficients (c1, c2) ∈ R2 is x̄ an optimal solution of (P)?
The dual of (P) is

min (30, 3, 5,−1,−3)y

subject to [
5 −1 0 −1 1
2 1 1 0 −4

]
y =

[
c1
c2

]
y ≥ 0

By strong duality and complementary slackness, we have x̄ is optimal if and only if there exists a ȳ such our
constraints are satisfied and ȳi = 0 whenever the i-th constraint is not tight at x̄.
For x̄ = (4, 5)ᵀ, the 2nd, 4th, and 5th constraint are not tight, which implies ȳ2, ȳ4, ȳ5 = 0.
That is x̄ is optimal if and only if [

5
2

]
ȳ1 +

[
0
1

]
ȳ3 =

[
c1
c2

]
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for some ȳ1, ȳ3 ≥ 0.
So for c = (10, 7)ᵀ, x̄ is an optimal solution since[

5
2

]
2 +

[
0
1

]
3 =

[
10
7

]
And we can do this for arbitrarily many cs.
We can generalize this for an arbitrary LP using cones

Theorem 24.1. Let x̄ be a feasible solution to

max{cᵀx|Ax ≤ b}

x̄ is an optimal solution if and only if c lies in the cone of tight constraints for x̄ (i.e. the cone generated by rows of
A corresponding to tight constraints).

For our example, the theorem gives us that x̄ is optimal if and only if[
c1
c2

]
∈ cone{

[
5
2

]
,

[
0
1

]
}

Thus c = (−1, 3)ᵀ cannot be a c such that x̄ is optimal.

25 July 7, 2017

25.1 Minimum Cost Perfect Matching

Definition 25.1. For a given graph G(V,E), we have costs ce for all edges e ∈ E.
Recall a set of edges is matching if a given vertex is incident to at most one edge in the set.
A perfect matching M is a subset of edges that for every vertex v exactly one edge of M is incident to v.
We want to find the perfect matching that has the minimum cost, i.e. min

∑
e ∈Mce, or the minimum cost

perfect matching.

25.2 Showing Perfect Matching is Minimum

Example 25.1. Note for a given graph, say 3 edges {ag, hb, cd} in a minimum cost perfect matching have costs
3 + 2 + 1 = 6. How do we show that it is minimal without going through all combinations?
Note in our example (see page 117 in textbook for drawing), if we reduce the cost of edges incident to vertex b by 3,
our minimum cost perfect matching will still be the minimum cost perfect matching in the graph with the reduced
cost.
Note we pick values to subtract such that all edges have non-negative cost and our minimum cost perfect matching
has a total cost of 0. Since all edges are non-negative, we thus know that our perfect matching is indeed minimal.

25.3 Reduced Cost and Potential

Definition 25.2. Let us assign every vertex u a number yu that we call the potential of the vertex u. The
reduced cost edge uv is

¯cuv = cuv − yu − yv
Note since a perfect matching only includes every vertex once, the original cost is exactly

∑
u∈V yu more than the

reduced cost of the perfect matching. Thus a perfect matching with reduced cost c̄ must have an original cost c (a
priori the above equation).
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If reduced cost (edge) is nonnegative, then every perfect matching will have nonnegative costs. Thus a perfect
matching with c̄ = 0 it will be minimum with respect to the reduced costs, which is also with respect to the original
costs.

Definition 25.3. An equality edge (or tight edge) is a edge with a reduced cost of 0.

25.4 Feasibility for Minimum Cost Perfect Matching

Thus for our LP a set of potentials y is feasible if for every edge e ∈ E:

¯cuv = cuv − yu − yv ≥ 0

25.5 Optimality for Perfect Matchings

Proposition 25.1. If the potentials y are feasible and all edges of M are equality edges with respect to y, then M
is a minimum cost perfect matching.

The integer programming formulation (IP) is

min
∑
e∈E

cexe

subject to ∑
e∈δ(v)

xe = 1,∀ ∈ V

xe ≥ 0, ∀e ∈ E
xe integer,∀e ∈ E

Note that the linear programming relaxation of the (IP) is (P). (P)’s constraints are a subset of (LP)’s
constraints thus the optimal value of (IP) would be greater than or equal to that of (P) (that is (P) is a lower
bound for (IP)). This makes sense since (IP) can only get “worse” than (P).
We can thus use duality theory and say that the optimal value of (P) is greater than or equal to the value of any
feasible solution ȳ to (D).
So any feasible solution of (D) is a lower bound to cost of any perfect matching.

