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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 January 7, 2019

1.1 Basic overview of a compiler

A compiler takes a source language and translates it to a target language. The source language could be, for
example, C, Java, or JVM bytecode and the target language could be, for example, machine language or JVM
bytecode.
A compiler could be divided into two parts:

Front-end analysis Front-end could be further divided into two parts: the first being scanning and parsing
(assignment 1) and the second being context-sensitive analysis (assignment 2,3,4).

Some refer to context-sensitive analysis as “middle-end”.

Back-end synthesis The backend could also be divided into two parts: the first being optimization (CS 744) and
the second being code generation (assignment 5).

1.2 Overview of front-end analysis

Goal: is the input a valid program? An auxiliary step is to also generate information about the program for use in
synthesis later on.
There are several steps in the front-end:

Scanning Split sequence of characters into sequence of tokens. Each token consists of its lexeme (actual characters)
and its kind.

There are tools for generating the DFA expressions from a regular language e.g. lex.

2 January 9, 2019

2.1 Scanning tools (lex)

Our goal is to specify our grammar in terms of regular expressions (regex) which lex can convert into a scanning
DFA.
Review of regex to language (set of words):

RE L(e)

∅ {}
ε {ε}

a ∈ Σ {a}
e1e2 {xy | x ∈ L(e1), y ∈ L(e2)}
e1 | e2 L(e1) ∪ L(e2)
e∗ L(ε | e | ee | eee | . . .)

1
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The corresponding NFAs we can construct per each regex rule are

Let Σ be the set of characters, Q the set of states, q0 the initial state, A the accepting states, and δ the transition
function, an NFA is a 5-tuple (Σ, Q, q0, A, δ) where

NFA : δ : Q× (Σ ∪ {ε})→ 2Q (subset of Q)
DFA : δ : Q× Σ→ Q

i.e. the transition function of an NFA returns a subset of states in Q.
We note in our above NFAs some accepting states are equivalent (connected by an ε transition).
We define

Definition 2.1 (ε-closure I). The ε-closure(S) of a set of states S is the set of states reachable from S by (0 or
more) ε-transitions.

Another equivalent recursive definition

Definition 2.2 (ε-closure II). Smallest set S′ such that

S′ ⊇ S
S′ ⊇ {q | q′ ∈ S′, q ∈ δ(q′, ε)}

We note that any NFA can be converted in a corresponding DFA. The input is an NFA (Σ, Q, q0, A, δ) and we’d like
to get a DFA (Σ, Q′, q′0, A

′, δ′) where

q′0 = ε-closure({q0})

δ′(q′, a) = ε-closure
( ⋃
q∈q′

δ(q, a)
)

we note that each state of our DFA is a set of states in the original NFA e.g. {1, 2, 4} may be a state in the DFA.

2
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We generate more states in our DFA by iterating through every a ∈ Σ and applying rule two to our initial state q′0.
We do this until no further states can be generated from existing DFA states and all a ∈ Σ have been exhausted.
We note that the entire set of states Q′ in the DFA can be recursively defined as the smallest set of subsets of Q
such that

Q′ ⊇ {q′0}
Q′ ⊇ {δ′(q′, a) | q′ ∈ Q′} ∀a ∈ Σ

We note that if any accepting state is included in a state of the DFA, we can accept it (since we can reach the
corresponding accepting state in the NFA). Thus

A′ = {q′ ∈ Q′ | q′ ∩A 6= ∅}

3 January 14, 2019

3.1 DFA recognition scanning

The algorithm for using a DFA to recognize if a word is valid in the grammar

Algorithm 1 DFA recognition
input word w, DFA M = (Σ, Q, q0, δA)
output boolean w ∈ L(M)?
1: q ← q0
2: for i from 1 to |w| do
3: q ← δ(q, w[i])

4: return q ∈ A

Scanning is similar where we take a sequence of symbols and convert it into a sequence of tokens using a DFA. In
maximal munch we have

Algorithm 2 Maximal munch (abstract)
input DFA M specifying language L of valid tokens, string of symbols w
output sequence of tokens, each token ∈ L that concantenates to w
1: while until end of output do
2: Find a maximal prefix of remaining input that is in L
3: ERROR if no non-empty prefix in L

note that maximal munch takes the maximal prefix: if we do not take the maximal prefix we may run into
ambiguity. A more concrete implementation

Algorithm 3 Maximal munch (concrete)
1: while until end of output do
2: Run DFA and record last seen accepting state until it gets stuck (or it transitions to ERROR state)
3: Backtrack DFA and the input to last seen accepting state
4: ERROR if there is no accepting state
5: Output prefix as the next token
6: Set DFA back to start state

3
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Note that in Java which uses maximal munch, a−−b would be parsed as a(−− b) which would return a parsing
error (as opposed to a− (−b) since −− is a token in Java).

3.2 Constructing the scanning DFA

The overall algorithm to convert regular expressions denoting tokens to a scanning DFA is

Algorithm 4 Regex to scanning DFA
input REs R1, . . . , Rn for token kinds in priority order
output DFA with accepting states labelled with token kinds
1: Construct an NFA M for R1 | R2 | . . . | Rn

2: Convert NFA to DFA M ′ (each state of M ′ is set of states in M)
3: For each accepting state of M ′, output highest priority token kind of the set of NFA accepting states

4 January 16, 2019

4.1 Context-free grammar

Regular expressions are great for scanning but would not work for an arbitrary depth of tokens when it comes to
parsing grammar.
To address this we define context-free grammars which uses recursion to specify arbitrary structures in the
grammar at an arbitrary depth in the parse tree.

Definition 4.1 (Context free grammar). A context-free grammar is a 4-tuple G = (N,T,R, S) where we have
(NB: notation for each class)

Terminals T (e.g. a, b, c; denoted with lowercase alphabet)

Non-terminals N (e.g. A,B,C, S; denoted with uppercase alphabet)

Symbols The set of symbols are V = N ∪ T (e.g. W,X, Y, Z)

String of terminals T ∗ (e.g. w, x, y, z)

String of symbols V ∗ (e.g. α, β, γ)

Production rules R ⊆ N × V ∗ (e.g. A→ α)

Start non-terminal S

Definition 4.2 (Directly derives). βAγ ⇒ βαγ if A→ α ∈ R: that is βAγ directly derives βαγ.

Definition 4.3 (Derives). α⇒∗ β if α⇒ γ and γ ⇒∗ β: that is α derives β.

Definition 4.4 (Sentential form). α is a sentential form if S ⇒∗ α.

Definition 4.5 (Sentence). x is a sentence if x ∈ T ∗ and x is a sentential form.

Definition 4.6 (Language). L(G) = {x ∈ T ∗ | S ⇒∗ x} is the language generated by G (set of sentences).

4
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4.2 Recognizer and parsing

The task of a recognizer is to see if x ∈ L(G) for some grammar G.
The task of parsing is to find a derivation from S to x.

Example 4.1. Suppose we have a grammar G with R = {A→ BgC,B → ab, C = ef}, S = A,N = {A,B,C}, T =
{a, b, e, f, g}.
We can derive the following sentence

A⇒ BgC ⇒ abgC ⇒ abgef

notice this is the only sentence in L(G).
We could represent this as a tree where A is at the root, B, g, C are each children of A (3 children), a, b and e, f are
children of B and C, respectively.
Note that for this particular grammar, we may have multiple derivations for abgef (we could have expanded C
first) but we have one unique parse tree.

Definition 4.7 (Ambiguous grammar). A grammar is ambiguous if ∃ > 1 parse tree for the same sentence.

Definition 4.8 (Left(Right) derivation). In a left(right) derivation we always expand the left(right)-most
non-terminal.

There is a one-to-one correspondence between parse trees, left derivations, and right derivations: that is given a
sentence with a unique parse tree, it has a unique left derivation and a unique right derivation.

4.3 Top-down parser

The simplest approach for parsing a sentence x from S (start symbol) is using a top-down parser:

Algorithm 5 Top-down parser
1: α← S
2: while α 6= x do
3: Replace first non-terminal A in α with β, assuming A→ β ∈ R

Replacing the first non-terminal results in a left derivation.

5 January 21, 2019

5.1 LL(1) parser

Example 5.1. Given a grammar with the following production rules

E → aE′

E′ → +a

E′ → ε

Suppose we wanted to derive a+ a. Intuitively we have E ⇒ aE′ ⇒ a+ a. Our intuition told us to use E′ → +a
instead of E′ →′ ε.

5
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To improve on our top-down parsing, we introduce the LL(1) parser:

Algorithm 6 LL(1) parser
input x is the input string to parse
1: α← S
2: while α 6= x do
3: Let A be the first non-terminal in α (α = yAγ)
4: Let a be the first terminal after y in x (x = yaζ)
5: A→ β ← predict(A, a)
6: Replace A with β in α

where predict(A, a) follows our intuition of picking the rule with A on the LHS that works best when a is the next
terminal: our lookahead.

Remark 5.1. The first “L” represents scanning the input from left to right; the second “L” denotes left-
canonical derivation (always expanding the leftmost non-terminal); the “1” denotes a 1 symbol lookahead

Definition 5.1 (Augmented grammar). In order to make our 1 lookahead algorithm work with the start rule, we
need to augment it:

1. Add a fresh terminal “$”

2. Add production S′ → S$ where S′ is our new start and S was the start of our original grammar.

We also need to append “$” to our input. Our augmented grammar becomes

S′ → E$

E → aE′

E′ → +a

E′ → ε

If we implement LL(1) naively with string replacements we could see that the algorithm runs in O(n2).
To do this in O(n) time we could utilize a stack for our α derivation. Our revised algorithm proceeds as

Algorithm 7 LL(1) parser
input x is the input string to parse
1: Push S$ onto stack
2: for a in x$ do
3: while top of stack is a non-terminal A do
4: Pop A
5: Find A→ β in predict(A, a) or ERROR
6: Push β
7: Pop b, terminal on top of stack
8: if b 6= a then
9: ERROR

We define
predict(A, a) = {A→ β ∈ R | ∃γ β ⇒∗ aγ or (β ⇒∗ ε and ∃γ, δ S′ ⇒∗ γAaδ}

A grammar is LL(1) iff |predict(A, a)| ≤ 1 for all A, a.

