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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 January 8, 2019

1.1 What is machine learning?

In machine learning, we aim to construct a program that takes as input experiences and produces as output
expertise, or what we have learned from the experience.
We can then apply the expertise to produce useful programs such as a spam filter.
An example of learning in nature is bait shyness: rats who become sick from eating poisoned bait will become
more cautious of food of similar characteristic in the future. Since rats will become more cautious of bait in the
future, a delayed poison mechanism (rat is poisoned only 2 days after consuming the bait) is necessary for effective
bait by de-associating poison from the bait.
Another example is an experiment called pigeon superstition by Skinner (1947): pigeons are starved in a cage
with various objects. At random intervals, food is dispersed to satiate the pigeons. Eventually, each pigeon develops
a “superstition”: they each associate one arbitrary behaviour (e.g. a specific object or a specific movement) that
results in food being dispersed.
On the contrary, Garcia (1996) tried a similar experiment to bait shyness with rats where poisoned and un-poisoned
bait were identical in characteristic. Whenever a rat approached poisoned bait, a stimulus (e.g. bell ringing, electric
shock) was applied to the rat. Surprisingly, the rats did not associate the arbitrary stimulus to the poisoning. This
is contrary to the pigeon superstition: this can be explained by evolution (future generations are those that can
become aware of poisonous bait) and the fact that rats have prior knowledge that poisoning comes from the bait
itself, not some arbitrary stimulus.

1.2 Why do we need machine learning?

We desire machines to perform learning because machines can process lots of data and are (generally) fast.
We desire machines to learn because some tasks are simply to complex to hardcode in (e.g. image recognition).
Some tasks we do not fully understand how to solve with hardcoded rules. Furthermore, learning allows adaptivity
where the machine can constantly learn from new experiences and inputs.

1.3 Types of machine learning

Supervised and unsupervised Machine learning can be generally classified as either supervised or unsuper-
vised.

Supervised learning takes labelled examples as experience and tries to re-produce these labels on future
examples by learning rules. Spam detection may be supervised learning.

Unsupervised learning does not require labelled training data. Examples of unsupervised learning is outlier
detection and clustering.

Semi-supervised learning takes as input both labelled and unlabelled data and sits between supervised and
unsupervised.

1
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Reinforcement learning also sits between supervised and unsupervised: the machine knows only the rules of
the environment and takes actions until a reward (i.e. label) is produced. The machine then learns to label
intermediary actions to the final reward produced in the episode (sequence of actions that resulted in the
reward).

Passive and active We can also distinguish between passive and active learning: the former simply takes
observed data whereas the latter involves actively performing experiments and interpreting the consequences
of the experiments.

Teacher Machine learning can be guided by a “teacher” i.e. how the random sample used as input is generated.
Teachers may be indifferent, helpful or adversarial. Helpful teachers produce hints and try to guide the
program in the right direction whereas adversarial tries to fool the program.

Batch and online Batch learning is learning from a relatively large corpus of data before producing expertise.
In contrast online learning requires the program to learn as experience is streamed and may result in more
mistakes being made.

2 January 10, 2019

2.1 Components of a model

For example sakes, suppose we observe a number of papayas and assign them a score ∈ [0, 1] for color and hardness.
We then label each one as either tasty or not tasty. Using our observations, we would like to predict in the future
the tastiness of papayas based on their color and hardness score.

Input The input to our learner consists of three parts:

Domain set (X) It is the set of our explanatory variates, in this case [0, 1] × [0, 1] corresponding to the
color score and the hardness score.

Label set (Y ) It is the set of our labels: tasty and not tasty.

Training set Our observations i.e. {(x1, y1), . . . , (xm, ym)} ⊂ X × Y

Output The output of our learner is a prediction rule h : X → Y i.e. the function we learn that maps our
papaya scores to a label.

Simple generating model There exists some underlying (unknown) generating process of the population we are
interested in (papayas). There is some unknown probability distribution D over X and some unknown
labelling rule f : X → Y .

Together (D, f) describes the generation of papayas.

Success measure We define some metric to measure how well our learner learns the underlying generating model.
For example

L(D,f)(h) = Pr
x∼D

[
h(x) 6= f(x)

]
We would like to minimize L(D,f)(h) to find the optimal learner h.

2
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2.2 Empirical Risk Minimization (ERM)

As a first strategy, a learner can employ Empirical Risk Minimization (ERM) whereby it picks an h that
minimize the errors on the training sample.
There is however an issue with this strategy: suppose we learn a rule where we label tasty for papayas with scores
that exactly match our tasty papayas’ scores and not tasty for everything else. That is

hS(x) =

{
tasty if (x, tasty) ∈ S
not tasty otherwise

We define the empirical loss (risk) over a sample S = {(x1, y1), . . . , (xm, ym)}

LS(h) =
|{i | h(xi) 6= yi}|

m

Note the above strategy give us exactly zero empirical error on our sample set S for any generating process but is
obviously not a very robust strategy as it overfits to our sample.
Suppose the generating process is such that D is the uniform distribution over [0, 1]× [0, 1] and let

f(x1, x2) =

{
tasty if both coordinates in [0, 1, 0.9]

not tasty otherwise

Note that the empirical risk is LS(h) = 0, but the risk on our population is L(D,f)(h) = (0.8)2 = 0.64 (since we
would be predicting incorrectly for infinitely many points in the region [0.1, 0.9]× [0.1, 0.9]).

2.3 Introducing prior knowledge with inductive bias

For the papaya example above, we could incorporate some prior knowledge such that tasty papayas belong in some
rectangular region of color and hardness scores (which we must learn). We could have also assumed the tasty
papayas belong in some linear halfspace, or some arbitrary region that we can learn.
More formally, prior knowledge are a set of rules H (set of functions from X to Y ) assumed by the learner to
contain a good predictor: H is a hypothesis class.
Reformulating our previous ERM strategy, ERMH picks h ∈ H that minimizes empirical risk over the training set,
that is we pick h∗ where

h∗ ∈ argminh∈HLS(h)

Under the following assumptions ERMH has good success guarantees:

Assumption 1 (Realizability) ∃h ∈ H such that L(D,f)(h) = 0

Assumption 2 S is picked iid by D and labelled by f (i.e. our sample is representative)

3 January 15, 2019

3.1 Finite hypothesis classes

Theorem 3.1. Let H be a finite set of predictors (our hypothesis class). Assume our two assumptions from above
hold. Then every ERMH learning rule is guaranteed to converge to a zero-loss predictor as the sample size tends to
infinity.

3
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Namely for every ERMH learner A and every ε > 0

Pr
S∼X×f

[
L(D,f)(A(S)) > ε

]
→ 0

as |S| → ∞ (this is exactly convergence in probability where Pr
[
L(D,f)(A(S))

]
→ 0).

Proof. Let Bε denote the set of all hypotheses in H that have error > ε i.e.

Bε = {h ∈ H | L(D,f)(h) > ε}

Let our set of “misleading” samples be

M = {S | |S| = m and ∃h ∈ Bε s.t. LS(h) = 0}

(samples where we have a zero empirical loss but has > ε loss on the true population: misleading because it tricks
us that the h ∈ Bε re-constructs f with zero error when in fact it does not).
Note that

Pr
S

[
L(D,f)(A(S)) > ε

]
≤ Pr

[
S ∈M

]
that is the probability that our sample does not perform better than ε on our true population is bounded by
the probability of picking a misleading sample (this is not just an equality since we also have samples S where
L(D,f)(A(S)) > ε and LS(A) > 0).