25.6 General Primal-Dual for Minimum Cost Perfect Matching

In general the LP relaxation for a minimum cost perfect matching (P) is

min {cᵀx : Ax = 1;x ≥ 0}

where c is a vector of edge costs, and matrix A is defined as:

(i) rows of A are indexed by vertices v ∈ V

(ii) columns indexed by every edge e ∈ E

(iii) every row U and every column e

A[v, e] =

{
1 if v is an endpoint of e
0 otherwise
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That is in row v of A, entries with a 1 corresponds to edges incident to v; column e of A, entries with a 1
corresponds to an endpoint in e.

The dual (D) is thus
max {1ᵀy : Aᵀ ≤ c : y free}

Note this maps to
max

∑
v∈V

yv

subject to
yu + yv ≤ cuv,∀uv ∈ E

which intuitively makes sense (maximize the potential drops but ensure ¯cuv ≥ 0.
Note that if every uv ∈M is an equality edge, then ȳu + ȳv = cuv. Thus our objective function in the dual (D)

1ᵀȳ =
∑
v∈V

ȳv =
∑
uv∈M

(ȳu + ȳv) =
∑
uv

cuv = c(M)

Since the value of ȳ is a lower bound, it follows that x̄ M is a minimum cost perfect matching.

25.7 Bipartite graphs

Definition 25.4. A graph G = (V,E) is bipartite if we can color its vertices RED(U) and BLUE(W ) so that every
edge has one red endpoint and one blue endpoint.
That is every edge has one vertex in U and one vertex in W .

25.8 Perfect Matching and Bipartite Graphs

Note that in order for a bipartite graph to have a perfect matching, |U | = |W |. This however does not necessarily
gaurantee a perfect matching exists.
Note the case where we have four vertices {a, b, c, d} in partition U and four vertices in {e, f, g, h}.
Note that S = {a, b, c} is only connected to vertices NG(S) = {e, f}. We call NG(S) the set of neighbours of S
the set of all vertices outside of S that are joined by an edge to some vertex of S. That is

NG(S) = {r ∈ V \ S : sr ∈ E and s ∈ S}

Suppose there is a set S ⊆ U where |S| = |NG(S)| (as is the case above). Let there be an arbitrary matching M
of G. All edges of M that have an endpoint of S have an endpoint in NG(S). However, at most |NG(S)| of the
vertices of S can be an endpoint of some edge of M since M is a matching.
Since |S| > |NG(S)|, M cannot be a perfect matching and S is a deficient set.

25.9 Hall’s Theorem

Theorem 25.1. Let G = (V,E) be a bipartite graph with bipartition U,W where |U | = |W |.
There exists a perfect matching M in G if and only if G has no deficient set S ⊆ U .
There also exists an efficient (polynomial time)3 that will either find a perfect matching M or a deficient set S ⊆ U .
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26 July 10, 2017

26.1 Hungarian Algorithm for Minimum Cost Perfect Matching for Bipartite Graphs

We start with yu = 1
2min{ce : c ∈ E} for all u ∈ V . Note that since every edge is incident to only two edges, all

edges will have non-negative costs.
For every iteration:
We then take all equality/tight edges (all edges where the reduced cost ¯cuv = cuv − ȳu − ȳv = 0) with all vertices
and call this graph H.
If there is a deficient set S ⊆ U(H) where U is one partition (|S| > NH(S)), let us consider edges in G that are
incident to any vertex in S and another vertex NOT in NH(S). We take the minimum reduced cost ¯cmin of these
edges.
We then subtract ¯cmin from ys for s ∈ S (increase potential decrease of vertices in S) and add ¯cmin to vertices in
NH(S). Thus vertices in S are now reducing the costs of their edges even more (but are non-negative since we took
the minimum of their incident edges). We offset this decrease for edges between S and NH(S) with NH(S).
Eventually all edges in G with an endpoint in S have an endpoint in NH(S) (all neighbours of S are in NH(S)),
then if S is a deficient set we stop (no perfect matching).
If there is a perfect matching at this stage (equality edges that form a matching that includes all vertices) then the
corresponding edges compose the minimum cost perfect matching in the original graph.