6
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5.2 First, nullable and follow sets

Definition 5.2 (First set). If β ⇒∗ aγ then a ∈ first(β) where first(β) is the first set of β.

Definition 5.3 (Nullable set). If β ⇒∗ ε then β is nullable.

Definition 5.4 (Follow set). If S′ ⇒∗ γAaδ then a ∈ follow(A) where follow(A) is the follow set of A.

Note that in our above example grammar, we have

nullable = {ε}

and

first(ε) = {}
first(+a) = {+}
first(aE′) = {a}
first(E$′) = {a}

In general to compute the follow set, we define it as

1. If B → αAγ then first(γ) ⊆ follow(A)

2. If B → αAγ and nullable(γ) then follow(B) ⊆ follow(A)

6 January 23, 2019

6.1 Note on LL(k) parsers

Note that in LL(k) parsers we perform leftmost derivation. This means that the sentence 3− 2− 1 would be parsed
(with parentheseses denoting derivations/subtrees) 3− (2− 1) which would incorrectly result in 2.
Ideally we wanted (3− 2)− 1 or left associative. In general, LL(k) parser cannot parse arbitrary left associative
languages.

Remark 6.1. One could imagine an LL(1) parser as generating the parse tree from top to bottom, left to right
where the parse tree is rooted at S and the leaves are the tokens in the input x.

An alternative to LL(k) parsers which is a top-down parser (from start symbol S to input) are bottom-up parsers.

6.2 Bottom-up parsing

Example 6.1. Suppose we have the same grammar as before

S → E$

E → E + a

E → a

Suppose we wanted to parse the sentence a+ a$. We proceed in a bottom up fashion

a+ a$⇐ E + a$

⇐ E$

⇐ S

7
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where we scan from left to right the tokens in the input and reduce with “intuition”.

Remark 6.2. Given a parse tree rooted at S with leaves as tokens of input x, a bottom-up parser generates the
parse tree from the bottom-left corner and moves upwards and rightwards until the start symbol is reached.

proceed to look at a particular bottom-up parser.

6.3 LR(0) parser

The best way to implement these parsers is to think about invariants and ensuring our algorithm always maintains
the invariants:

LL(k) invariant The invariant for an LL(k) parser is that

S ⇒∗ α
S ⇒∗ seen input + stack

i.e. S always derives the string of processed symbols we’ve derived so far.

LR(k) invariant Here the invariant is that

α⇒∗ x
stack + unseen input ⇒∗ x

that is our current string of processed symbols plus the rest of the unseen input should be able to derive our
entire input. Equivalently

S ⇒∗ α
S ⇒∗ stack + unseen input

in other words we require the stack to always be a viable prefix:

Definition 6.1 (Viable prefix). α is a viable prefix if it is a prefix of some sentential form i.e.

∃β s.t. S ⇒∗ αβ

In LR(0) parsing as above, we keep a stack of symbols we have processed so far. We have the following algorithm

Algorithm 8 LR(0) parser

1: for a in x$ do
2: while Reduce(stack) = {A→ γ} do
3: Pop γ off stack (i.e. pop |γ| tokens) . Reduce
4: Push A onto stack
5: if Reject(stack + a) then ERROR
6: Push a onto stack . Shift

where we define
Reduce(α) = {A→ γ | ∃β s.t. α = βγ and βA is a VP}

where VP stands for viable prefix (see above) and Reject(α) is true if α is not a VP.

8
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Question 6.1. How do we check if α is a VP? Note that the set of all VPs is itself a context-free language.

Exercise 6.1. Given a CFG G, construct a CFG G′ for the set of VPs of G.

Remark 6.3. Only some VPs α’s occur during the algorithm, thus we can build a simpler NFA for VPs that
actually occur.
We can construct the NFA (such as the following) systematically from a given grammar

We define the construction of the LR(0) NFA as follows:

Σ = T ∪N
Q = {A→ α · β | A→ αβ ∈ R}
q0 = S′ → S$

A = Q all states are accepting i.e. stack is always a VP
δ(A→ α ·Bβ, ε) = {B → ·γ | B → γ ∈ R}
δ(A→ α ·Xβ,X) = {A→ αX · β}

7 January 28, 2019

To parse, we can simply just follow the NFA and reduce if the NFA ends up in state A→ γ· on input βγ (note:
Reduce(βγ) contains A→ γ because the NFA would also accept βA; a VP is always kept on the stack).
However, to make our process deterministic, we need to convert the NFA to a DFA.

Definition 7.1 (Reduce-reduce conflict (LR(0))). If the resulting DFA state contains A→ γ· and B → δ· for two
different productions, a reduce-reduce conflict occurs.

Definition 7.2 (Shift-reduce conflict (LR(0))). If the DFA state contains A → γ· and B → α · Xβ, then a
shift-reduce conflict occurs.

Definition 7.3 (LR(0) grammar). An LR(0) grammar is unambiguous if there are no conflicts using the above
NFA and DFA construction.

Remark 7.1. Instead of walking the DFA and returning the start state every time a reduction happens, we
can optimize this procedure to be linear time using an additional stack for DFA states. The invariant is that
δ(q0, processed stack) = top of state stack i.e. the top of our state stack is always our current state in the DFA.
We also need to synchronize the number of times we push and pop from both stacks (e.g. a reduction rule that pops
3 symbols would require popping the state stack 3 times).

9
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Example 7.1. Here is an example of LR(0) parsing based on the DFA states:

7.1 LR(1) parser

For the grammar

S → E$

E → a+ E

E → a

we end up having E → a ·+E and E → a· in the same DFA state (reduce-shift conflict), therefore the grammar is
NOT LR(0).
Is there a way to disambiguate the grammar? Surely if we could lookahead one token to see if either the next token
of the input is $ (then we would reduce with E → a·) or if it is + (then we would shift +), then we could remedy
our conflict.
This is the idea behind LR(1) parsing: LR parsing with 1 lookahead token. The algorithm is similar to LR(0)
parsing:

Algorithm 9 LR(1) parser

1: for a in x$ do
2: while Reduce(stack, a) = {A→ γ} do
3: Pop γ off stack (i.e. pop |γ| tokens) . Reduce
4: Push A onto stack
5: if Reject(stack + a) then ERROR
6: Push a onto stack . Shift

where we define our new Reduce function with a lookahead token a:

Reduce(α, a) = {A→ γ | ∃β s.t. α = βγ and βAa is a VP}

10
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7.2 SLR(1) parser

How do we determine if βAa is a VP for a reduction rule A→ γ·?

Option 1 (SLR(1)) If a 6∈ follow(A) then βAa definitely is not a VP

Option 2 (LR(1)) Construct a better DFA (discussed later)

For Option 1 (called SLR(1)) we can combine both the DFA for LR(0) and our follow set:

• Use LR(0) DFA to decide if βA is a VP

• Use follow(A) to decide if βAa is a VP

We redefine what it means for there to be conflicts in our SLR(1) DFA:

Definition 7.4 (Reduce-reduce conflict (SLR(1))). If the resulting DFA state contains A→ γ· and B → δ· for two
different productions, and follow(A) ∩ follow(B) 6= ∅ then a reduce-reduce conflict occurs.

Definition 7.5 (Shift-reduce conflict (SLR(1))). If the DFA state contains A → γ· and B → α · Xβ, and
X ∈ follow(A) then a shift-reduce conflict occurs.

Remark 7.2. SLR(1) uses the same parser as LR(1): the only difference is how the two checks if βAa is a VP.

7.3 Distinction between LR(0), SLR(1), LALR(1), LR(1)

The distinction between different types of parser depends on how it determines VPs (ranked from most general to
most specific; prior types imply later types):

General Determines if βAγ is a sentential form (where γ is the rest of input)

LR(1) Determines if βAa is a VP

LALR(1) Determines if βA is a VP and a ∈ . . .??? (discussed later)

SLR(1) Determines if βA is a VP and a ∈ follow(A)

LR(0) Determines if βA is a VP

8 January 30, 2019

8.1 Generating the LR(1) parse table

As noted previously, the difference between LR(1) and SLR(1) is how they determine whether a proposed prefix is a
viable prefix.

Example 8.1. The following grammar is LR(1) but not SLR(1):

S′ → S$

S → a

S → E = E

E → a

Note that given input a$, SLR(1) will try to determine whether to reduce a to S or E. It will check if E is a VP
and if the lookahead token, $, is in follow(E). Similarly for S.
Note that in SLR(1) both E and S are viable candidates but only S is the correct reduction since if we reduce to E
we would require an = afterwards.

11



Winter 2019 CS 444/644 Course Notes 9 FEBRUARY 4, 2019

The idea behind LR(1) (vs SLR(1)) is to keep specific follow sets in each NFA state. In the example above, we
would keep track of the specific follow set of the first E1 and for the second E2 in their corresponding NFA states.
When we are constructing the NFA, if we are in an NFA state where we have a bullet point · in front of a non-terminal
(e.g. S → ·E = E$), we generate an ε transition out of that state (e.g. to E → ·a$).
For the new generated state we annotate it with the follow set of the specific instance of the non-terminal (in this
case it is the first E so we annotate the new state with =).
Finally once we convert the NFA to a DFA we end up with something like this:

where each state is annotated with the lookahead symbol from the follow set.

Remark 8.1. The lookahead generated from the follow sets only matter for states with reductions; however, to
carry through the follow set lookaheads we need to include them in intermediary state during generation.

That is: if NFA ends up in a state A→ γ· : a on a stack βγ, then reduce(βγ, a) contains A→ γ because the NFA
would also accept βAa.
This answers the question: is βAa a VP?