Lemma 3.1. We claim
Pr
|S|=m

[
S ∈M

]
≤ |H|(1− ε)m

Proof. Consider any h ∈ B (where obviously h 6= f). There exists a “disagreement” region D where for any x,
h(x) 6= f(x) (either h(x) = +, f(x) = − or h(x) = −, f(x) = +).
For our sample S of size m, we know that S ⊆ Dc (our sample cannot be in the disagreement region since LS(h) = 0
i.e. our sample is perfect; empirical loss is zero so it must agree with f).
Note that since Ls(h) > ε (i.e. h disagrees with f on a region of proportion at least ε, our D), then the region where
h and f agree is at most of proportion 1− ε (i.e. Dc).
Choose m sample points iid from Dc is thus

Pr
S

[
LS(h) = 0

]
≤ (1− ε)m

Lemma 3.2 (Union bound). Given two set of events A,B we know P (A ∪B) ≤ P (A) + P (B).

Note that Pr[S ∈M ] = Pr[for some h ∈ B,LS(h) = 0] is the union of all misleading hypotheses h ∈ B, thus

Pr
[
for some h ∈ B,LS(h) = 0

]
≤
∑
h∈B

Pr(LS(h) = 0)

= |B|(1− ε)m

< |H|(1− ε)m

Note that 1− ε ≤ e−ε thus Pr[S ∈M ] ≤ |H|e−εm which goes to 0 as m→∞ as desired.

4
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4 January 17, 2019

4.1 Probably Approximately Correct (PAC) learning

In our previous theorem with ERMH with inductive bias we showed it could do well but only under strong
assumptions.
Our goal is to prove similar guarantees but with more realistic/relaxed assumptions. Specifically, we would like to
relax our assumption that there exists a deterministic f that generates the true distribution D (the labels Y ) over
domain X.
That is, the relax model given domain of instances X and label set Y , the data is generated by a probability
distribution D over X × Y . We denote our set of predictors h : X → Y as H.
Our relaxed model defines the empirical loss as

LS(h) =
|i | h(xi) 6= yi|

|S|

and the true loss over our probability distribution D over X × Y

LD(h) = Pr
(x,y)∼D

[h(x) 6= y] = D({(x, y) | h(x) 6= y})

Definition 4.1 (PAC learnable (Leslie Valiant 1984)). A hypothesis class H is PAC learnable if there exists a
function mH(ε, δ) : (0, 1)× (0, 1)→ N and a learner A (map from labelled samples to functions h : X → Y ) such
that for every ε, δ ∈ (0, 1) for every distribution D over X and every labelling function f ∈ H, if m′ ≥ m(ε, δ) and a
labelled sample S = {(x1, f(x1)), . . . , (xm, f(x′m))} generated iid according to D and labelled by f , then

Pr
S∼(Dm,f)

[
L(D,f)(A(S)) > ε

]
< δ

That is: the error is bounded by ε (approximately), and the probability of error is bounded by δ (probably) for
some large enough sample size.

Remark 4.1. The number of required samples is determined regardless of D and f .

Some weaknesses of this definition:

• Realizability assumption (h ∈ H such that L(D,f)(h) = 0): the learner has strong prior knowledge.

• The labelling rule is deterministic: the label of any x is fully determined by X.

• The training distribution and test distribution are the sample: this may be unobtainable in some cases.

4.2 Finite hypothesis H is PAC learnable

Theorem 4.1. Any finite H is PAC learnable.

Proof. Recall if H is finite then
Pr

S∼(Dm,f)

[
L(D,f)(A(S)) > ε

]
< |H|e−mε

Our claim holds if |H|e−mε ≤ ε. Solving for m

m ≥
ln(|H|) + ln

(
1
δ

)
ε

5
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4.3 Real intervals on real domain is PAC learnable

Theorem 4.2. Let X = R and H is the class of all real intervals where Hint = {h(a,b) | a ≤ b} where

h(a,b)(x) =

{
1 x ∈ [a, b]

0 otherwise

then Hint is PAC learnable.

Proof. Suppose we have a sample generated by f ∈ Hint where all our positive examples and only positive examples
lie within an interval of X = R (since f ∈ Hint so it labels positive examples only in a real interval), e.g.

. . . 0 0 1 1 1 . . .

where S = {(x1, y1), . . . , (xm, ym)}. Our learner A could be such that A(S) ∈ Hint where

a(S) = min{xi | (xi, 1) ∈ S}
b(S) = max{xi | (xi, 1) ∈ S}

We show that this rule A is a successful PAC learner for Hint.
Given ε,m let us upper bound the probability that an m-size sample will lead A to out h with > ε error.
Denote Bε = {h ∈ H | L(D,f)(h) > ε} (bad hypotheses) and M = {S | A(S) ∈ B} (set of misleading samples).
Note that a sample S ∈M is misleading if our minimum and maximum positive samples cover a “small” region of
the actual interval specified f ∈ Hint our arbitrary labelling function.
That is

Pr(S ∈M) = Pr
(
S does not hit intervals [min(f),min(h)] or [max(h),max(f)]

)
S is a misleading sample only if S does not hit either the interval from min(f) to min(f) + weightD(ε/2) or
interval form max(f)− weightD(ε/2) to max(f) (where weightD(ε/2) is defined as the region R immediately to
the right/left where PrD(x ∈ R) = ε/2).
That is

Pr(S ∈M) ≤
(
1− ε

2

)m
+
(
1− ε

2

)m
where each sample misses both intervals of weight/probability ε

2 .
Therefore

Pr
S∼(Dm,f)

[
L(D,f)(A(S)) > ε

]
≤ 2
(
1− ε

2

)m
for some m(ε, δ) such that 2

(
1− ε

2

)m
< δ, thus Hint is PAC learnable.

5 January 22, 2019

5.1 Agnostic PAC learning (more general learning model)

Our previous definition of PAC learnable is still too unrealistic. Namely we are going to:

1. Remove the realizability assumption: we do not require there exist h ∈ H such that LD(h) = 0 (although we
do not necessarily remove the requirement that the labelling rule is in H)

2. Remove the deterministic labelling requirement (allow smae x to show up with different labels)

6
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We then assume there exists some probability distribution D over “abstract” set Z whereby data is generated iid.
Our new notion of loss is we are given some function l(hypothesis, z ∈ Z) which is real-valued.
For example we may have for email spam detection:

Example 5.1. Let Z = X × {0, 1} where X is the set of emails and 0/1 denotes not spam or spam.
Let h : X → {0, 1} (our hypothesis function).
Let

l(h, (x, y)) =

{
1 if h(x) 6= y

0 if h(x) = y

Given ta training sample S = (z1, . . . , zm) and a predictor (hypothesis function) h the empirical loss of h on S is
now

LS(h) =
1

m

m∑
i=1

l(h, zi)

Also we define the true loss of h as (for true distribution D over Z)

LD(h) = EZ∼D(l(h, z))

Remark 5.1. In our example with Z = X ×{0, 1} and l0,1 our new definition of empirical and true loss LS(h) and
LD(h) are equivalent to our definitions in PAC learnable.

However our individual loss function could be arbitrarily defined:

Example 5.2. Suppose we want to predict tomorrow’s temperature from today’s measurements.
Let Z =

(
today’s measurements× tomorrow’s temp

)
.

Let h : today’s measurements→ [−50,+50].
We define loss as l(h, (x, y)) = |h(x)− y| (L1 norm).