27 July 12, 2017

27.1 Integer Programming as LP Relaxation (with Geometry)

Example 27.1. Given a (IP)
max (1, 1)x

subject to 
2 4
2 0
1 −4
−2 1
−3 −2

x ≤


11
5

4.5
1.5
0.5


x integer

Let us consider the polyhedron P defined by the linear constraints. If we run the Simplex Method for the LP
relaxation of (IP), we obtain the optimal solution (52 ,

3
2)ᵀ (an extreme point of P ). But (52 ,

3
2)ᵀ is a fractional vector.

In fact, all extreme points of P are fractional (problematic).
Let us consider S = P ∩ Z2 where Z2 are integral coordinates. Thus S are the integral points inside the polyhedron
region P . That is

S = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (1, 2)}

In general, S can be very large (order of 2n−1).

If Q is a polyhedron, then we can write an LP to maximize (1, 1)x over Q.
The idea is to take our integral points S and draw a polyhedron around the points such that the extreme points of
the new polyhedron are integral points in S.
That is, suppose we can find Q convex set such that S ⊆ Q and all extreme points of Q are in S.

39



Spring 2017 CO 250 Course Notes 27 JULY 12, 2017

In our example, we have Q = {x ∈ R2} subject to

x1 ≥ 0

x2 ≥ 0

x1 + x2 ≤ 3

− x1 + x2 ≤ 1

x1 ≤ 2

If we then use the Simplex method to maximize (1, 1)x over Q, we will obtain the solution (2, 1)ᵀ.

27.2 Convex Hull

Definition 27.1. In this example we chose Q to be conv(S) where conv(S) is the convex hull: the smallest
convex set containing S.

How do we find such a convex hull?

Theorem 27.1. Consider P = {x ∈ Rn : Ax ≤ b} where A, b have rational entries. Let S be the set P ∩ Zn. Then
the convex hull conv(S) is a polyhedron and can be descrbed as

{x ∈ Rn : Ãx ≤ b̃}

where Ã, b̃ have rational entries.

27.3 IP to LP with Convex Hull

That is for a given (IP)
max cᵀx

subject to

Ax ≤ b
x ∈ Zn

We can reformulate it using the convex hull to an (LP)

max cᵀx

subject to

Ãx ≤ b̃

Some properties between (IP) and (LP):

(i) (IP) infeasible ⇐⇒ (LP) infeasible

(ii) (IP) unbounded ⇐⇒ (LP) unbounded

(iii) every optimal solution of (IP) is optimal solution of (LP)

(iv) every optimal solution of (LP) which is integral is an optimal solution of (IP) (not all optimal solutions of
(LP) are optimal for (IP), e.g. a rational solution on the same optimal boundary line)
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28 July 14, 2017

28.1 Cutting Planes

Example 28.1. Given the IP
max (2, 5)x

subject to [
1 4
1 1

]
x ≤

[
8
4

]
x ≥ 0

x integer

The optimal for the LP relaxation is x̄ = (83 ,
4
3)ᵀ.

Suppose we find a linear constraint a1x1 + a2x2 ≤ β such that

(i) a1x1 + a2x2 ≤ β is valid for every feasible solution of the IP

(ii) a1x̄1 + a2x̄2 > β, so x̄ violates our linear constraint

Definition 28.1. That is, we find a halfspace constraint that makes our fractional optimal solution infeasible. This
linear constraint is called a cutting plane for x̄.

Example 28.2. Let us verify that the linear constraint

(1, 3)x ≤ 6

holds for all feasible solutions of IP. We add 2 of the first row and 1 of the second row to get

(3, 9)x ≤ 20

holds for all feasible solutions. We divide this by 3 to see that

(1, 3)x ≤ 20

3

Note the LHS is an integer number for every feasible solution of the IP, thus

(1, 3)x ≤ b20

3
c = 6

as desired.

28.2 Obtaining the Cutting Plane

Example 28.3. Note that the Simplex Method for the LP relaxation of the IP above finishes with basis {1, 2} and
canonical form

max 12 + (0, 0,−1,−1)x

subject to [
1 0 −1

3
4
3

0 1 1
3 −1

3

]
x =

[
8
3
4
3

]
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From our first row (we could use the second row), note that 1x1 + (−1
3)x3 + 4

3x4 = 8
3 . Since x3 ≥ 0, then for every

feasible solution
−1

3
x3 ≥ b−

1

3
x3c = −1x3

Similarly for x4 ≥ 0
4

3
x4 ≥ b

4

3
x4c = x4

Therefore we have
1x1 − 1x3 + 1x4 ≤

8

3

Note the LHS is an integer number for every feasible solution for the IP. Thus

1x1 − 1x3 + 1x4 ≤ b
8

3
c = 2

Recall that x3 and x4 are slack variables such that

x3 = 8− x1 − 4x2

x4 = 4− x1 − x2

Substituting this into the equation we derived, we get our linear constraint

x1 + 3x2 ≤ 6

which holds for all feasible solutions of IP.