Definition 8.1 (Reduce-reduce conflict (LR(1))). If DFA state contains A→ γ· : a and B → δ· : a then we have a
reduce-reduce conflict.

Definition 8.2 (Shift-reduce conflict (LR(1))). If DFA state contains A→ γ· : a and B → α · aβ : b then we have
a shift-reduce conflict.

To build the LR(1) NFA we define it declaratively as:

Σ = T ∪N
Q = {A→ a · β : a | A→ αβ ∈ R, a ∈ T}
q0 = {S′ → ·S$ : $}
δ(A→ α ·Xβ : a,X) = {A→ αX · β : a}
δ(A→ α ·Bβ : a, ε) = {B → ·γ : b | B → γ ∈ R and b ∈ first(βa)}

9 February 4, 2019

9.1 LALR(1) grammar

Idea: we use the LR(0) DFA with follow sets local to each LR(1) DFA state.

12
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Definition 9.1 (Core of a state). The core of a LR(1) DFA state is defined as

core(q) = {A→ α · β | (A→ α · β : a) ∈ q}

i.e. the set of items belonging to the state q.

Fact 9.1. We can replace each LR(1) DFA state by its core i.e. its LR(0) DFA state.

The algorithm to convert an LR(1) DFA’s states to LALR(1) DFA states:

Algorithm 10 LR(1) to LALR(1)

input M is the LR(0) DFA, M ′ is the LR(1) DFA
1: for each state q of M do
2: for each item A→ α · β of q do
3: l′ ← {a | q′ is a state of M ′, q ∈ core(q′), (A→ α · β : a) ∈ q′}
4: q with lookaheads l′ is the new LALR(1) state/core

That is: we simply coalesce the item sets and merge (take the union) of the lookahead tokens per each item/production
rule. An example of a transformation to LALR(1):

9.2 Abstract syntax tree

The grammar for the abstract syntax tree can be ambiguous (i.e. we can have multiple parse trees for a given
sentence in the AST). This allows us to keep the AST grammar simpler.
The AST is built recursively from the parse tree. We define a new type for each kind of AST node (e.g. Expression,
Statement, etc.).
The later phases of the compiler will compute things about the AST nodes in order to do semantic analysis.

Remark 9.1. We could theoretically proceed with just the parse tree from e.g. LR(1) parsing instead of building
an AST, but building an AST helps us simplify concepts and reduces the complexity of pattern matching.
E.g. instead of having to match Term (Factor * Factor) for an arithemetic expression we can simply match
Expression.

13
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9.3 Weeding

Weeding permits us to verify invariants that may be easier by traversal of the AST. For example in Java (Joos) a
class cannot be both abstract and final. While we can specify this in the grammar and catch it during parsing,
it may be easier to simply traverse the AST and verify the two modifiers do not exist underneath a given class
declaration.

Definition 9.2 (Weeding). Weeding is the process of checking the language requirements that could have been
enforced by grammars but not easily in code.

9.4 Context-sensitive/semantic analysis (middle end)

The next phase of the compiler is to associate identifiers and nodes in the AST with their semantic meaning.
We will first look at declarations and and usages. Take the following example:

1 class A {
2 public int x;
3 public boolean y;
4 public void m(int y) {
5 x = y+1;
6 }
7 }

We note that there are declarations A, x, y,m, y (paramaeter). We can map the usages of every variable to their
corresponding declarations intuitively.
Things can get even more complicated with subclasses and nested declarations:

1 class B extends A {
2 String z;
3 public void m(boolean b) {
4 y = b;
5 {
6 int y = 42;
7 x = y;
8 (new B()) m(y);
9 }

10 {
11 String y = "foo";
12 y = y + z;
13 }
14 }
15 }

We note that the declaration of m is separate from the declaration of m in class A. We also note the reference of
y in the first bracketed scope is to int y and not public boolean y declared in A.
Finally, note that the usage of m in the first bracketed scope references public void m declared in class A:
we infer this by the fact that its reference to y is a reference to the y declared as int y.

10 Februrary 11, 2019

10.1 Name resolution

The goal of name resolution is to link usages of names with their corresponding declarations.

Definition 10.1 (Scope). A scope is an area of a program where a declaration has effect and is visible.

14
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Definition 10.2 (Environment). An environment is a map from names (strings) to declarations/meanings.
During implementation, one can either map the names to the AST declaration node or to some other data structure
used for semantic anaylsis.

Note that a new scope should correspond to a new environment. We form a stack of environments as we traverse
through scopes.
How would operations on our environment look as we traverse our AST?

Declaring a name If we find a declaration for a name, we:

1. Search for name in current environment

2. If name already exists, ERROR

3. Else insert name into environment

Name lookup/resolution To resolve a usage:

1. Search innermost environment

2. If not found, search recursively in enclosing environments

3. If not found in any enclosing environments, ERROR

We look at an example where namespaces come into play:

Example 10.1. Suppose we have the following code snippet
1 int x = 0;
2 int x (int x) { ... }
3 x = x(x);

We note that in the third line, the three x’s refer to int x, int x (int x), and int x, respectively.
For the declaration int x and int x (int x), we note that they may both be declared within the same scope,
howeer their literal identifier collide. We therefore must introduce namespaces for variables and methods in
separate environment. We syntactically determine which namespace a declaration belongs to.

In Java (JLS 6.5.1) we have 6 namespaces:

1. package

2. type (class, interface)

3. method

4. expression (variable, parameter, field)

5. package ∪ type

For example, given import P.C and assuming we infer that P.C is a class, P could either be a package or
an (outer) class.

Outer classes and thus this namespace is not required in Joos.

6. ambiguous
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10.2 Name resolution in Java

While the general idea of name resolution can be applied to all languages, in Java specifically we can perform name
resolution as follows:

1. Build global environment (set of classes)

2. Resolve type names (type namespace)

3. Check class hierarchy (inheritance)

4. Disambiguate namespaces of ambiguous names (since we have a hierarchy now)

5. Resolve “expressions” (variables, static fields)

6. Type checking

7. Resolve methods and instance fields

Note that in Java (and Joos), we are able to topologically perform the above steps in order. Some other languages
have mutual dependency between the above stepsand thus name resolution will need to be performed recursively.
Assignment 2 consists of the first 3 steps and assignment 3 consists of the last 4 steps.

10.3 Building the global environment

The global environment should record all class names along with their corresponding package names from the files
passed to the compiler for linking.

Remark 10.1. In a normal Java compiler, it is only necessary to specify the single Java file to be compiled and
the compiler will automatically resolve imported packages and classes.

10.4 Resolving type names

There are two ways to reference a name:

Qualified names always have . in their names (e.g. a.b.c.d).

We simply traverse the sequence of names listed starting from the top-level name.

Remark 10.2. If there is a usage c.d and a single-type import a.b.c, then a.b.c.d will never be resolved
to c.d.

Simple names have no . in their names. We traverse the namespaces in the following priority order:

1. Enclosing class/interface
2. Single-type imports (e.g. import a.b.c)
3. Type in same package
4. Import-on-demand package (e.g. import a.b.*)

Remark 10.3. If there is any ambiguity within any of those namespaces (e.g. two type c imported by two
single-type imports) then we raise a compile error.

Remark 10.4. The default package (packages without a name e.g. package containing main) is NOT the
root package.

Therefore one would need to prefix the default package with some unique package name to avoid usages
referencing the default package in other packages.
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10.5 Simple class hierarchy checks (JLS 8,9)

We first verify class declarations. Some simple constraints in JLS 8 and 9:

1. For class A extends B, B must be a class (8.1.3)

2. For class C implements D, D must be an inferface (8.1.4)

3. No duplicate interfaces e.g. class E implements F, F (8.1.4)

4. For class A extends B, B cannot be final (8.1.3)

5. Constructors for the same class must have distinct signatures (i.e. parameter types) (8.8.2)

11 February 13, 2019

11.1 Formal constructs for class hierarchy

We attempt to define a formal model for inheritance and the class hierarchy. Consider the following examples:

Example 11.1. Given class A extends B implements C, D, E then we define

super(A) = {B,C,D,E}

which are the direct superclasses.

Remark 11.1. If inheritance unspecified (e.g. class A) then super(A) = {java.lang.Object}.
Note that super(java.lang.Object) = {}.

Example 11.2. Given interface F extends G, H, I we have

super(F ) = {G,H, I}

We now give the formal inference rules. First let’s look at types (classes and interfaces):

Definition 11.1 (Subtypes). Let S < T denote that S is a strict subtype of T where

T ∈ super(S)

S < T
S < T ′ T ′ < T

S < T

We also define S ≤ T as S is a subtype of T where

S < T

S ≤ T

S ≤ S

Definition 11.2 (Super set). We define the super set super(T ) as all super classes of T i.e. super(T ) = {S | T <
S or T ≤ S}.

Definition 11.3 (Declare set). We define the declare set declare(T ) to be the set of methods and fields declared
in T .

17
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Remark 11.2. • interface methods are implicitly public abstract

• interface fields are implicitly static

Definition 11.4 (Inherit set). We define the inherit set inherit(T ) as the methods and fields that T inherits.

Definition 11.5 (Contain set). We define the contain set contain(T ) = declare(T ) ∪ inherit(T ).

Now we look at type methods:

Definition 11.6 (Replace (methods)). We say replace(m,m′) if method m overrides method m′.

Definition 11.7 (Replace (fields)). We say replace(f, f ′) if field f hides field f ′.

Definition 11.8 (Signature). We define sig(m) as method m’s signature which consists of its name and its
parameter type.
It does not include return type or modifiers.

We have the following inference rule for overriding methods in superclasses (8.4.6):

S ∈ super(T ) m ∈ declare(T ) m′ ∈ contain(S) sig(m) = sig(m′)

(m,m′) ∈ replace

Definition 11.9 (No declaration). We define nodecl(T,m) as T does not declare method with sig(m).
That is ∀m′ ∈ declare(T ), sig(m′) 6= sig(m).