Example 5.3 (K-means clustering). Suppose we would like to pick k locations for a chain of stores in KW.
Each h will represent a set of k potential locations h = (µ1, . . . , µk).
Therefore we let Z = location of customers seeking a store and we define our loss to be

l((µ1, . . . , µk), z) = min
1≤i≤k

|z − µi|

i.e. the loss is the L1 distance between a customer z and the closest location µi.
Our training data would then be a sample S = (z1, . . . , zm) which is a record of past customers.

We will now explore how learning is achieved under this more general model.
The prior knowledge of the learner is again modeled by a set H of possible predictors (class of hypotheses). Our
input is a training set S = (z1, . . . , zm) generated iid by some unknown D over Z. The output of the learner is a
predictor h.
Our goal is the minimize the true loss LD(h).

Remark 5.2. If we know the distribution D over Z then we could solve our problem without learning, but of
course all we know is S.

Definition 5.1 (Agnostic PAC learnable). A class H is agnostic PAC learnable if ∃m : (0, 1)× (0, 1)→ N and
a learner A (mapping S’s to h’s) such that ∀ε∀δ, for all distribution D over Z, and for all m ≥ m(ε, δ) we have

Pr
S∼Dm

[
LD(A(S)) ≥ min

h∈H
LD(h) + ε

]
< δ

7
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Remark 5.3. Agnostic PAC learnable is almost identical to PAC learnable except we do not assume a lower bound
of 0 on LD(A(S)): instead we lower bound it with minh∈H LD(h) plus some small ε.
Furthermore we no longer assume a determinisitic f and instead describe a D over Z.

Remark 5.4. More correctly, we require only infh∈H LD(h): we need not require an attainable minimum.

How can we learn in this new model? In many cases ERMH is still a good strategy.

6 January 24, 2019

6.1 Uniform Convergence Property

Definition 6.1 (ε-representative). A sample S = (z1, . . . , zm) is ε-representative of H with respect to a
distribution D if for any h ∈ H we have |LS(h)− LD(h)| < ε.

Remark 6.1. Sample S need not be sampled from distribution D: they are independent under the ε-representative
definition.

Claim. If S is ε
2 -representative of H wrt D then for any ERMH learner A

LD(A(S)) ≤ min
h∈H

LD(h) + ε

Proof. Note that for any h ∈ H

LD(A(S)) ≤ LS(A(S)) +
ε

2

ε

2
− representative

≤ LS(h) +
ε

2
A(S) is ERMH

≤ LD(h) + ε
ε

2
− representative

sine this holds for any h then LD(A(S)) ≤ minh∈H LD(h) + ε.

Definition 6.2 (Uniform convergence property). A class H has the uniform convergence property if there
exists a function mUC

H : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and every distribution D over domain X, if S
sample has size m ≥ mUC

H (ε, δ) drawn iid according to D then with probability at least 1− δ S is ε-representative.

6.2 Finite hypothesis classes are agnostic PAC learnable

Claim. Given a finite hypothesis class H, H is agnostic PAC learnable.

Question 6.1. For a given distribution D and finite hypothesis class H, how do we determine m large enough
such that

LD(A(S)) ≤ min
h∈H

LD(h) + ε

i.e. such that H is agnostic PAC learnable?

8
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Proof. Note that

PS∼Dm

[
∀h ∈ H s.t. |LS(h)− LD(h)| ≤ ε

2

]
> 1− δ

=Dm

[
{S | ∃h ∈ H s.t. |LS(h)− LD(h)| > ε

2
}
]
< δ

⇐⇒
⋃
h∈H

Dm

[
{S | h ∈ H s.t. |LS(h)− LD(h)| > ε

2
}
]
< δ

where Dm
[
{S}

]
is the total probability mass of {S} in Dm.

Recall LS(h) = 1
m

∑m
i=1 l(h, zi) and LD(h) = EZ∼D

[
l(h, z)

]
. Let θi = l(h, zi) and let LD(h) = µ, thus E(θi) = µ.

Note that on the LHS we have ⋃
h∈H

Dm

[
{S | h ∈ H s.t. |LS(h)− LD(h)| > ε

2
}
]

≤
∑
h∈H

Dm

[
{S | h ∈ H s.t. |LS(h)− LD(h)| > ε

2
}
]

≤
∑
h∈H

P

[∣∣∣∣ 1

m

∑
θi − µ

∣∣∣∣ > ε

2

]

⇒2|H| exp

(
− 2m

(
ε

2

)2)
< δ

where the second last inequality follows from Hoeffding’s inequality (assuming l ∈ [0, 1]):

Theorem 6.1 (Hoeffding’s inequality). Let θ1, . . . , θn be random variables where E(θi) = µ and a ≤ θi ≤ b. Then

P

[∣∣∣∣ 1

m

∑
θi − µ

∣∣∣∣ > ε

]
≤ 2 exp

(
−2mε2

(b− a)2

)
Solving for m we get

m ≥
2 log

(
2|H|
δ

)
ε2

Since there exists such a function m(ε, δ) a finite hypothesis class H is agnostic PAC learnable.

7 January 31, 2019

7.1 Minimal sample size for the class of all functions

Theorem 7.1. If X has size 2m then we need ≥ d examples to learn the hypothesis class of all functions over
X × {0, 1} to an accuracy of 1

4 with δ ≤ 1
4 .

Proof. Let X be our domain and D a uniform distribution over X.
Choose an f : X → {0, 1} to label our points. Our learner’s input is {(x1, f(x1)), . . . , (xm, f(xm))}.
Suppose m < |X|

2 i.e. our sample is less than half the size of our domain.

9
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We then have a region X \ S where any new point x has probability ≥ 1
2 of being in X \ S which our learner is

impartial to labelling as either 0 or 1 (since we have no information from our sample).
Furthermore since we have an arbitrary labelling function f , then for every x 6∈ S we have

Pr
[
A(S) 6= f(x)

]
=

1

2

or Pr(D,f)
[
A(s) 6= f(x)

]
≥ 1

4 .

7.2 No Free Lunch Theorem

Theorem 7.2 (No Free Lunch Theorem). Let A be any learning algorithm for the task of binary classification (0−1

loss) over a domain X. Let the sample size m be any number smaller than |X|2 . Then there exists a distribution D
over X × {0, 1} such that:

1. There exists a function f : X → {0, 1} with LD(f) = 0

2. With probability of at least 1
7 over the choice of S ∼ Dm we have LD(A(S)) ≥ 1

8

i.e. this this theorem states that there exists a task for any learner A that it fails on, but which there is another
learner that can successfully learn it. A trivial successful ERM learner would be one with H = {f} or more generally
an ERM with finite hypothesis class whose size satisfies m ≥ 8 log

(7|H|
6

)
.