29 July 17, 2017

29.1 Solving LP with Added Cutting Plane

Example 29.1. From last time, we obtained an additional cutting plane constraint (1, 3)x ≤ 6. When we add this
to our LP relaxation of our IP

max (2, 5)x

subject to 1 4
1 1
1 3

x ≤
8

4
6


x ≥ 0

x integer

Solving this LP relaxation, we obtain an optimal solution that is integral (3, 1)ᵀ, thus we are done.

29.2 Formalized Cutting Plane Algorithm

Given an IP problem
max cᵀx
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subject to

Ax ≤ b
x ≥ 0

x integer

1. Consider LP relaxation of the current IP problem (IP problem with no integer constraint)

2. Solve LP relaxation of current LP problem. Assuming we obtain an optimal solution x̄

3. If x̄ is integer, then x̄ is optimal solution for original IP problem

4. If x̄ is not integer, the last canonical form has a row with fractional RHS. Use this row to get a cutting plane
(*) for x̄.

5. Add the linear constraint (*) to the current IP problem and go to step (2).

Remarks:

1. If LP relaxation is infeasible, then IP is infeasible

2. If LP relaxation is unbounded (subject to A, b having rational entries), then IP is either unbounded or
infeasible

Note if A, b do not have rational entries, then it could be anything

Example 29.2.
max (0, 1)x

subject to

(1,−
√

2)x = 0

x ≥ 0, integer

Note LP is unbounded with x̄ = (0, 0) and d = (
√

2, 1). However, IP has one feasible solution (0, 0).

29.3 Non-linear Programming - Convex Functions

A function f : Rn → R is convex if for every pair of points x(1), x(2) ∈ Rn and λ1, λ2 ≥ 0, λ1 + λ2 = 1 we have

f(λ1x
(1) + λ2x

(2)) ≤ λ1f(x(1)) + λ2f(x(2))

That is if we draw a line between two points on the function (this is our RHS, linear combination of the two function
values), then all points of the function that lie in between the two points (our LHS) is below this line).

30 July 19, 2017

30.1 Proving a Function is Convex

Example 30.1. f(x) = x2 is convex. Proof in textbook.

Example 30.2. Is f(x) = |x| convex? Yes.
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Proof. Let x(1), x(2) ∈ R, λ1, λ2 ≥ 0, λ1 + λ2 = 1 then

f(λ1x
(1) + λ2x

(2)) ≤ f(λ1x
(1)) + f(λ2x

(2))

⇐⇒ |λ1x(1) + λ2x
(2)| ≤ |λ1x(1)|+ |λ2x(2)|

⇐⇒ |λ1x(1) + λ2x
(2)| ≤ λ1|x(1)|+ λ2|x(2)|

by the triangle inequality, where for every t1, t2 ∈ R, |t1 + t2| ≤ |t1|+ |t2|.

Example 30.3. Is f(x) = x3 convex? No.

Proof. Let x(1) = −2, x(2) = 1, and λ1 = λ2 = 1
2 . Note that

f(λ1x
(1) + λ2x

(2)) > λ1f(x(1)) + λ2f(x(2))

⇐⇒ f(0.5(−2) + 0.5(1)) > 0.5(−2)3 + 0.5(1)3

⇐⇒ (−0.5)3 > −4 + 0.5

⇐⇒ − 1

8
> −7

2

30.2 Level Set

Definition 30.1. Let g : Rn → R, the set
{x ∈ Rn : g(x) ≤ β}

is called a level set of the function g.

Example 30.4. Let g(x) = x2, where g : R→ R.
Then the level set would be

{x ∈ R : x2 ≤ β} =

{
[−
√
β,
√
β] β ≥ 0

∅ β < 0

Remark 30.1. If g is a convex function then the level set

S = {x ∈ Rn : g(x) ≤ β}

is a convex set.