Definition 11.10 (Modifications). We define mods(m) as the set of method modifiers on m (e.g. abstract).

We also have the inference rule for inheriting non-abstract methods (8.4.6.4):

S ∈ super(T ) m ∈ contain(S) nodecl(T,m) abstract 6∈ mods(m)

m ∈ inherit(T )

Definition 11.11 (All abstract). We define allabs(T,m) as:

∀S ∈ super(T )∀m′ ∈ contain(S), sig(m′) = sig(m)⇒ abstract ∈ mods(m′)

That is all inherited methods with the same sig(m) are abstract.

So we have the inference rule for inheriting abstract methods (8.4.6.4):

S ∈ super(T ) m ∈ contain(S) nodecl(T,m) abstract ∈ mods(m) allabs(T,m)

m ∈ inherit(T )

that is: we can only inherit abstract methods if there are no concrete methods with the same signature. We thus
need to define replacing abstract with concrete methods (8.4.6.4):

S, S′ ∈ super(T ) m ∈ contain(S) m′ ∈ contain(S′)
abstract 6∈ mods(m) abstract ∈ mods(m′) sig(m) = sig(m′)

(m,m′) ∈ replace

Finally we have the inference rule for inheriting fields:

S ∈ super(T ) f ∈ contain(S) ∀f ′ ∈ declare(T ), name(f ′) 6= name(f)

f ∈ inherit(T )

A note on interfaces and java.lang.Object:
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Remark 11.3. An interface with no superinterfaces implicitly declares an abstract version of every public
method in java.lang.Object (JLS 9.2).
For example an empty interface interface I implicitly has i.equals(i).
So class C implements I would implicitly contain abstract methods of java.lang.Object.

11.2 Hierarchy checks (JLS, Joos)

We enumerate the class hierarchy checks we need to perform using the notation and definitions we introduced above:

1. No cycles in hierarchy i.e. 6 ∃T, T < T

2. No duplicate methods i.e.

∀m,m′ ∈ declare(T ),m 6= m′ ⇒ sig(m) 6= sig(m′)

3. One return type per unique signature i.e.

∀m′ ∈ contain(T ), sig(m) = sig(m′)⇒ type(m) = type(m′)

4. Classes with abstract methods must be abstract i.e.

∀m ∈ contain(T ),abstract ∈ mods(m)⇒ abstract ∈ mods(T )

5. Static methods can only override static methods i.e.

∀(m,m′) ∈ replace,static ∈ mods(m) ⇐⇒ static ∈ mods(m′)

Remark 11.4. Note this is an ⇐⇒ relationship: we cannot override with a non-static method if a static
method is inherited nor can we override with a static method the inherited method is non-static.

6. Methods can only override methods with the same return type i.e.

∀(m,m′) ∈ replace, type(m) = type(m′)

7. Only public methods can override public methods i.e.

∀(m,m′) ∈ replace,public ∈ mods(m′)⇒ public ∈ mods(m)

Remark 11.5. We only have a ⇒ relationship: this means we may override with a public method m with
the same signature of m′ if m′ is not public.

8. Omitted.

9. We cannot override final methods i.e.

∀(m,m′) ∈ replace,final 6∈ mods(m′)

10. We cannot declare two fields with the same name i.e.

∀f, f ′ ∈ declare(T ), f 6= f ′ ⇒ name(f) 6= name(f ′)
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11.3 Disambiguating namespaces (JLS 6.5.2)

Consider the expression a1.a2.a3.a4. We need to ascertain whether ai are packages, types, or fields.
Consider also the expression a1.a2.a3.a4(). Then we know a4 is a method, but we still need to disambiguou the rest
of ais.
Consider the following code snippet:

1 class X {
2 X X (X X) {
3 return (X)X.X(X);
4 }
5 }

how would the X’s be disambiguated? We follow the below procedure.
Given a1. . . . .an proceed left to right and start with a1:

1. If local variable a1 is in scope, we use it.

a2, . . . , an must be instance fields.

2. If field a1 ∈ contain(current class) we use it.

a2, . . . , an must be instance fields.

3. For each k from 1 to n, if a1. . . . .ak is a type in the global environment, then ak+1 is a static field and
ak+2, . . . , an are instance fields.

Remark 11.6. If at any step e.g. step 1 we discover a2 is not an instance field of a1, we do not proceed to later
steps and instead throw a compile error.

12 February 25, 2019

12.1 Resolving variables/static fields

In general this is straightforawrd: we simply lookup the variable in the innermost environment and if not found, we
search outwards in enclosing scopes.
An issue with Java specifically is shadowing. A solution is to create a new environment for each block, but check
outer environments when adding a name.
For example considder the following code snippet:

1 { int x;
2 {
3 int y; // OK
4 int z; // OK?
5 }
6 {
7 int x; // not allowed
8 int y; // OK
9 }

10 int z; // OK?
11 }

Note that declaring int x again inside a nested scope when int x is already declared in an enclosing scope is not
allowed. However, re-declaring int y in disjoint non-nested scopes is fine.
A solution is to create a new scope for every variable declaration (which would end at its semantic scope). For
example given:
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1 {
2 int x;
3 y = 3; // error
4 int y;
5 y = 5; // OK
6 int z;
7 }

The corresponding program with scopes created for each new variable declaration would look something like:
1 {
2 int x;
3 y = 3; // error
4 {
5 int y;
6 y = 5; // OK
7 {
8 int z;
9 }

10 }
11 }

12.2 Type checking

We provide two different perspectives/definitions of a type:

Definition 12.1 (Type (definition 1)). A type is a set of values (with operations on them).

Definition 12.2 (Type (definition 2)). A type is a way to interpret bit sequences.

We now differentiate between two categories of types:

Definition 12.3 (Static type). The static type of an expression E is a set containing all possible values of E.

Definition 12.4 (Dynamic type). The dynamic type is a runtime value that indicates how to interpret some of
the other bits.

Definition 12.5 (Declared type). The declared type of a variable is an assertion that the variable will only
contain values of that type.

We now distinguish between two different ways we go about type checking:

Definition 12.6 (Static type checking). Prove (using mathematical inference/deduction) that every expression
will evaluate to a value in its type.

Definition 12.7 (Dynamic type checking). Runtime check that the dynamic type (tag) is declared in the variable
to which it is assigned.

A static type checker does two things:

1. Infers a type for each sub-expression

2. Check that expressions are used correctly with operations (e.g. 1 + true is an error).

Definition 12.8 (Type correct). A program is type correct if type assertions hold in all executions.

Remark 12.1. Note that a naive definition of type correctness is undecidable. Consider the following program:
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1 int x;
2 if(program halts) {
3 x = true;
4 }

Note that if the program halts then x = true makes the entire program type incorrect, otherwise the program is
indeed type correct since x = true is not evaluated.
Therefore we could reduce the halting problem to this definition of type correctness.

Instead we have a more refined definition of type correctness:

Definition 12.9 (Statically type correct). A program is statically type correct if it obeys a system of type
inference rules (type system).

Definition 12.10 (Soundness). A type system is sound if statically type correct ⇒ type correct.

12.3 Introduction to type system for Joos

We introduce some notation:
C,L, σ ` E : τ

In class C, local environment L, if the current method has return type σ, then expression E has tpe τ .
Also:

C,L, σ ` S

means statement S is statically type correct.
We now introduce the inference rules:

Literals Literals are straightforward. For example integer literals have the rule:

C,L, σ ` 42 : int

The other literals:

true : boolean “abc” : string

′a′ : char null : null

Note “null” is a special type with only the null literal.

Operations The not operator:
E : boolean
!E : boolean

We first define the numeric type class as:

num(σ) = σ ∈ {int, short, char, bytes}

Then the addition operation is:

E1 : τ1 E2 : τ2 num(τ1) num(τ2)

E1 + E2 : int
E1 : string E2 : τ2 τ2 6= void

E1 + E2 : string E2 + E1 : string
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12.4 Instance fields/methods

After type-checking, every sub-expression has a type. Consider the following two usages:
1 a.b // field access
2 a.b(c) // method access

We know the type of a from type-checking, thus for the first usage we can simply lookup the field b in type a, and
for the second usage we can look up for a method b in type a (we check the contains set).
If b is an overloaded method, we disambiguate based on the arguments c.

13 February 27, 2019

13.1 Pseudocode for type checking

We have the following pseudocode for type checking an AST node E:

1. Find an inference rule of the form:
premises

C,Lσ ` E : τ

2. Check premises

3. Return τ if premises are satisfied

We repeat the above for all inference rules for E until either we find one whose premises are satisfied or we raise a
type/compile error.