Proof. Let C ⊆ X be of size 2m.
The intuition is that any learner that has observed only half of the instances of C has no information regarding the
labels in the rest of C. Therefore there exists some “reality” i.e. some target function f that would always contradict
labels assigned by A(S) on unobserved instances.
Note that there are T = 22m possible functions/labellings from C to {0, 1}. Denote these functions as f1, . . . , fT .
Let Di be distributions over C × {0, 1} where

Di((x, y)) =

{
1
|C| if y = fi(x)

0 otherwise

That is LDi(fi) = 0 (wrong labels have probability 0).
We show that for any algorithm A with sample size m it holds that

max
i∈[T ]

ES∼Dmi
[
LDi(A(S))

]
≥ 1

4

that is there exists some f : X → {0, 1} and distribution D where LD(f) = 0 and

ES∼Dm
[
LD(A(S))

]
≥ 1

4

if the above holds then our claim holds.
Note that there are k = (2m)m possible sequences of m examples from C. Denote these sequences as S1, . . . , Sk.
Also if Sj = (x1, . . . , xm) then we denote Sij = {(x1, fi(x1)), . . . , (xm, fi(xm))} (sample labelled by fi).
If the distribution is Di then A can receive training sets Si1, . . . , Sik. Note that all these samples have equal probability
of being sampled (because of Di’s definition) thus

ES∼Dmi
[
LDi(A(S))

]
=

1

k

k∑
j=1

LDi(A(Sij))

10
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Using the fact that maximums ≥ averages ≥ minimums we have

max
i∈[T ]

1

k

k∑
j=1

LDi(A(Sij)) ≥
1

T

T∑
i=1

1

k

k∑
j=1

LDi(A(Sij))

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi(A(Sij))

≥ min
j∈[k]

1

T

T∑
i=1

LDi(A(Sij))

Let us fix some j ∈ [k] (fix some sample). Let Sj = (x1, . . . , xm) and let v1, . . . , vp be the examples in C \ Sj . Note
that p ≥ m (since we only have half of C). Therefore for every h : C → {0, 1} and every i

LDi(h) =
1

2m

∑
x∈C

1[h(x)6=fi(x)]

≥ 1

2m

p∑
r=1

1[h(vr)6=fi(vr)]

≥ 1

2p

p∑
r=1

1[h(vr)6=fi(vr)]

Therefore we have

1

T

T∑
i=1

LDi(A(Sij)) ≥
1

T

T∑
i=1

1

2p

p∑
r=1

1[A(Sij)(vr)6=fi(vr)]

=
1

2p

p∑
r=1

1

T

T∑
i=1

1[A(Sij)(vr)6=fi(vr)]

≥ 1

2
min
r∈[p]

1

T

T∑
i=1

1[A(Sij)(vr)6=fi(vr)]

For any r ∈ [p] (any point not in our sample) we can partition f1, . . . , fT into T/2 disjoint pairs (fi, fi′) such that
for c ∈ C fi(c) 6= fi′(c) if and only if c = vr (they only differ labelling on one point vr). Since for this pair we must
have Sij = Si

′
j (points in sample must all be the same) then

1[A(Sij)(vr)6=fi(vr)]
+ 1

[A(Si
′
j )(vr)6=fi′ (vr)]

= 1

(at most one is labelled incorrectly by A), thus we have

1

T

T∑
i=1

1[A(Sij)(vr)6=fi(vr)]
=

1

2

thus combining everything our claim holds.

11
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8 February 5, 2019

8.1 Summary of PAC learnability

We have proved PAC learnabiliy for a number of hypothesis classes, namely:

• Every finite H

• The set of intervals on R

We also note that every ERMH is a good PAC learner.
Some classes we’ve seen that are PAC unlearnable:

• If X has size ≥ 2d then we need ≥ d examples to learn the class of all functions to accuracy 1
4 with δ ≤ 1

4

8.2 Infinite domain on class of all functions

A corollary to our theorem before regarding sample sizes < |X|
2 :

Corollary 8.1. If X is infinite then the class of all functions (from X to {0, 1}) is not PAC learnable.
That is, without inductive bias (prior knowledge) we cannot learn from an infinite domain.

Proof. Assume for contradiction that HAll is PAC learnable.
Namely ∃ learner A and m(ε, δ) such that for all D over X × {0, 1} and ∀ε, δ > 0 on sample size ≥ m(ε, δ) we have

Pr
(S∼Dm,f)

[
L(D,f)

(
A(S)

)
> ε
]
< δ

Consider the number m(0.1, 0.1). Pick a W ⊆ X of size > 2m(0.1, 0.1).
Pick D to be uniform over W where for all x ∈ X we have

D(x) =

{
1
|W | if x ∈W
0 if x 6∈W

Since H contains every function over W from our theorem above we require > |W |
2 for ε ≤ 1

8 , δ ≤
1
7 , but we promised

that m(0.1, 0.1) should suffice, thus we have a contradiction.

8.3 Shattering

So when exactly does ERMH succeed? We saw that HR
intervals has a good ERMH learner but we also saw that

HR
finite where

HR
finite = {f : R→ {0, 1} | f−1(1) is finite}

would not succeed.
In 1970 Vapnik-Chervonenkis and in 1989 EBHW both measured teh compleity of class H that fully determines
whether H is learnable.
We begin with a few definitions:

Definition 8.1 (Shattering). A class of functions H (from X to {0, 1}) shatters W ⊆ X if for every f : W →
{0, 1} there is some h ∈ H such that for every x ∈W : h(x) = f(x).
That is: for any possible labelling of X (which we have 2|X|) there exists some h ∈ H that can produce the same
labelling.

12
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Example 8.1. Let X = R and W = {a, b, c} where a < b < c.
Does Hintervals shatter W? No. Consider

f(x) =

{
1 if x ∈ {a, b}
0 if x = c

Does Hfinite shatter W? Yes, since for every labelling function over {a, b, c} (we have 23 such labelling functions)
there exists h ∈ Hfinite that corresponds to every such labelling function.

Example 8.2. Let X = [0, 1]2 (unit square). Let W = {(0.2, 0.2), (0.3, 0.3), (0.4, 0.1)}.
Does Hrectangles shatter W? Yes (we can clearly see we can draw rectangles around any subset of the points).
However if W are three collinear points e.g. {(0.1, 0.1), (0.2, 0.2), (0.3, 0.3)} then the corrsponding labelling 1− 0− 1
would not be shatter-able by Hrectangles.

9 February 7, 2019

9.1 V-C dimension

Definition 9.1 (V-C dimension). Given a class H the V-C dimension of H is the size of the largest set that
H shatters, that is

V C(H) = max
|A|
{H shatters A}

It is ∞ if H shatters aribtrarily large W ’s.

Remark 9.1. We can represent functions f : X → {0, 1} as subsets of X where for a given function f we have

Sf = {x ∈ X | f(x) = 1}

Similarly the converse holds: given B ⊆ X consider

fB(x) =

{
1 if x ∈ B
0 if x 6∈ B

Thus we have a 1-1 correspondence.

Remark 9.2. H shatters A if
{B | B ⊆ A} = {h ∩A | h ∈ H}

that is: H shatters A if we can produce label every subset of A with 1 (and all else as 0).

Remark 9.3. For the hypothesis class of all functions Hall note that |HX
all| = 2|X|. Furthermore note that the

collection of all subsets of B ⊆ X is |{B | B ⊆ X}| = 2|X|.
Since both sets have the same cardinality and the collection of B ⊆ X is maximal in XS then V C(Hall) =∞.

For example, the V-C dimensions of the classes:

• V C(HR
intervals) = 2

• V C(HR
finite) =∞

• V C(HR2

rect) ≥ 4: note that we can easily draw 4 points which we can shatter with rectangles.

13
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Claim. Hrect cannot shatter any set of 5 points (V C(HR2

rect) ≤ 4).

Proof. Let A be any set of > 4 points. Pick the 4 points in A that are farthest left, right, up and down i.e. let
B = {topA, botA, leftA, rightA}.
Note that we can never have an h ∈ Hrect that exactly labels only B since h would pick all of A if h contains
B.