Proof. Let x(1), x(2) ∈ S, λ1, λ2 ≥ 0, λ1 + λ2 = 1.
We have to show that λ1x(1) + λ2x

(2) ∈ S.
In other words, we have to show

g(λ1x
(1) + λ2x

(2)) ≤ β

Note that g(x(1)), g(x(2)) ≤ β, note that

g(λ1x
(1) + λ2x

(2)) ≤ λ1g(x(1)) + λ2g(x(2))

≤ λ1β + λ2β

= β
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Remark 30.2. The inverse of the previous remark is not true.
That is if every level set is a convex set (or a given level set is a convex set), this DOES NOT imply that g is a
convex function.

Proof. For example, let g(x) = x3 is not a convex function. Note that its level set

{x ∈ R : x3 ≤ β} = (−∞, 3
√
β]

is always convex.

31 July 21, 2017

31.1 Epigraph

Definition 31.1. Let f : Rn → R be a function. Then the set

epi(f) = {
[
α
x

]
∈ R× Rn : f(x) ≤ α}

is called an epigraph of f . That is the epigraph is the shaded region above the the graph f(x).

Proposition 31.1. (Proposition 7.2 in textbook).
f is convex if and only if epi(f) is convex.

31.2 Non-Linear Programming Revisited

An NLP is an optimization problem of the form

min f(x)

subject to

g1(x) ≤ 0

...
gm(x) ≤ 0

where f : Rn → R, gi : Rn → R.

Remark 31.1. NLP is a very general class of problems. That is, NLP is more general than IP problem:

x ∈ Z ⇐⇒ sin(πx) = 0

31.3 Convex NLPs

If all functions f : Rn → R, g1, . . . , gn : Rn → R are convex, then the NLP is also convex.

Remark 31.2. The feasible region of a convex NLP problem is a convex set.

Proof. The feasible region is
⋂m
i=1Ci where

Ci = {x ∈ Rn : gi(x) ≤ 0}
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Note that Ci is a level set of the convex function gi, hence Ci is also convex for all i ∈ {1, . . . ,m}.
The intersection of convex sets is convex, so the feasible region is convex.

31.4 Convex NLP Optimality Example

Example 31.1. Given an NLP
min − x1 − x2

subject to

x22 − x1 ≤ 0

x21 − x2 ≤ 0

− x1 +
1

2
≤ 0

Note that f(x) and gi(x) are all convex (sum of convex functions are convex, affine functions are convex), thus the
NLP is convex.
We can draw our NLP by drawing out each constraint.
C1 is a parabola with boundary x22 = x1 or x22 = ±√x1 (sideways parabola that is the combination of ±√x1
function). The epigraph is everything in between (convex) since x2 ≤

√
x1 and x2 ≥ −

√
x1.

C2 is a parabola with boundary x2 = x21 (your canonical upright parabola). Epigraph is everything above the
parabola (x2 ≥ x21).
C3 is a vertical line at x1 = 1

2 and epigraph of everything to the right.
Note that our objective function is some x2 = −x1−V where V is our optimal solution. For example, x2 = −x1 + 2
is a line through the top-right extreme point of our feasible region. V = −2 and we can intuitively see that this
is the optimal solution (since as V decreases, the line moves farther away from the feasible region towards the
top-right).
Note that x̄ = (1, 1)ᵀ is feasible for the NLP with value −2.
To prove that x̄ is an optimal solution, we will consider an LP relaxation of the NLP (such that every feasible
solution to the NLP is also feasible for the constructed LP; the LP is an upper bound).
Let hi(x) denote the corresponding LP constraint for gi(x). Note we want:

(i) hi : R2 → R is an affine function

(ii) {x ∈ R2 : gi(x) ≤ 0} ⊆ {x ∈ R2 : hi(x) ≤ 0 (that is hi(x) is a larger/upper bound for gi(x))

(iii) hi(x̄) = gi(x̄) = 0 (It is tangent to gi(x) and intersects x̄)

In our example, we only need to generate h1(x) and h2(x) (we can drop g3(x)).
Thus our LP relaxation would be something like

min − x1 − x2

subject to

h1(x) ≤ 0

h2(x) ≤ 0

where x̄ is optimal for this LP.
How do we find our h1(x) and h2(x)?
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We can compute the gradient of g1 and g2 at point x. That is

∇gi(x) = [
∂gi(x)

∂x1
,
∂gi(x)

∂x2
]ᵀ

Then we can define
hi(x) = gi(x̄) +∇gi(x̄)ᵀ(x− x̄)

In our example, we have

∇g1(x) = [−1, 2x2]
ᵀ

∇g1(x̄) = [−1, 2]ᵀ

g1(x̄) = 0

Thus

h1(x) = (−1, 2)

[
x1 − 1
x2 − 1

]
= −x1 + 1 + 2x2 − 2

= −1− x1 + 2x2

Similarly h2(x) = −x1 + 2x2 − 1.