13.2 More inference rules for type system of Joos

For local variable usages we have

L(n) = τ

C, L, σ ` n : τ

C, L, σ ` this : C

where L(n) is the type (if it exists) of a variable.
For statements, note that we do not assign it a type in Java:

C,L, σ ` E : boolean C,L, σ ` S
C,L, σ ` if(E) S

For a block of statements we have:
∀i ` Si

` {S1;S2; . . . Sn; }
To handle variable declarations, we have the rule:

C,L[n→ τ ], σ ` S
C,L, σ ` {τ n;S}

For assignments, we have:
C,L, σ ` E : τ2 C,L, σ ` L(n) = τ1 τ1 := τ2

C,L, σ ` n = E : τ1
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where the := is a special relation known as assignability (JLS 5), which has the inference rules (for Joos
specifically):

τ := τ

int := short

short := byte

int := char
D ≤ C
C := D

assignment to superclass
σ := τ τ := ρ

σ := ρ
transitivity

C := null

For fields we have the rules:

` static τf ∈ contains(D)

` D.f : τ

` static 6∈ mods(f) E : D τf ∈ contains(D)

` E.f : τ

` E : τ2 static τ1f ∈ contains(D) τ1 := τ2
` D.f = E : τ1

` E1 : D E2 : τ1 static 6∈ mods(f) τ2f ∈ contains(D) τ2 := τ1
` E1.f = E2 : τ2

For comparison we have (note these rules hold for both == and !=)

` E1 : τ1 E2 : τ2 num(τ1) num(τ2)

` E1 == E2 : boolean
` E1 : τ1 E2 : τ2 τ1 := τ2 ∨ τ2 := τ1

` E1 == E2 : boolean

For casting, we have two ways to cast:

` E1 : τ1 τ1 := τ2 ∨ τ2 := τ1
` (τ2)E : τ2

Note τ2 := τ1 corresponds to upcasting (always succeeds) whereas τ1 := τ2 corresponds to downcasting (may
fail, needs runtime check).
For numeric types:

` E1 : τ1 num(τ1) num(τ2)

` (τ2)E1 : τ2

Finally we have runtime checks for the expression instance of:

` E : τ τ := D ∨D := τ

E instance of D : boolean

Remark 13.1. Note that if there is no assignability between τ1, τ2 then it always fails except for interfaces.
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For methods invocations:

` E : D ∀i ` Ei : τi τm(τ1, . . . , τn) ∈ contains(D)

` E.m(E1, . . . , En) : τ

Remark 13.2. We do not have implicit casting of arguments with assignability semantics in Joos.
In Java there are specific rules for determining the “maximally specific” method declaration since the method may
be overloaded (see 15.12.2).
One can simply use upcasts in Joos to work around this.

For method returns:

C,L, σ ` E : τ σ := τ

C, L, σ ` return E

C,L, void ` return

For arrays:

` E1 : τ1[] E2 : τ2 num(τ2)

` E1[E2] : τ1
` E1 : τ1[] E2 : τ2 num(τ2) E3 : τ3 τ1 := τ3

` E1[E2] = E3 : τ1
` E : τ []

` E.length : int

Note that array assignability (JLS 5) has its own rules for the standard library types:

Object := σ[]

Cloneable := σ[]

java.io.Serializable := σ[]

We also have the following rule for multidimensional arrays:

σ[] := τ []

σ[][] := τ [][]

14 March 4, 2019

14.1 Potential issues with arrays

Recall that we have the inference rules

D ≤ C
C[] := D[]

D ≤ C
C := D
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Now consider the following code fragment:
1 Apple[] as = new Apple[1];
2 Fruit[] fs = as;
3 fs[0] = new Orange();
4 Apple a = as[0];

Note that as[0] now points to an Orange, but we’ve explicitly typed a as an Apple. This is an unsound
program.

Remark 14.1. In Java, the above code statically type checks and compiles but the assignment fs[0] = new
Orange() will throw a runtime error.
It does this by marking the initial as allocated array as type Apple[] (dynamic type tag) and checking it during
assignment.

Remark 14.2. Unsound programs are possible even if they statically type check.
Formally, we have statically type correct ⊆ type correct ⊆ all programs where unsound programs can occur at all
levels.

How do we deal with this? To preserve type safety, we must check the dynamic type tag of an array at every array
write (JLS 10.10) and raise an ArrayStoreException if a violation occurs.

14.2 Static program analysis

Consider another “unsound” behaviour with casts:
1 Orange o = (Orange) new Apple();

As a programmer there may be instances where we want to intentionally introduce unsoundness e.g. with the above
cast.

Remark 14.3. The above cast raises a ClassCastException runtime error in Java.

In static program analysis, we want to prove properties of run-time behaivour without actually running the
program.
Some applications:

• Prevent bugs

• Generate efficient code

• Inform programmer

Some properties we can derive:

• Constant expression

• Method execution always ends with return statement

• Will current value of variable ever be read?

• Will a statement ever be executed?

• Read/write dependencies

• Will program terminate or loop infinitely? (in general this is undecidable but we can still do this analysis for
some programs)
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• Is an array access in bounds?

Example 14.1. Suppose we wanted to see if the following outputs “Hello world”:
1 main() {
2 if(...) { ... }
3 printf("Hello world");
4 }

Suppose we wanted to write an assembler that given a program f , decides whether the output is “Hello world”.
Clearly this is undecidable in general.

Theorem 14.1 (Rice’s theorem). Let R be any non-trivial property of the output of the program.
Given program P , it is undecidable whether P has property R.
We define non-trivial as ∃P ∈ R and ∃P 6∈ R.
We can however give a conservative approximation.

Definition 14.1 (Conservative analysis). An analysis is conservative if its result is never untrue.
For example an analysis outputting maybe and no is conservative (assuming it’s sound).

Definition 14.2 (More precise analysis). A more precise analysis gives definitive answers for more programs.
For example an analysis outputting maybe, no and yes is more precise than a conservative one (assuming it’s
sound).

Java requires reachability analysis and definite assignment (every local variable must be written to before it
is read).

14.3 Java reachability analysis (JLS 14.20)

Java specifies specific reachability analysis that must be performed. A conservative analysis looks like:

Algorithm 11 Java reachability (conservative) analysis

1: Define: in[s] - can statement s start executing? (no/maybe)
2: Define: out[s] - can statement s finish executing? (no/maybe)
3: Error if in[s] = no for any s
4: Error if out[method body] = maybe (for non-void methods)

We define in[s] and out[s] for every AST node recursively.
For return statements we have for both L : return and L : return E:

out[L] = no

For if statements we have L : if (E) S where:

in[S] = in[L]

out[L] = out[S] ∨ in[L] = in[L] out[S]⇒ in[S]⇒ in[L]

where in[S] = in[L] since to execute S, regardless of whether E evaluates to true or false we require at least
in[L] and we define

maybe ∨maybe = maybe
no ∨maybe = maybe
no ∨ no = no
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(this holds only for this specific analysis: one will need to define this merge ∨ specifically for a given analysis).
For if-else statements we have L : if (E) S1 else S2 where:

in[S1] = in[L]

in[S2] = in[L]

out[L] = out[S1] ∨ out[S2]

We have a special case for an infinite loop where L : while(true) S and breaks do not exist (Joos):

in[S] = in[L]

out[L] = no

similarly for L: while(false) S:

in[S] = no

out[L] = in[L]

and in general for L: while(E) S:

in[S] = in[L]

out[L] = in[L] in[S] ∨ in[L] = in[L]

Note the above also applies for ifs but the spec does not include this, presumably because the initial motivation
was to detect infinite loops.

15 March 6, 2019

15.1 Constant expressions

We note that comparison between literals can be converted into a constant. For example while (1 == 1)
becomes while (true); however, for an expression x in general while (x == x) cannot have any constant
reduction (consider x is a method call e.g. RNG).
For more constant expressions see JLS 15.28.

15.2 More reachability analysis

For block statements L : {S1; S2}:

in[S1] = in[L]

in[S2] = out[S1]

out[L] = out[S2]

For any other statement L : other stmt:
out[L] = in[L]

For method bodies L : method body, we do not know if someone will invoke the method at any point, so:

in[L] = maybe
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and if the method is non-void, then out[L] must be no.

Remark 15.1. Performing reachability analysis of ins/outs is naive quadratic time: memoization reduces this to
linear time.

Remark 15.2. We can do this analysis in topological order from the top of tree and work downwards.
Handling cycles will be discussed later.

15.3 Java definite assignment

In Java we require a variable to be initialized/defined before usage. For example:
1 int x;
2 x = 42;
3 return x;

Note it is fine for a never referenced variable to not be initialized.
In Joos, we relax definite assignment e.g. requiring int x = 42;. That is:

1. Local variable must be initialized when declared

2. Local variable cannot appear in own initializer e.g. int x = x

However in general we define (note in/out is now a set rather than a boolean) the sets of definitely assigned
variables:

in[s] set of variables that definitely have been initialized before s starts execution

out[s] set of variables definitely initialized after execution of s

Then for any expression E that reads x, error if x 6∈ in[E].

Remark 15.3. Java permits assignments within assignments e.g. int x = (y = 5).

So we define for L { τ x = E; S } :

in[E] = in[L]

in[S] = out[E] ∪ {x}
out[L] = out[S]

for a similar expression without initialization L : { τ x; S }:

in[S] = in[L]

out[L] = out[S]

For a simple assignment expression L : x = E:

in[E] = in[L]

out[L] = out[E] ∪ {x}

Remark 15.4. Consider the following:
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1 boolean x;
2 if (b && (x = true)) {
3 println(x);
4 } // fine
5
6 boolean x;
7 if (b || (x = true)) {
8 println(x);
9 } // error

Note in the first snippet we are guaranteed x will be initialized if println(x) is executed. This does not hold in
the latter example.

For if statements e.g. L : if(E) S:

in[E] = in[L]

in[S] = outtrue[E]

out[L] = out[S] ∩ outfalse[E]

where outtrue[E] is the set of initialized variables if E indeed evaluates to true (and similarly outfalse[E]).
The intersection allows us to account for both cases when E is true and false simulatenously: if we don’t know
E is true or false then the intersection gives us a conservative estimate (since we want in/out to know definite
assignments).
For the && operator where L : E1 && E2:

in[E1] = in[L]

in[E2] = outtrue[E1]

outtrue[L] = outtrue[E2]

outfalse[L] = outfalse[E1] ∩ outfalse[E2]

16 March 11, 2019

16.1 x86 assembly language family

The name x86 comes from the 8086 processors produced by Intel in 1978 and was one of the first architectures to
support eight 16-bit registers (whereas most other processors only supported 8-bit registers). It used the x86-16
instruction set.
The 80386 released in 1986 was the first 32-bit Intel architecture with eight 32-bit registers. It used the x86-32
(also known as IA-32 or i386) instruction set.
Opteron was released in 2003 had sixteen 64-bit registers and uses the x86-64 instruction set.
We will be using the i386 instruction set for Joos.

