
Fall 2018 CS 343 Course Notes TABLE OF CONTENTS

richardwu.ca

CS 343 Course Notes
Concurrency

Peter Buhr • Fall 2018 • University of Waterloo

Last Revision: November 5, 2018

Table of Contents

1 September 11, 2018 1
1.1 Advanced control flow . 1
1.2 Dynamic allocation . 1
1.3 Control-flow between routines . 1
1.4 Static vs dynamic multi-level exit . 2

2 September 13, 2018 2
2.1 Exception handling . 2
2.2 Static vs dynamic call/return . 2

3 September 18, 2018 3
3.1 _Resume vs _Throw in µC++ . 3
3.2 Multiple catch clauses . 3

4 September 20, 2018 3
4.1 Caveat with running off co-routines . 3

5 September 25, 2018 3
5.1 Uncaught local co-routine exception . 3
5.2 Formal definition of resume() and suspend() . 4

6 September 27, 2018 4
6.1 Notes on _Coroutine in µC++ . 4
6.2 Dichotomy between semi- and full-coroutines . 4
6.3 _Enable (and _Disable) . 4

7 October 16, 2018 5
7.1 Parallel vs concurrency . 5
7.2 Concurrency without explicit constructs . 5

8 INCOMPLETE 5

i

richardwu.ca

Fall 2018 CS 343 Course Notes 1 SEPTEMBER 11, 2018

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 September 11, 2018

1.1 Advanced control flow

Everything herein pertains to control flow within routines:

• Use break guard clauses (early breaks)

• Avoid flag variables: instead using an infinite loop with break statements.

However, in some cases one may use flag variables if absolutely necessary (e.g. memoizing some status that
occurs much later and would be hard to modify).

• Use nested control structures with multi-level breaks (with labels)

Rules for gotos:

• No backward breaks/gotos: use a loop’s inherent looping capabilities

• No jumping into the middle of code

tl;dr: use gotos for static multi-level exit (to simulate labelled breaks/continues).

1.2 Dynamic allocation

Use stack allocation over dynamic allocation whenver possible: e.g. int arr[size] as opposed to int *arr = new
int[size] and delete [] arr (although variable-length stack arrays are not part of the C++ standard, use it
whenever possible).
However, heap allocation may be necessary if:

• memory needs to persist outside of the scope memory was initialized in

• unbounded input size (e.g. initializing values from STDIN into a vector)

• array of objects with variable initialization parameters

• when allocation would overflow a small stack

1.3 Control-flow between routines

For dynamic multi-level exit (call/return semantics between routines where exit points are not known at compile
time) use a global label variable which is referred to inside subroutines with gotos for jumping between multiple
function stack frames. Assigning label literals to the variable at various points in time can alter where the subroutines
end up jumping to.
jump_buf, setjmp, longjmp initialize, set, and jump to a label variable, respectively, in C.
Traditional approaches to what we described include:

1

Fall 2018 CS 343 Course Notes 2 SEPTEMBER 13, 2018

• Return codes. Disadvantage: mixes exception and normal results, and checking code or flag is optional.

• Status flags via global variable (e.g. errno in UNIX). Disadvantage: may be modified by other routines (mixed
out).

• Fixup routines (or callbacks). Disadvantage: adds overhead with additional function calls.

• return union: returning union types (e.g. result or return code). Disadvantage: must check return type on
every call (optional). Multiple values must be returned to higher-level calls (intermediate function frames
need to forward nested return codes).

1.4 Static vs dynamic multi-level exit

Static multi-level exit occurs when exit points are known at compile time (e.g. with literal break labels that are in
the code).
Dynamic multi-level exit occurs when there can be multiple outcomes depending on run-time conditions (i.e. invoking
routines and exits between routines depending on the current execution stack, which is dynamic).

2 September 13, 2018

2.1 Exception handling

Complex control-flow among routines is called exception handling (it is more than just error handling).
While it may be simulated using simpler control structures (as described above), it is difficult in general and more
messy.
Depending on the execution environment (e.g. object-oriented vs non-object-oriented where we may have finally
destructors and inherited destructors; concurrent vs sequential where we may have multiple execution stacks), the
exception handling mechanism (EHM) implemented by the language/compiler must be adapted accordingly.