Remark 31.3. For each convex differentiable g : Rn → R the function hi(x) satisfying (i), (ii), (iii) can be computed
this way.

32 July 24, 2017

Example 32.1. From last time, we derived the LP relaxation:

min − x1 − x2

subject to

−x1 + 2x2 ≤ 1

2x1 − x2 ≤ 1

How do we prove that x̄ = (1, 1)ᵀ is optimal for the LP relaxation?
We find an equivalent maximum problem (multiply objective function by −1)

max x1 + x2

subject to

−x1 + 2x2 ≤ 1

2x1 − x2 ≤ 1

Note row 1 and 2 of the constraints is still tight for x̄.
Theorem 4.7 tells us that for a given LP max{cᵀx : Ax ≤ b}, x̄ is optimal for the LP if and only if c is in the cone
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of the tight constraints or [
1
1

]
∈ cone{

[
−1
2

]
,

[
2
−1

]
} = {λ1

[
−1
2

]
+ λ2

[
2
−1

]
, λ1, λ2 ≥ 0}

which it does for λ1 = λ2 = 1.
So x̄ is an optimal solution for the LP relaxation.

32.1 Another Convex NLP Optimality Example

Example 32.2.
min (−2, 3)x

subject to

x22 − x1 ≤ 0

x21 − x2 ≤ 0

−x1 +
1

2
≤ 0

Show that x̄ = (12 ,
1
4)ᵀ is optimal. Note that tight(x̄) = {2, 3} (rows 2 and 3 are tight).

∇g2(x) = (2x1,−1)ᵀ

∇g2(x̄) = (1,−1)ᵀ

∇g3(x) = (−1, 0)ᵀ

∇g3(x̄) = (−1, 0)ᵀ

Thus we have
min (−2, 3)x

subject to

(1,−1)x ≤ 1

4

(−1, 0)x ≤ −1

2

We take max{(2,−3)x,Ax ≤ b} and apply Theorem 4.7[
2
−3

]
∈ cone{

[
1
−1

]
,

[
−1
0

]
}

where λ1 = 3, λ2 = 1. Note if it was (−2, 3) instead, note the cone alway has x2 ≤ 0 but 3 > 0, thus (−2, 3) would
not be in the cone.
We can also solve using the the inverted matrix and check if the solution has non-negative entries.

32.2 Optimality for Convex NLP

Proposition 32.1. Given a convex NLP
min cᵀx
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subject to

g1(x) ≤ 0

...
gm(x) ≤ 0

Let x̄ be a feasible solution and assume that g1, . . . , gm differentiable. Then x̄ is an optimal solution if

−c ∈ cone{∇gi(x̄) : i ∈ tight(x̄)}

(Note the converse is not necessarily true, see below).

32.3 Converse of Optimality Proposition

Is the converse true? That is, if x̄ is optimal, then does −c belong in the cone of the tight constraints? Not
necessarily.

Example 32.3.
min cᵀx

subject to
x21 + x22 + . . .+ x2n ≤ 0

Clearly x̄ is a unique feasible solution and thus optimal for every c. The gradients are

∇g1(x) = (2x1, 2x2, . . . , 2xn)ᵀ

∇g1(x̄) = 0

But c ∈ cone{0} if and only if c = 0, thus c is not necessarily in the cone.

32.4 Slater Point

Consider the convex NLP
min cᵀx

subject to

g1(x) ≤ 0

...
gm(x) ≤ 0

Definition 32.1. Then x̃ is called a Slater point if g1(x̃) < 0, . . . , gm(x̃) < 0.

32.5 KKT Theorem

The converse may hold if:

Theorem 32.1. Consider the convex NLP
min cᵀx
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subject to

g1(x) ≤ 0

...
gm(x) ≤ 0

Let x̄ be a feasible solution, g1, . . . , gm differentiable. Assume the NLP has a Slater point. Then x̄ is optimal if and
only if

−c ∈ cone{∇gi(x̄) : i ∈ tight(x̄)}
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