16.2 i386 registers

In i386 we have eight general-purpose registers: eax, ebx, ecx, edx, esi, edi, esp, and ebp.
These registers have special names attached to them: for example when copying between two arrays there are special
instructions where esi is implicitly treated as the “source index” and edi is treated as the “destination index”.
We treat the first 6 registers as just ordinary registers for this course.
We also have special instructions (e.g. push/pop) where it treats esp as containing the stack pointer and ebp
usually as the frame pointer (beginning of function), although we may use it as any ordinary register.
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Remark 16.1. One should never explicitly uses esp since esp is used for a lot of special instructions implicitly.

There are also six segment registers: cs, ds, es, fs, gs, ss. We will ignore these registers.

16.3 i386 instructions

To copy data to/from registers, we have the following instructions:
1 mov eax, ebx ; eax = ebx (copy)
2 mov [eax], ebx ; *eax = ebx (de-reference and copy)
3 mov eax, 42 ; eax = 42 (assign constant)
4 mov eax, label ; eax = label (assigns location of label)
5 mov eax, [label] ; eax = *label (assigns value (of instr.) at label)
6 mov eax, [esp + ebx*2 + 5] ; more complex arithmetic

We also have instructions for constants/words:
1 dd 1234 ; .word 1234 (32-bits)
2 db "hello"

where dd stands for “data double-word” (32 bits) and db stands for “data bytes”.
We have arithmetic instructions:

1 add eax, ebx ; eax += ebx
2 sub eax, ebx ; eax -= ebx
3 imul eax, ebx ; eax *= ebx (i for signed)
4 idiv ebx ; eax = edx:eax / ebx (edx:eax is 64 bits)
5 ; edx = edx:eax % ebx

Remark 16.2. Warning: since idiv prepends eax with edx, one needs to set edx to the appropraite sign of
eax: that is edx = 0 if eax ≥ 0 and edx = -1 (mask of 1’s) if eax < 0.
The cdq instruction will set edx to the sign of eax.

Some instructions for control flow:
1 jmp label ; eip = label
2 cmp eax, ebx ; sets appropraite flags (see next)
3 jg label ; jump if eax > ebx (from cmp, signed)
4 ; also jge, jl, jle for >=, <. <=
5 ja label ; jump if eax > ebx (from cmp, unsigned)
6 ; also jae, jb, jbe for >=, <, <=
7 push eax ; pushes eax onto stack
8 pop eax ; pops off stack into eax
9 call label ; pushes eip, jumps to label

10 ret ; pops to eip

For system calls and interrupts:
1 int 0x80 ; performs system call 0x80

We will need to set appropriate registers with arguments we want to pass through to system calls. For example, the
exit(code) system call in Linux, we will set eax = 1 and ebx = code.

16.4 i386 directives

We have a few directives available to us:
1 dd, db ; see above
2 global label ; export (make label available in other files)
3 extern label ; import label from another file
4 align 4 ; pad with 0x0 bytes to align to memory address divisible by 4
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17.1 Code generation

The main tasks of code generation is to:

• Plan data layout (express as code)

• Generate code for each AST node (botom-up)

• Write supporting run-time code

17.2 Java data

We need to allocate memory and organize data for the following in Java:

• Literals

• Local variables

• Objects, where instances require:

– Field values
– Dynamic class tag (vpointer)

• Classes, which require:

– Pointers to method implementations (vtable)
– Subtype testing
– Static field values

• Arrays, which require:

– Elements
– Length
– Dynamic type tag (vpointer)

Primative data types in Joos include:

• int (signed and unsigned), 32 bits

• short (signed) and char, 16 bits

• byte, 8 bits

• boolean, 1 bit

• reference, 32 bits

Remark 17.1. 1. One may choose to use 32 bits for everything, OR

2. One may choose to pack bits/bytes together

Remark 17.2. For arithmetic involving short and char, note that the result is a 32 bit int, but semantically
the inputs are 16 bits.
One should cast the short and char to int first (since each are signed, one should sign extend them) then
perform the arithmetic as per usual.
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17.3 Data storage options

• Constants: one can either specify it directly in the instruction (e.g. move eax, 42) or use labelled memory
locations (e.g. label: db "string")

• Registers: limited number so will require backup

• Fixed (labeled) memory locations

• Stack: LIFO, efficient (referenced by fixed offset from stack pointer)

• Heap: allocate/free in any order, any size. Requires runtime data structures and algorithms to manage
memory

Remark 17.3. Constants, registers, and fixed memory locations are statically decoded/accessed by the compiler
(hardcoded in assembly) whereas the stack and heap can by dynamically referenced.

A good mapping between types of data and storage:

• Literals: constants

• Local variables: stack

• Objects: heap

• Classes: fixed locations

• Arrays: heap

17.4 Stack offsets

Given the following code snippet:
1 void m() {
2 int a = 0;
3 int b = 0;
4 int c = 0;
5 }

We can create a frame to store the local variables (3× 4 = 12 bytes) i.e. we first do sub esp, 12 to move the
head of the stack downwards (stack grows from top to bottom) then our local variables will simply be a = [esp +
8], b = [esp + 4], c = [esp + 0].
Some problems:

• Offsets change when esp changes

• Require fixed frame size (does not work if we try alloc a or allocate variable-length array (VLA), but this
is fine in Java, maybe not in C)

• Difficult to interpret stack trace (for debugging)

One solution for the first and third problem is to use the ebp register as a frame pointer. Before we allocate the
frame on the stack, we set mov ebp, esp (i.e. keep a reference to the start of the frame) and all local variables
will reference ebp throughout e.g. a = [ebp - 4], b = [ebp - 8], c = [ebp - 12].
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17.5 Procedure calls

During procedure calls, one needs to pass the parameters and receive the return value. One needs to decide on how
and which registers are to be saved and restored.
The callee-save protocol specifies that the callee must preserve and restore certain register values. In
x86 the registers ebx, esi, edi, ebp, esp are typically required to be preserved.
The caller-save protocol permits register values in eax, ecx, edx (for x86) to change in a procedure call.
For example, the following is a typical prologue/epilogue during a procedure call:

1 push ebp
2 mov ebp, esp
3 sub esp, 12 ; 12 is frame stack
4 ; push callee-save regs on stack
5 ...
6 ; pop callee-save regs
7 mov esp, ebp
8 pop ebp
9 ret

We also need a convention for storing arguments before a procedure (Application Binary Interface (ABI)) so
the procedure knows how to access those parameters. A typical convention is to push arguments onto the stack
from left to right:

1 int f(int a, int b, int c){
2 int i = 0;
3 return a;
4 }
5
6 f(x,y,z);

To invoke f(x,y,z) we would have:
1 push x
2 push y
3 push z
4 call f

and when f returns we typical return the value in register eax. This works well for Joos since everything is at most
32 bits.
Thus inside f we’ll have:

1 push ebp
2 mov ebp, esp
3 sub esp, 4 ; equivalent to pushing i = 0
4 mov eax, [ebp + 16] ; return a
5 mov esp, ebp
6 pop ebp
7 ret

Note that we have i = ebp - 4, c = [ebp + 8], b = [ebp + 12], c = [ebp + 16] (NB: our first
parameter begins at +8 instead of +4 because we pushed the previous ebp (at ebp + 0) and eip (from
call/ret at ebp+4) onto the stack!)

Remark 17.4. Pascal ABI is also left to right whereas cdecl ABI is right to left.
The cdecl ABI allows variable-length argument lists such as for printf: printf can simply keep walking down
the stack (which is ordered left to right since we inserted right to left) until it reaches the old ebp.
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17.6 Code generation for objects and classes

The per-object data includes the class tag and instance field values.
The per-class data includes static field values and method implementations.

Definition 17.1 (Type-compatible). We say T := S: the memory layout of an S object must be compatible with
T .
The idea is to make the T layout a prefix of the S layout (both object and class layouts).

Example 17.1. Consider the following:

1 class A {
2 int fa;
3 int ma() { ... }
4 int ma2() { ... }
5 }
6
7 class B extends A {
8 int fb;
9 int ma() { ... }

10 int mb() { ... }
11 }

For objects of type A and B, we can have their memory layout as such:

object A
class tag (points to class A)

fa

object B
class tag (points to class B)

fa
fb

where each class tag points to the address of their respective classes.
If we wanted to read fa, we can simply do:

1 mov eax, [eax + 4]

for either object A or B.
As for the class memory layouts:

class A
ma (points to A’s implementation of ma)
ma2 (points to A’s implementation of ma2)

class B
ma (points to B’s implementation of ma)
ma2 (points to A’s implementation of ma2)
mb (points to B’s implementation of mb)

Then for call ma, we can simply do:
1 mov eax, [eax]; ; store vtable/class tag
2 mov eax, [eax + 0]; ; + 0: offset of ma
3 call eax

Question 17.1. When does this offset approach fail? With interfaces!
Consider the following:

1 interface A {
2 int ma(); // offset 0
3 }
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4
5 interface B {
6 int mb(); // offset 0
7 }
8
9 class C implements A, B {

10 int ma() { ... } // offset 0
11 int mb() { ... } // offset 4
12 }

Note that an object of class C will have ma and mb at offsets 0 and 4, respectively.
If we had a declared object of type B, then we would incorrectly access ma at offset 0.
We thus need a function at runtime f : C × S → I where:

• C: concrete (runtime) class of object

• S: “selector” i.e. name/signature of method

• I: method implementation

Solution. Option 1: Selector Indexed Table We can implement this directly in assembly using a large 2D
table where we have columns for every class and rows for every selector i.e. method name/signature
for every interfaces.

For every class, we keep a reference to its respective column in the table at the 0th offtset.

Lookup time is O(1).

For example, call mb for an object is:
1 mov eax, [eax] ; class vpointer
2 mov eax, [eax] ; select table column
3 mov eax, [eax + 4] ; (global) offset of mb
4 call eax

This table solution is called a Selector Indexed Table.

This table takes O(SC) space (for S selectors/unique method signatures in interfaces and C classes).