2.2 Static vs dynamic call/return

Similar to static/dynamic multi-level exit static calls/returns can be statically inferred from the code itself whereas
dynamic calls/returns depend on the current execution stack (i.e. what function frames are on the stack).
Normal routines (e.g. foo() method definition and a call to foo() with no virtual methods) is a static call with a
dynamic return (dynamic because it returns to the block that invoked foo(), which depends on the stack).

Figure 2.1: Chart summarizing the classifications of each call-return static/dynamic pairs.

Summary of why these are static/dynamic calls/returns:

Sequel A named routine that can be invoked statically and statically returns to the end of block in which it was
declared.

Disadvantage: the declaration and invocation must be statically compiled together, i.e. invocations cannot be
compiled separately from the declaration.

2

Fall 2018 CS 343 Course Notes 5 SEPTEMBER 25, 2018

Note that blocks (section of code enclosed in { }) are pushed onto the stack (think of local variables declared
in block being pushed onto/popped off stock), thus sequel’s will need to unwind the stack when returning to
the end of its declaring block.

Termination An exception is thrown and some arbitrary handler (which is a routine itself) handles it (dynamic
call). Since control cannot be returned to the raise point (i.e. termination), it finishes executing the handler
routine and statically returns to the line after the handler’s definition.

Virtual routine/resumption Virtual routine is calling a function pointer (dynamic call) where the virtual routine
returns to the invocation point (dynamic return, depends on current execution).

Resumption is a mechanism where something like an exception is raised and propagation occurs to the handler
(dynamic call), then the handler returns back or resumes to the raise block (dynamic return).

3 September 18, 2018

3.1 _Resume vs _Throw in µC++

In uC++, when a _Resume is “thrown”, it looks for a handler to _CatchResume and perform fix up (which subsequently
returns to the point of where the event was raised i.e. at the beginning of the _Enable). If no _CatchResumes can
be found up the stack, then by default (defaultResume) the exception is thrown via _Throw.
Notice that _Throw will cause all blocks between the raise block and the guarded block that catches the exception
to unwind from the stack, whereas _Resume does not. This is why _Throw does not have an _At clause (otherwise
it’ll cause the coroutine targetted to unwind its stack, which is not good practice).

3.2 Multiple catch clauses

In most programming languages, multiple catch clauses will not be re-evaluated, even if the exception handler in
the first catch clauses throws an exception that could be caught by subsequent catch clause handlers.
In µC++, this is different for _CatchResume followed by catch: since _CatchResume does not unwind the stack,
thus the catch clause in the guarded block stack frame can still be observed.

4 September 20, 2018

4.1 Caveat with running off co-routines

When a resume() to a co-routine causes the co-routine to terminate at the end of main(), it will actually resume()
to the starter i.e. the first caller of resume().
So if the first resume() was invoked in the constructor of the coroutine object, subsequent calls to resume() are
made by a different block of code, and some other caller who invokes resume() causes the coroutine to terminate,
the code will actually resume to the starter (first coroutine that called resume()), which is main(). So main() will
continue executing from its last stack point.

5 September 25, 2018

5.1 Uncaught local co-routine exception

If a local _Throw is thrown and not caught inside a coroutine, then a _Resume event uBaseCoutine::UnhandledException
is propagated to the last resumer (it hooks onto the last resumer). Therefore if the last resumer invoked a
resume() which caused the local exception, it must always check if there are any exceptions hooked on.

3

Fall 2018 CS 343 Course Notes 6 SEPTEMBER 27, 2018

If there are, the resumer will check its handler first for _CatchResume and then (by the default logic for _Resume
events) for catch.
If _CatchResume catches the unhandled exception, it will do a dynamic return back to the _Enable that surfaced
the non-local exception.
If catch catches the unhandled exception, it will do a static return to the code after the catch handler since the
stack will unroll.