Therefore V C(HR2

rect) = 4.

9.2 Hyper-rectangle class

We extend our rectangle examples in R1 and R2 to any Rd for d ∈ N:

Definition 9.2 (Hyper-rectangle class). The class of hyper-rectangles is defined as

HRd
rect = {h{(a1,b1),...,(ad,bd)} | a1, b1, a2, b2, . . . , ad, bd ∈ R}

For any set of intervals {(a1, b1), (a2, b2), . . . , (ad, bd)} (min and max bounds for every dimension d) let

h{(a1,b1),...,(ad,bd)} = [a1, b1]× [a2, b2]× . . .× [ad, bd]

define a hyper-rectangle in Rd.
Then for all X = (x1, . . . , xd) we have

h{(a1,b1),...,(ad,bd)}(x1, . . . , xd) =

{
1 if for all i ≤ d, ai ≤ xi ≤ di
0 otherwise

Claim. We claim V C(HRd
rect) ≥ 2d.

Proof. Let

A = {(1, 0, . . . , 0), (−1, 0, . . . , 0), (0, 1, 0, . . . , 0), (0,−1, 0, . . . , 0), . . . , (0, . . . , 0, 1), (0, . . . , 0,−1)} ⊆ Rd

where A is the set of one-hot vectors in Rd and their negations.
More compactly if ldi = (0, . . . , 0, 1, 0, . . . , 0) where only the ith dimension of li is 1 then

A = {li | 1 ≤ i ≤ d} ∪ {−li | 1 ≤ i ≤ d}

Given any B ⊆ A let hB be the hyper-rectangle [a1, b1]× . . .× [ad, bd] such that for every 1 ≤ i ≤ d:

if both li and − li ∈ B ai = −2 bi = 2

if li ∈ B,−li 6∈ B ai = 0 bi = 2

if li 6∈ B,−li ∈ B ai = −2 bi = 0

otherwise ai = 0 bi = 0

Note that the boundaries for dimension i must always include 0 since all points lj ,−lj where j 6= i have their ith
coordinate as 0.

Claim. We claim V C(HRd
rect) ≤ 2d.

14
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Proof. The proof follows similarly from the R2 case.
Given any A ⊆ Rd where |A| > 2d we pick subset B ⊆ A where for every 1 ≤ i ≤ d, we pick a point ti and si with
maximum and minimum value, respectively, in the ith coordinate. Note that |B| = 2d so B 6= A.
For every rectangle h that includes all members of B we have A ⊆ h (h bounds all of A), so h cannot cut B from A
thus h cannot shatter A.

9.3 Bounding V-C dimension of a class

We notice that for HR2

rect and HRd
rect we proved minimum and upper bounds of V-C dimension in the following way:

Minimum bound ∃A∀B ⊆ A such that ∃h ∈ H that can cut B.

Then V C(·) ≥ |A|.

Maximum bound ∀A∃B ⊆ A such that 6 ∃h ∈ H that can cut B.

Then V C(·) < |A|.

We provide another example:

Example 9.1. Let X = N and HN
5 = {A ⊆ N | |A| = 5} (all functions that mark exactly 5 points as 1).

Claim. V C(HN
5 ) ≥ 5.

Proof. Pick A = {6, 7, 8, 9, 10}. For any B ⊆ A, let

hB = B ∪ (5− |B|) points above 10

where |hB| = 5. Clearly hB ∩A = B so hB cuts B and thus shatters A.

Claim. V C(HN
5 ) ≤ 5.

Proof. For every A of size > 5 let B = A. No members of H include all points in B so A is not shattered.

It follows V C(HN
5 ) = 5.

9.4 Size of hypothesis class from V-C dimension

Claim. For every H and every d if V C(H) ≥ d then |H| ≥ 2d.

Proof. There is some A of size d shattered by H so for every B ⊆ A there is a corresponding hB ∈ H.
Since |A| ≥ d, then A has ≥ 2d subsets thus |H| ≥ 2d.

Note that the converse does not hold. Consider the following:

Example 9.2. For example, the hypothesis class of intervals on R obviously has size ∞ (|Hint| = ∞) but
V C(Hint) = 2.

15
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10 February 14, 2019

10.1 Fundamental theorem of statistical learning

Theorem 10.1 (Fundamental theorem of statistical learning). The follow statements are equivalent for every class
H:

1. H has the uniform convergence property

2. Any ERMH learner is a successful PAC agnostic PAC learner

3. H is agnostic PAC learnable

4. H is PAC learnable

5. Any ERMH learner is a successful PAC learner

6. V C(H) is finite

We have shown that 1⇒ 2, 2⇒ 3, 1⇒ 4, 4⇒ 5.
To show 5⇒ 6 is equivalent to showing:

Claim. If V C(H) =∞ then H is not PAC learnable.

Proof. Proof is basically applying the No Free Lunch Theorem. Recall that the NFL theorem states that if there is
a domain subset W ⊆ X of size d such that H contains all functions from W to {0, 1} then H shatters W. To PAC
learn H to δ = 1

8 , ε = 1
8 we need ≥ d

2 sample size.
In other words: if H shatters a set of size d then mPAC

H (18 ,
1
8) ≥ d

2 .

Corollary 10.1. If V C(H) =∞ then mPAC
H (18 ,

1
8) is not any finite number (since H shatters an arbitrarily large

W ).
Therefore H is not PAC learnable.

10.2 Shatter function and Sauer’s Lemma

We now show 6⇒ 1 in order to prove the fundamental theorem of statistical learning holds.

Definition 10.1 (Shatter function). The shatter function of a class H is a function πH : N→ N defined by

πH(m) = max
|A|=m

|HA|

where HA are the functions in H restricted to A ⊆ X i.e. HA = {h|A | h ∈ H} where h|A is the function from A to
Y such that for every x ∈ A we have h|A(x) = h(x).

Some observations about the shatter function πH :

1. For every m (and every H) note that πH(m) ≤ 2m.

2. If V C(H) ≥ m then πH(m) = 2m.

3. If πH(m) < 2m then V C(H) < m.

Note if πH(m) < 2m then there are no A of size m does H gets all of its behaviours. That is H shatters no
set of size m, which implies H shatters no set of size ≥ m, which implies V C(H) < m.

16
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We also require the following lemma and corollary:

Lemma 10.1 (Sauer-Shelah-Perles-Vapnik-Chervonenkis lemma). (AKA Sauer’s or Sauer-Shelah lemma). For
every H and every m

πH(m) ≤
V C(H)∑
i=0

(
m

i

)
= |{B ⊆ A | |B| ≤ d}|

Note that
(
m
i

)
≤ mi.

The RHS is exactly the number of subsets of A of at most size d.

Corollary 10.2. If V C(H) = d then for all m we have πH(m) ≤ md.

Remark 10.1. We have πH(m) where V C(H) = d is bounded by both the functions 2m and md.
For a fixed d we eventually have md << 2m.
That is: πH(m) grows exponentially until it reaches m = V C(H), then πH(m) becomes bounded by a polynomial
md.

Corollary 10.3. The number of linearly separable subsets of m points is at most m3.

Proof. Consider Hs2 the set of linear partitions of R2.
We claim V C(Hs2) = 3. Clearly it is easy to show there exists an arrangemnet of 3 points we can shatter with
linear halfspaces.
We omit the proof that Hs2 cannot shatter any 4 points.
By Sauer’s lemma it follows πHs2(m) ≤ m3.