We can save space by:

• reusing columns/rows (e.g. if classes implement the exact same interfaces)

• return unused selectors to heap memory manager

Option 2: Hash Table We may also implement a hash table separately (e.g. in C) as part of the runtime library,
take its assembly and interface it with the compiler so the compiler would do lookups via this hash table.

The space is O
(∑

c ∈ Cm(c)
)
where m(c) is the methods in class c i.e. linear in the number of methods.

The time is however not O(1) since we may have to do a hash table lookup upon every call. We can however
cache the last-seen class/answer for each call site.

17.7 Array types

We note that arrays of reference types e.g. Foo[] technically inherit from java.lang.Object and will require
their own vtable/class data table for method implementations.
They do not however contain any static fields so only pointers to their appropriate implementations are necessary.
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17.8 Subtype testing

We may need to test for subtype assignability during runtime, e.g.
1 if( o instanceof T) ... // instanceof
2 a = (A)o // casting
3 fruits[i] = orange // assigning arrays

That is given object o and type T , is T := classtag(o)?
Ignoring interfaces and only considering single inheritance, we can perform DFS, assigning each class an interval
that spans the smallest and largest number assigned to its descendant classes.
For example if B extends A and C extends A, then after DFS traversal we have [2, 3] for B, [4, 5] for C, and
[1, 6] for A.
Then B ≤ A iff interval of B is contained in interval of A.
What about multiple inheritance via interfaces? We can construct a similar lookup table of size O(T 2) where T is
the number of types that tells us whether a given type T is a subtype of another type T ′. This table can work
exactly as the Selector Indexed Table we used for method dispatching.
Again, similar optimizations can be performed on this table.

18 March 20, 2019

18.1 Code generation for control-flow statements

if else statements Given L: if(C) T else E we have:
1 ; C.code
2 cmp eax, 0
3 je else42 ; unique else label
4 ; T.code
5 jmp end42 ; unique end label
6 else42:
7 ; E.code
8 end42:

An alternative is to define iffalse and iftrue functions in our compiler where

iffalse(C, label) evaluates C and branch to label if false

iftrue(C, label) evaluates C and branch to label if true

and we can replace e.g. the first 3 lines with iffalse(C, else42).

Remark 18.1. We only really need one of iffalse or iftrue.

&& || Note these operators can be treated as control flow expressions since they short-circuit.

They are similar to if else, e.g. for L: E1 && E2:
1 ; E1.code
2 cmp eax, 0
3 je endX
4 ; E2.code
5 endX:

Remark 18.2. The register eax still contains the entire expression’s result whether E1 evaluates to true or
false.
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If we implemented iffalse, then:
1 iffalse(E1 && E2, l) =
2 iffalse(E1, l)
3 iffalse(E2, l)

18.2 Code generation for expressions

Arithmetic Suppose we are given E: E1 - E2, then:
1 ; E1.code
2 push eax
3 ; E2.code
4 pop ebx
5 sub ebx, eax
6 mov eax, ebx

Remark 18.3. Using the stack is the simplest but wastes more instructions than necessary.

We could have specified a separate register where E1.code would place its results instead of pushing and
popping off the stack.

We will re-visit this later on how to optimize this.

Assignment Given E1 = E2, we need to evaluate the value of E2 and the address of E1, where either
expressions could be complicated.

Note that we need to ensure that E1 is an l-value to prevent invalid assignments like 5 = 42.

Definition 18.1 (l-value). An l-value is an expression that can be assigned to.

In Java, variables, object fields, class fields, and array elements are all l-values.

The idea is to generate the address of l-values separately i.e. some code to get the address for E1 when
we want E1.addr.

Thus we have:
1 ; E1.addr
2 push eax
3 ; E2.code
4 pop ebx
5 ; if E1 is array access, check assignability
6 mov [ebx], eax

To get the address of an l-value E1.addr, we have:

Local variable V For V.addr:
1 mov eax, ebp
2 add eax, (offset of V)

Class field C.f For C.f.addr:
1 mov eax, (label of C.f)

Object field O.f For O.f.addr:
1 ; O.code
2 ; null check
3 add eax, (offset of f)
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Remark 18.4. Note we have O.code instead of O.addr: this is because the value of the object is the
address of its instance, whereas O.addr is where the object is declared i.e. local variable.

Array access a[i] For a[i].addr:
1 ; a.code
2 push eax
3 ; i.code
4 pop ebx
5 ; null check of a
6 ; bounds check
7 add eax, (header offset) ; # of words at the header of array instance
8 shl eax, 2 ; multiply offset by 4 to get byte offset
9 add eax, ebx

Remark 18.5. The null check happens after evaluating i as per the Java spec.

Thus if we wanted to read the value of E1 e.g. for E1.code then we have:
1 ; E1.addr
2 mov eax, [eax] ; dereference address of E1

Method calls (static type of o is a class) For non-static and non-constructor method calls on an object
i.e. o.m(a), we follow the left-to-right Pascal argument semantics:

1 ; o.code
2 ; null check
3 push eax ; stack: [o]
4 ; a.code
5 push eax ; stack: [o, a]
6 mov eax, [esp + 4] ; get address of o
7 mov eax, [eax] ; get vtable
8 mov eax, [eax + (offset of m)] ; address of m body
9 call eax

10 add esp, 8 ; pop args o and a

Remark 18.6. Recall the first item on the stack is at esp + 0.

Method calls (static type of o is an interface) If the static type of o is an interface, rather than simply
getting the vtable and using the offset of m to get m’s body, we need to do a lookup in the Selector Indexed
Table for m’s body.

19 March 25, 2019

19.1 Instance creation

For new A(a), we have:
1 ; create object:
2
3 mov eax, (size of A in bytes)
4 call __malloc ; zeros memory
5 mov [eax], (vtable of class A)
6
7 ; call constructor:
8
9 push eax ; push this as first argument
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10 ; a.code ; evaluate parameters
11 push eax ; push the argument a
12 ; call constructor of A
13 add esp, 4 ; pop parameters
14 pop eax ; pointer to object

Generating the code for the constructor:

1. Call superclass constructor

2. Execute field initializers

3. Explicit constructor body

19.2 Compiler optimization

There are a couple of ways to optimize our compiler:

• Better code generation

• Static analysis and optimization

• Heap management and garbage collection (GC)

19.3 Code generation optimization

So far, for each AST node we’ve generated multiple assembly instructions in a RISC fashion.
In CISC, we have more powerful and complex instructions that will allow us to implement multiple AST nodes in
one instruction.
We categorize the ways we can optimize code generation:

• instruction selection: which instructions

• instruction scheduling: in which order to enable pipelining

• register allocation

Example 19.1. Consider the following array assignment a[b] = c. We have
1 ; a.code:
2 mov eax, ebp
3 add eax, -4 ; offset of a in stack
4 mov eax, [eax] ; dereference to a object
5 push eax
6
7 ; b.code:
8 move eax, ebp
9 add eax, -8 ; offset of b in stack

10 mov eax, [eax]
11
12 ; compute a[b] addr
13 pop ebx
14 add eax, 2 ; header of a object
15 shl eax, 2
16 add eax, ebx
17 push eax
18
19 ; c.code
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20 mov eax, ebp
21 add eax, -12
22 mov eax, [eax]
23
24 ; assign c to a[b]
25 pop ebx
26 mov [ebx], eax

Note that for a.code, we could’ve simply done mov eax, [ebp - 4].

19.4 Peephole optimization

In general, we can use peephole optimization that does search and replace on generated code. We express
patterns for instructions to look for and replace. For the above pattern, we can replace:

1 mov Ra, Rb
2 add Ra, C
3 mov Ra, [Ra]

with
1 mov Ra, [Rb + C]

One would repeatedly apply search and replaces until no changes.

20 March 27, 2019

20.1 Tree-tiling instruction selection

We first generate a detailed AST whereby the leafs are individual tokens in assembly. For example for a[b] = c
we have:

What if we had instructions that performed the operations of sub-trees of the right tree? We could transform
subtrees on the right with single instructions.
We can map each subtree to instructions (these are our tiles):

• ebp → mov eax, ebp

• c (some constant c) → mov eax, c

• x + y:
1 ; x
2 push eax
3 ; y
4 pop ebx
5 add eax, ebx
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• [x] → mov eax, [eax]

• [x] = y:
1 ; x
2 push eax
3 ; y
4 pop ebx
5 move [ebx], eax

We observe that we can combine the instructions for some of the subtrees:

• [r + c] → mov eax, [r + c]

• [(x + c2) + (c1 * y)]:
1 ; x
2 push eax
3 ; y
4 pop ebx
5 move eax, [ebx + eax * c1 + c2]

Thus [(x + c2) + (c1 * y)] = z is:
1 ; x
2 push eax
3 ; y
4 push eax
5 ; z
6 pop ebx
7 pop ecx
8 move [ecx + ebx * c1 + c2], eax

If we assigned a cost to each node and transformation (e.g. +1 for every instruction) then we can find the tiling
that minimizes the overall cost. We can come up with a tiling algorithm:

Algorithm 12 Tree-tiling algorithm
input AST T
output mincost[n] - minimum cost of tiling subtree under node n
output tile[n] - tile to use at node n to achieve min cost
1: for each node n of T in bottom-up order (DFS) do
2: for each tile t compatible with subtree under node n do
3: tilecost[t]← cost[t] +

∑
c∈ children oft∈T mincost[c]

4: tile[n]← t such that tilecost[t] is minimal
5: mincost[n]← tilecost[tile[n]]

20.2 Register allocation

We note that we can transform our tree above into a DAG by merging nodes that are equivalent. However, register
allocation optimization on DAGs is in general NP-hard.
We will thus focus on register allocation optimization on trees.
We define r[n] as the minimum number of registers needed to evaluate node n. If n has no children then r[n] is
constant (usually 1).
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Given a tree rooted at A with three children B,C,D, to evaluate A we must evaluate B,C,D in some order (assume
side effects), e.g. if order is B,C,D then we have

r[B] registers to evaluate B
r[C] + 1 registers to evaluate C (and remember B)
r[D] + 2 registers to evaluate D (and remember B,C)