5.2 Formal definition of resume() and suspend()

When a resume() is invoked, it inactivates uThisCoroutine(), activates this (which is a context switch from
uThisCoutine() to this).
Therefore, this must be a coroutine object itself (i.e. one must invoke resume() inside a coroutine’s member
function).
When a suspend() is invoked, this context switches back to the last resumer.
So for example, if int main() invokes routine.foo() where foo() contains a resume(): just before resume() is
invoked uThisCoroutine() = int main() and this = routine.
Caveat: note that if we decide to do recursive resume()s inside a coroutine, it will overwrite the last resumer: thus
we may lose track of int main() i.e. we do not keep a stack of resumers. Therefore, a suspend() after a recursive
resume() will suspend back to itself. This is why when a coroutine terminates, it returns to its starter: this allows
us to get back to int main().
This also prevents our stack from overflowing if we are using full-coroutines and end up doing many resume()s.
Note that resume() and suspend() are complementary: if resume() is initiated and an arrow is drawn in one
direction, suspend() traverses the arrow in the opposite direction.

6 September 27, 2018

6.1 Notes on _Coroutine in µC++

• A _Coroutine that has not been started is an object: only when it has started and not terminated is it a
“coroutine”

• Member/class variables for a _Coroutine initialized on the some int main() thread lives on int main()’s
stack.

Any local variables initialized inside void main() (coroutine main function) is created on the coroutine’s
stack (which may be context switched during resume()s and suspend()s).

Therefore coroutines actually have a reference to member variables on the int main() stack.

6.2 Dichotomy between semi- and full-coroutines

In semi-coroutines, we never resume() another co-routine while in a co-routine (other than int main()). However,
full-coroutines can resume() inside another coroutine’s member function.
This implies that full coroutines may be suspend()ed back to or “woken up” inside another coroutine’s member
function, whereas semi-coroutines are always suspend()ed back to inside itself.

6.3 _Enable (and _Disable)

Note that _Enable is not required to throw (i.e. _Resume ... _At) a nonlocal event at a different coroutine.
It is also not required to always enclose everything with _Enable in the receiving coroutine (i.e. when the receiving
coroutine is inactive).

4

Fall 2018 CS 343 Course Notes 8 INCOMPLETE

One can have a try-catch surrounding an empty _Enable{} to receive any queued up events.

7 October 16, 2018

7.1 Parallel vs concurrency

Parallel can only occur on multiprocessor architectures: when operations occur simultaneously in real time

Concurrency when multiple threads seem to be performed in parallel (e.g. uniprocessor with timesharing processes
to improve performance)

7.2 Concurrency without explicit constructs

We can indeed ensure mutual exclusion with if and while statements. See Dekker’s algorithm with Hesselink’s
modification or Peterson’s algorithm.
Note that in Dekker’s vanilla algorithm, it is not RW-safe: this means that there are simultaneous reads-writes
that can violate our mutual exclusion rules. This can happen when any value being written to can “flicker”: i.e.
when writing to an address the hardware can be in a limbo state where the value can be garbage/arbitrary or be
the value we did not intend to set (e.g. WantIn instead of DontWantIn).
To solve these “flicker”s Hesselink adds an extra conjunction to one of the checks and a conditional assignment to
::Last.

8 INCOMPLETE

There was more material covered but I decided not to continue writing notes.

5

	September 11, 2018
	Advanced control flow
	Dynamic allocation
	Control-flow between routines
	Static vs dynamic multi-level exit

	September 13, 2018
	Exception handling
	Static vs dynamic call/return

	September 18, 2018
	_Resume vs _Throw in C++
	Multiple catch clauses

	September 20, 2018
	Caveat with running off co-routines

	September 25, 2018
	Uncaught local co-routine exception
	Formal definition of resume() and suspend()

	September 27, 2018
	Notes on _Coroutine in C++
	Dichotomy between semi- and full-coroutines
	_Enable (and _Disable)

	October 16, 2018
	Parallel vs concurrency
	Concurrency without explicit constructs

	INCOMPLETE