Let’s take m = 1000 for example. The number of functions on m points in R2 to {0, 1} is 21000. By the above
corollary we know there can be at most 10003 ≈ 230 linear halfspace functions, a very small fraction of possible
functions.

11 February 26, 2019

11.1 Extended Sauer’s Lemma

Lemma 11.1 (Extended (Sauer’s) Lemma). For every set A ⊆ X

|HA| ≤ |{B ⊆ A | H shatters B}|

Remark 11.1. This Extended Lemma implies the Sauer Lemma since if H shatters B and V C(H) = d then this
implies |B| ≤ d.

Remark 11.2. Note the inequality says that the number of subsets that H cuts is fewer than the number of subsets
H shatters: this is counterintuitive since shattering a set seems harder than cutting a set.

Example 11.1. Let us look at Hintervals and the inequality. Suppose A = {1, 2, 3, 4, 5}.
Note that

Hintervals,A = {h|A | h ∈ H} = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5},
{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4}, {2, 3, 4, 5},∅, {1, 2, 3, 4, 5}} (11.1)

where |HA| = 16.
Note that Hintervals can shatter any sets of size 0, 1, 2, thus |{B ⊆ A | H shatters B}| =

(
5
2

)
+
(
5
1

)
+
(
5
0

)
= 16.

Therefore the Extended Lemma does indeed hold for Hintervals.
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11.2 VC bound on union of classes

How might we use Sauer’s Lemma to characterize the behaviour of classes H?

Question 11.1. LetH1, H2 be two classes overX and assume V C(H1) = V C(H2) = d. Can we bound V C(H1∪H2?
Let m be the size of a set shattered by H1 ∪H2. Let A be a subset of size m that H1 ∪H2 shatters. Then

|{h|A | h ∈ H1} ∪ {h|A | h ∈ H2}| = |{h|A | h ∈ H1 ∪H2}| = 2m

where the last equality holds since h shatters A.
Note that

|{h|A | h ∈ H1} ∪ {h|A | h ∈ H2}| ≤ |{h|A | h ∈ H1}|+ |{h|A | h ∈ H2}|
Sauer′slemma

≤ md +md

therefore 2m ≤ 2md or m ≤ 1 + d logm (we can actually show that m ≤ d log d).
This implies that m cannot be too large.

11.3 Finite VC implies uniform convergence property

We now use Sauer’s Lemma to prove 6⇒ 1 of the fundamental theorem of statistical learning.
Recall: H has the uniform convergence property if there exists a function mH(ε, δ) such that for every
distribution D over X × {0, 1} and ε, δ > 0, if m ≥ mH(ε, δ) then

Pr
S∼Dm

[
S is ε− representative of H wrt D

]
> 1− δ

A sample S is ε-representative of H wrt D if ∀h ∈ H

|LS(h)− LD(h)| ≤ ε

Proof. Idea: Let D be any distribution over X × {0, 1} and S a D-sample of size m such that m >> V C(H).
For each h ∈ H, we wish to show that |LS(h)− LD(h)| ≤ ε.
If we fix h, then Hoeffding’s Lemma guarantees that

Pr
[
|LS(h)− LD(h)| > ε

]
≤ 2e−2mε

2

Thus the probability this will hold for all h ∈ H is ≤ |H| · 2e−2mε2 .
We only care about h’s behaviour on S thus we may replace |H| with |{h|S | h ∈ H}| ≤ md by Sauer’s Lemma thus
we have

Pr
[
|LS(h)− LD(h)| > ε

]
≤ 2mde−2mε

2

We can simply choose m large enough such that 2mde−2mε
2
< δ.

12 February 28, 2019

12.1 Fundamental theorem of PAC learning

Theorem 12.1. H is learnable ⇐⇒ V C(H) <∞.
Alternatively we have a quantitative version: Let H be any class of finite VC dimension. Let mH(ε, δ) be the sample
size needed to learn H to accuracy < ε with probability ≥ 1− δ. Then for some constants c1, c2 we have for the

18



Winter 2019 CS 485/685 Course Notes 12 FEBRUARY 28, 2019

realizable PAC setting

c1
V C(H) + log

(
1
δ

)
ε

≤ mH(ε, δ) ≤ c2
V C(H) + log

(
1
δ

)
ε

and for the agnostic PAC setting

c1
V C(H) + log

(
1
δ

)
ε2

≤ mA
H(ε, δ) ≤ c2

V C(H) + log
(
1
δ

)
ε2

Remark 12.1. As we require a better accuracy (ε→ 0) or higher probability (δ → 0) then we require more samples.

Remark 12.2. As we increase our class complexity/size e.g. adding more variates to our model in H then V C(H)
increases requiring a larger sample size.

As we increase the complexity of our class H we have a lower minh∈H LD(h), but we require more examples. This
is the bias complexity tradeoff.
Recall in the NFL theorem we showed (in the realizable case) that mH(ε = 1

8 , δ = 1
7) ≥ d

2 with a uniform distribution.
How does this bound depend on ε, δ in general? How does this bound change for the agnostic setup?

Dependence of ε We show the inverse relation with ε.

Let V C(H) = d and let W ⊆ X be a set of size d shattered by H.

Define a probability distribution over W as follows: pick some x0 ∈W for every x ∈ X. We let

Dε(x) =


1− ε if x = x0
ε

d−1 if x ∈W \ {x0}
0 if x 6∈W

By the NFL argument, a sample S that misses ≥ 1
2 of the points in W \ {x0} then for every learner and some

h ∈ H the learner will have an expected error 1
2 on every point in W \ S i.e. an expected total error of

L(D,h)(A(S)) ≥ 1

4
ε

since the total weight on our points in W \ {x0} is ε.
To get an expected error < 1

4ε we require an S that hits W \ {x0} at least d−1
2 times. A sample of size m is

expected to hit W \ {x0} m · ε times. Therefore

m(
ε

4
, ·) ≥ d− 1

2ε

Agnostic dependence on ε We sketch why in the agnostic case we have a 1
ε2

relationship.

We make an analogy with flipping coins. Suppose our task to predict heads or tails.

For an unbiased coin minh∈H LD(h) = 0.5.

However suppose we have a biased coin where either P (heads) = 1
2 + ε, P (tails) = 1

2 − ε OR P (heads) =
1
2 − ε, P (tails) = 1

2 + ε. In this case minh∈H LD(h) = 1
2 − ε.

The best learner is still ERM, and we can show that in order to estimate within ε we require more tosses
where mA

H(ε, ·) ∝ 1
ε2
.
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12.2 Issues with Agnostic PAC

While the agnostic PAC model is well understood it is not practically satisfactory.
Consider a classH of half spaces. We note from agnostic PAC we can guarantee LD(A(S)) ≤ minhalf spaces h LD(h)+ε
with a probability ≥ 1− δ.
However, we note that minhalf spaces h LD(h) may be very high relative to the true error (class with all functions):
that is we may have very high bias in our class. The weakness of the bound given by PAC learnability is that our
error is never below minhalf spaces h LD(h) with high probability.
How do we overcome this high bias in practice? We might use a class with very large VC dimension i.e. V C(H) =∞
e.g. deep neural networks.