In general
r[A] = max

i
{i+ r[ci]}

where ci are children of A sorted such that r[ci] ≥ r[ci+1].
We can then use DP or memoization to evaluate r[ci].
When generating code for a node, pass in integer r indicating that first r registers are busy. The result should then
go into register r + 1.
Thus from our example tree above, where the root is A and we have child A: [(B + 8) + 4 * C] = D:

1 B: mov eax, [ebp - 4]
2 C: mov eax, [ebp - 8]
3 D: mov eax, [ebp - 12]
4 A: mov [eax + ebx*4 + 8], ecx
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21.1 Live variables

Live variables are a set of variables whose current values might be read before it is overwritten.
Similar to reachability analysis, we define in[S] and out[S] sets for an code section S:

in[S] Before S, the set of variables that might be read before being overwritten

out[S] After S, the set of variables that might be read before being overwritten

To illustrate how we construct these sets, we annotate the following code with in/out sets between each line:
1 // {x}
2 z = 5;
3 // {x,z}
4 ... = z;
5 // {x}
6 z = 4;
7 // {x}
8 y = 2;
9 // {x,y}

10 ... = foo(y);
11 // {x}
12 ... = x;
13 // {}

Where we worked backwards: there are no live variables at the end of the segment. Moving up to ... = x, we
note that x is read so in(... = x) = {x}.
When we get to y = 2, we overwrite y so we remove y from in(y = 2) from {x, y} since we do not care about the
value of y after the assignment.
We note that x is live throughout so it may be wise to store x in a register throughout.
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We also note that after z = 4, z is never a live variable so we can simply remove the assignment (assuming no side
effects).
In general for assignments i.e. S: lhs = rhs we have:

in[S] =
(
out[S] \KILL[S]

)
∪GEN [S]

where KILL[S] contains variables that are overwritten and GEN [S] contains variables that are read in the RHS.
For example y = y + 1 would correspond to in[S] = (out[S] \ {y}) ∪ {y} = out[S] ∪ {y}.
For L: while(E) S, note we have the following flow:

so we have:

out[S] = out[L] ∪ in[S]

in[L] = out[L] ∪ in[S]

in[S] = out[S] ∪READ[S]

Note that analysis has a cyclic dependency between in[S] and out[S]: we cannot use tree traversal (and attribute
grammars) to compute the in sets.
We want:

• termination guarantees
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• some “precision” guanratee

For example, suppose out[L] = {x} and y is read inside of S. We start the process by assuming in[S] = {}, then:

in[S] = {}
out[S] = out[L] ∪ in[S]

= {x} ∪ {} = {x}
in[S] = out[S] ∪ {y}

= {x} ∪ {y} = {x, y}
out[S] = out[L] ∪ in[S]

= {x} ∪ {x, y} = {x, y}
in[S] = out[S] ∪ {y}

= {x, y} ∪ {y} = {x, y}

where in[S] and out[S] reaches their fixed points.
Let us prove the termination guarantees mathematically:

Definition 21.1 (Partial order). A partial order is a relation � that is

1. reflexive: x � x

2. transitive: if x � y and y � z then x � z

3. anti-symmetric: if x � y and y � x then x = y

For liveness, let x, y be each sets of variables over the partial order ⊆ (non-strict set inclusion).
We define two important notions:

1. If x � y and x is a sound approximation then so is y

2. If x � y then x is at least as precise as y

Definition 21.2 (Upper bound). z is an upper bound of x and y if x � z and y � z.

Definition 21.3 (Least upper bound (LUB)). z is a least upper bound (LUB) if it is an upper bound and for
all other upper bounds v, z � v.

Definition 21.4 (Complete lattice). A complete lattice L is a set closed under LUBs.

Definition 21.5 (Bottom). The bottom element ⊥ is an element such that ∀x,⊥� x.

Definition 21.6 (Monotone function). f : L→ L is monotone if x � y then f(x) � f(y).

Theorem 21.1. If L is a finite set with a least upper bound (semi-lattice) and f : L→ L is monotone, then:

1. Fixed point: ∃k such that if x = fk(⊥), then x = f(x)

2. ∀y such that y = f(y), then x � y (where x is any fixed point from above)

Remark 21.1. Conclusion 1 basically tells us we will terminate eventually. Conclusion 2 tells us that any other
fixed point is a superset of any fixed points.
We want the smallest set of live variables (fixed points).
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The pseudocode for the backwards analysis:

Algorithm 13 Live variable in/out sets

1: Initialize in[S], out[S] =⊥ for all S
2: while until in[S], out[S] do not change do
3: Update all in[S], out[S] according to equations

22 April 3, 2019

22.1 Memory management

The program and static parts of the code is stored somewhere around address 0x0 (although a certain chunk of
memory is reserved). The stack grows from the maximum address downwards, and the heap grows from the end of
the static part upwards towards the stack.
The static section is fixed whereas the stack grows linearly. The heap on the other hand requires management by
the runtime.
Virtual memory abstracts away allocating and freeing memory in the heap area. It offers protection via paging and
segments.

Manual memory Instead of garbage collection, we can manually manage memory which involves malloc(size)
and free(ptr). Note free automatically frees the among of bytes allocated by malloc at a given pointer: the
manager allocates a header right before the pointer to the object (indexed at −1).

mmap and malloc Note that initially the memory to the memory manager is a block of dead space. The memory
manager must invoke mmap to the kernel in order to allocate pages in memory. The runtime/user code can then
invoke malloc to allocate bytes out of the mmap’ed memory. Note that mmap involves a context switch.
So the user code can malloc and free bytes from/to the manager: however, the manager cannot return memory
to the kernel that are not full pages. The manager therefore must keep track itself of allocated and free memory by
the user code.

22.2 Memory management: free lists

One way the manager can manage freed memory is via link lists that points to continguous sections of free memory.
Note generally we have several linked lists: several for titfree objects and one for free space. Initially free space is
the entire mmap’ed region. Objects that are free’ed later on are appended to their corresponding linked list.
When an allocation is performed, the manager tries to find a free object for the specific object. If none can be
found, memory is allocated from the free space.
In general to do this efficiently is a hard topic: one could imagine optimizations such as coalescing adjacent free
objects, etc.

22.3 Automatic memory management

The defining principle is that free should be automatic (no explicit memory management).
The common solution is having a garbage collector (GC): part of the runtime does free for us. There are
numerous other approaches such as type-based memory management (e.g. Rust).
Ideally the GC should free an object when we are done with it, but what does “done” mean? This can be reduced
to the halting problem, so instead we approximate this idea by freeing once an object becomes unreachable.
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Reachability Note that reachability starts from outside the heap: we have a pointer to some object in the heap
on e.g. the stack or static space. The GC must be able to DFS search through references nested in objects in order
to determine what other objects are reachable/referenced still. Therefore, the GC must have enough knowledge that
largely depends on the information the compiler surfaces, thus the GC and compiler are usually written together
in tandem. For example, the compiler must tell the GC how to look through the roots (e.g. the stack and static
space) for object references.

22.4 Mark and sweep GC

So we know unreachable objects need to be freed, but how do we reach these unreachable objects? The heap must
be parseable i.e. the GC must be able to scan through it and find objects to free them. This can be accomplished
by having a linked list between the allocated object headers. When perform reachabiity check, we “mark” some field
in the header to denote that object is reachable. Then the GC parses through the object and frees the unmarked,
unreachable objects. This type of GC is called mark and sweep; however, it is a very expensive and uncompetitive
version.

22.5 Semispace copying GC

Instead of marking reachable objects and then freeing unreachable objects, instead during reachability parsing
we copy the reachable objects to a new pool of memory (tospace). Finally, we free the entire previous pool of
memory (fromspace) since all that is remaining are unreachable objects. We then reverse the roles of tospace
and fromspace for the next iteration. This is called semispace copying.
Implications:

1. Let L represent our allocated size and H the size of the heap. Note that in semispace copying, our runtime
only depends on L (reachability parsing). If L <<< H , then mark and sweep is much more expensive such it
depends on the size of H when it parses through the entire heap.

Note increasing H requires us to perform GC less often in semispace copying.

2. We need to update the references/pointers to point to the new space. This is easy since the compiler already
tells us the references during reachability.

We must also take care not to copy an object twice (e.g. if it’s referenced twice).

There is a way to perform these updates in one DFS traversal.

Note that we can no longer use references/addresses as a unique ID for objects.

3. We can only use at most half of the heap

Note that allocation is super easy: we no longer need free lists for objects but rather just a bump-pointer for
free space (where we bump it every time we allocate more space).

22.6 Mark and compact GC

Instead of copying to two regions of the heap, we can instead first mark the objects then copy the object to the
beginning of the same pool. However in contrast to copying allocation, we must first traverse and mark in order to
find the forward/new addresses to which to copy.
To solve this problem, we require 3 sweeps:

• Imagine compacting and store the forward address with the object

• Update the references to the objects with the new forward address
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• Actually compact/copy the object

It is unclear how to do this in fewer sweeps. Note that the runtime is O(H), and the constant factor is quite high
(since we have a mark phase and 3 sweep phases). This however may work well for infrequent GCs.

22.7 Generational GCs

Generational GCs notice that most objects die young, so we can partition the heap by age. The “nursery” partition
is GC’ed frequently and the “old” partition is only collected during a full-heap GC.
We can then combine the various methods of GC and work towards their strength.
When the “nursery” is full, we perform copying allocation where we treat the “old” partition as the tospace.
Afterwards the “nursery” is empty and we can perform mark and sweep GC on the “nursery” as per usual.

22.8 Allocation spectrum

On one end of the spectrum C and malloc simply returns a set of bytes: manager knows no type information and
object is returned full of garbage.
On the other end Haskell allocation and the manager knows the static type and so object is returned fully
initialized and immutable.
In the middle, Java and new returns objects zeroed.
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