13 March 5, 2019

13.1 Learning half spaces

Keeping in mind what we know about the weakness of (agnostic) PAC learnability, let X = Rn.
What classes of H do we use to learn over Rn? Let us look at Hsn or half spaces in Rn.
Note that if hw ∈ Hsn then it can be characterized by

hw(x) = sign(
n∑
i=0

wixi)

where w = (w0, . . . , wn) and x = (x1, . . . , xn). That is for a given x if w1x1 + . . .+ wnxn + w0 ≤ 0 we label it as
−’ve and if w1x1 + . . .+ wnxn + w0 > 0 we label it as +’ve.
We note that V C(Hsn) = n+ 1.
What about polynomials of degree 2 Poln2 : will that allow a smaller error? We have w1x

2
1 + w2x1x2 + . . .. We note

that it is easy to show V C(Pol12) = 3 (polynomialso f degree 2 over R1).

Claim. V C(Pol1d) = d+ 1.

Claim. V C(Polnd ) = f(d, n) for some function f over d and n.

Question 13.1. What is the V C(polynomials of all degrees over R)?

Answer. It is ∞ since for any subset S of size m we can always find some polynomial that shatters it e.g. Polm.

Recall the fundamental theorem of PAC learning: H is PAC learnable if and only if V C(H) <∞: our previous
observation highlights a tradeoff between learning higher degree polynomials and achieving a lower lower bound on
LD(h) and ensuring that our class H is still PAC learnable.
Let us define an even more relax version of PAC learnability.

13.2 Non-uniform PAC learnability

Definition 13.1 (Non-uniform PAC learnable). A class of predictors H is non-uniformly PAC learnable if
there exists a learner A and a function m′ : H × (0, 1)× (0, 1)→ N such that for every probability distribution P
over X × {0, 1}, every ε, δ > 0 and every h ∈ H, if m > m′(h, ε, δ) then over any iid P -samples

Pr
[
LP (A(S)) ≤ LP (h) + ε

]
> 1− δ

Remark 13.1. Compared to our definition of agnostic PAC learnability, we now allow m to change and depend on
an h ∈ H instead of fixing it for minh∈H LP (h).
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Theorem 13.1. A class H is non-uniformly PAC learnable if and only if there are classes {Hn | n ∈ N} such that

1. H =
⋃∞
n=1Hn

2. Each Hn has a finite VC dimension.

Remark 13.2. This theorem is analgous to the fundamental theorem of PAC learning but we only require H be a
union of finite VC dimension classes.

Remark 13.3. {Hn} need not be disjoint.

Proof. Forwards direction Assume H is non-uniformly PAC learnable and let m(h, ε, δ) be the function guaran-
teed by the definition. Pick ε = 1

8 , δ = 1
8 and define for all n

Hn = {h ∈ H : m(h,
1

8
,
1

8
) ≤ n}

clearly H =
⋃
nHn.

We now show each Hn has finite VC dimension. By the NFL we know that Hn

Reverse direction See below.

Corollary 13.1. Every PAC learnable H is also non-uniformly PAC learnable.

Claim. The class of all polynomial threshold functions over R (Pol1) is non-uniformly PAC learnable.

Proof. Note that if h ∈ Pol1 then h(x) = sign(p(x)) for some polynomial p of degree d.
Then

Pol1 =
⋃
d∈N

Pol1d

where V C(Pol1d) = d+ 1.

Claim. Let Hfinite be the class of all functions f : R→ {0, 1} such that f−1(1) is finite.
Hfinite is non-uniformly PAC learnable.

Remark 13.4. Note that V C(Hfinite = ∞, so Hfinite is not PAC learnable. On the other hand Hfinite =⋃
n∈NHn−ones where Hn−ones = {f : f−1(1) ≤ n} and V C(Hones) = n.

14 March 7, 2019

14.1 Finding ε instead of m

Rather than asking “given ε, δ, what should m be?” we can ask “given m, δ what accuracy can we promise?”
We define

εh(m, δ) = min{ε | m(h, ε, δ) ≤ m}

With this change of notation, we get that non-uniformly PAC learnability is equivalent to: given a sample size m,
with probability ≥ 1− δ, ∀h ∈ H we have

LP (A(S)) ≤ LP (h) + εh(m, δ)
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14.2 Non-uniformly PAC learnable theorem reverse proof

Recall our previous theorem:

Theorem 14.1. H is non-uniformly PAC learnable if ∃H1, H2, . . . ,Hn, . . . such that

1. H =
⋃
nHn

2. Each Hn has finite VC dimension

Proof. We now prove the reverse direction.
Since each Hn has a finite VC dimension, each Hn has the uniform convergence property: that is for some function

mUC
Hn

(ε, δ) for every P over X × {0, 1} if m > mUC
Hn

(ε, δ) then ∀h ∈ Hn we have Pr
[∣∣∣∣LP (h)− LS(h)

∣∣∣∣ < ε
]
≥ 1− δ

for S ∼ Pm.
Thus S is ε-representative for H.
Note that uniform convergence guarantees that ERMH works for large enough sample sizes.
Let w : N → [0, 1] such that

∑∞
n=0w(n) ≤ 1 (we choose some weight function for our Hn’s such that the total

weight is ≤ 1).
Define, for a given n ∈ N

εn(m, δ) = min{ε | mUC
Hn (ε, w(n)δ) ≤ m}

it follows that ∀h ∈ Hn and for sample sizes of m we have

Pr
[
|LP (h)− LS(h)| ≤ εn

]
≥ 1− w(n)δ

and so the probability of failure for a given n ∈ N and Hn is < w(n)δ.
Thus for all Hn, n ∈ N and for all h ∈ Hn (where n(h) = argminn{h ∈ Hn}), we have by union bound

Pr
[ ⋃
n∈N
|LP (h)− LS(h)| ≥ εn(h)

]
≤
∞∑
n=0

w(n)δ

≤ δ
∞∑
n=0

w(n)

≤ δ

Remark 14.1. We have just shown that if H =
⋃
nHn and each Hn has finite VC dimension then for some function

ε(h,m, δ) for sample size of m we have ∀h ∈ H

Pr
[
LP (h)− LS(h) ≤ ε(h,m, δ)

]
≥ 1− δ

where ε(h,m, δ) = εn(h)(m,w(n)δ) from our notation above.

14.3 Structural risk minimization (SRM)

As an implication of the theorem above, given a sample S ∼ Pm, how can we pick a good hypothesis h?
By the last result, for all h ∈ H we have with high probability

LP (h) ≤ LS(h) + ε(h,m)
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Remark 14.2. Note that to pick an h such that we are minimizing LP (h), we need to ensure both LS(h) and
ε(h,m) are both small.
The eps(h,m) term is the regularization term.

This method of minimizing LP (h) as above is called Struturcal Risk Minimization (SRM).

Example 14.1. As a neural network’s size increases, ε(h,m) tends to increase for a given m for each h in the larger
neural network.
So we sometimes sacrifice a slightly larger LS(h) but a lower ε(h,m) be choosing a simpler neural network or
function.

14.4 Minimal description length (MDL) principle

We present an example of structural risk minimization.

Definition 14.1 (Description language). A description language for a class H is a function ∧ : H →
all finite binary strings.
This function should satisfy the prefix-free requirement: for no two h, h̄ ∈ H we have ĥ is a prefix of ˆ̄h.

Theorem 14.2 (Kraft inequality). For every prefix-free language (and every H) we have∑
h∈H

1

2|ĥ|
≤ 1

Proof. For intuition, consider the prefix tree (as we move down the tree, we append 0 or 1 to our current string):

Figure 14.1: Prefix tree: from the root node if we moved left, left and right we get the string 001.

Note that for any level, we have 2i × 1
2i

= 1. Furthermore once we choose some string at a given node, all children
string in the prefix tree are not allowed since the chosen string would be a prefix of any of the children.
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Formally: define a probability distribution over class H as follows: toss an unbiased 0/1 coin until one gets a
dsecription string of some h.
It follows that the sum of the probabilities of getting the description string of h ∈ H is

∑
h∈H Pr(h) ≤ 1 (law of

total probability). Note that it is not exactly = 1 since we may end up tossing the coin indefinitely if we never
encounter a description match.
Note that for any h we have

P (h) =
1

2|ĥ|

by the iid of tossing an unbiased coin.

Let H be any countable class and ∧ be a description language for H. H is non-uniformly PAC learnable with

m(h, ε, δ) =
|ĥ|+ log

(
1
δ

)
ε2

15 March 12, 2019

15.1 Note on non-uniformly PAC learnability

Recall in the proof for the theorem on non-uniformly PAC learnability that can be guaranteed if we have finite VC
dimension Hn’s such that H =

⋃
nHn, we want to pick an h that minimizes

LS(h) + εn(h)(m,w(n(h))δ)

where n(h) = argminn{h ∈ Hn} and w : N → [0, 1] such that
∑∞

n=0w(n) ≤ 1. This is structural risk
minimization (SRM).
We can think of εn(h)(m,w(n(h))δ) as a penalty term. How do we use this penalty term to our advantage? We note
that as n→∞, then w(n)→ 0 (since the sum of w(n) is finite). This will decrease our confidence bound w(n)δ
which requires a larger ε and thus a larger penalty term.
We can thus construct our Hn’s such that a larger n corresponds to a more “complex” hypothesis class Hn. So while
a complex hypothesis h can reduce our empirical risk LS(h), we can penalize the complexity with the second term.
A less complex hypothesis class (smaller n) has a smaller penalization but may have a larger LS(h).
We thus have some abstract algorithm to penalize complexity.

15.2 SRM using description language

Recall that we cap map each H to a description where h→ ĥ (ĥ is a binary string). All binary strings are prefix-free
and from Kraft’s inequality we have

∑
h∈H

1

2|ĥ|
≤ 1.

Suppose we have some hypothesis class H = {h1, h2, h3, . . . , hn, . . .}. We define each Hn = {hn} (contains 1
hypothesis). Clearly V C(Hn) = 0 (one hypothesis can shatter 0 points). Note that H is non-uniformly PAC
learnable.
Let w(n) = 1

2|ĥn|
. What is εn(m,w(n)δ)?

24



Winter 2019 CS 485/685 Course Notes 16 MARCH 14, 2019

Recall that by definition εn(m, δ) = minε{n(ε, δ) ≤ m} and we showed for any hypothesis class

m(εn, δ) =
V C(Hn) + log

(
1

w(n)δ

)
ε2n

⇒εn =

√
0− logw(n) + log 1

δ

m

⇒εn =

√
|ĥ|+ log 1

δ

m

So the longer the description length a hypothesis hn has the larger its penalty term εn.

Remark 15.1. The h we pick to minimize LS(h) + εn(m,w(n)δ) depends on our choice of description, thus we
must pick our description before seeing S. That is: the choice of description is where our prior knowledge is
inserted into our algorithm.

15.3 SRM using prior distribution

Suppose we have some prior distribution over our hypotheses. Let Q be a probability distribution over H. Now
define w(h) = Q(h). Since Q is a probability over H we have

∑
h∈H Q(h) = 1.

Thus we want to pick an h that minimizes

LS(h) +

√
− logQ(h) + log 1

δ

m

The quality of our prior knowledge comes through as the fit between the empirical error and the likelihood Q(h) we
assigned.

15.4 SRM with finite H

For a finite H we can pick Q such that Q(h) = 1
|H| . Then we recover our previous bound

ε(m, δ) =

√
log|H|+ log 1

δ

m

16 March 14, 2019

16.1 Lessons from minimum description length boundb

1. The choice of the description language is up to the learner: different choices results in different algorithms

2. The functionˆ: H → {0, 1}n defines what will be a “complex” h vs a “simple” h

3. The description language has to be picked before seeing S

4. Occam’s Razor: simpler solutions are more likely to be correct than complex ones
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16.2 The computational complexity of learning

There are two major resources to consider in machine learning in general:

Information complexity How big should our training data be?

Computational complexity Once we have enough data how much computation is needed to pick h?

We’ve looked at information complexity, now we look at computational complexity.
In usual CS algorithms we measure the computational complexity of a problem as a function of the input size.
For example sorting for an input of I = {x1, . . . , xn}, we express that it runs in time f(n) if for all inputs I of size
≤ n the algorithm gives an answer in ≤ f(n) steps.
Contrast the above with algorithms given an input set S ⊆ X. The size of S is not a meaningful parameter to
evaluate the hardness of the task. Rather, our meaningful parameters are ε, δ.

Definition 16.1 (Computational complexity function). A learning task has complexity f(ε, δ) if for all ε, δ it can
be solved up to ε-accuracy and δ confidence with a learner computing for ≤ f(ε, δ) steps.
For example f(ε, δ) ∈ Polynomial

(
1
ε ,

1
δ

)
.

Example 16.1. Input: find predictor for temperature at noon tomorrow with ε = 0.1, δ = 0.05.
Output: Collect sample of size 1000 and output h that structurally minimizes LS(h) + ε(m, δ).

So in other words, given an input x how much computation is needed to find h(x)? Our input is ε, δ and our output
is some hypothesis h.
A learner thus requires time f(ε, δ) to learn a task if for every ε, δ within f(ε, δ) steps it outputs a predictor h that
meets the (ε, δ) requirement and for any input x, h(x) can be computed in time f(ε, δ).

16.3 Realizable input and ERMH

For a realizable input there are some problems where we can simply use ERMH .

Example 16.2. Let our hypothesis class H be of rectangles in R2. As we’ve previously shown if its realizable then
we can use ERMH efficiently.
Step 1: given a sample S of size m how much computation needed to find h such that LS(h) = 0? We need to find
the rightmost, leftmost, topmost and bottommost instance labelled positively in S.
Step 2: what should m be as a function of ε, δ? Recall in the realizable PAC learnable case since V C(H) = 4 then

mH(ε, δ) =
4+log 1

δ
ε , thus we have

f(ε, δ) ≈ 4

(
4 + log 1

δ

ε

)
∈ poly

(
1

ε
,
1

δ

)

16.4 Unrealizable input (agnostic) and ERMH

What if we ran ERMH on an unrealizable input?

Example 16.3. Let our hypothesis class H be of rectangles in R2.
Since we are only interested in the minimum loss over our entire class H, we only need to consider rectangles
determined by at most 4 points in S. Thus there are ≈ m4 such rectangles. Also for agnostic learnability m ≈ 4+log 1

δ
ε2

thus we have

f(ε, δ) ≈
(

4 + log 1
δ

ε2

)4
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17.1 More on computational complexity

We wish to bound the time it takes the learning algorithm to output a hypothesis h and the time to compute h on
any X by f(ε, δ|X|). Ideally f is a polynomial in terms of 1

ε ,
1
δ and |X| (the dimension i.e. number of features).

Recall that ignoring computational complexity, any learnable class is learnable by an ERMH algorithm (with no
additional sample complexity).
Once computation time is considered, there are cases that non-ERMH algorithm can run much fast than any
ERMH one.

17.2 CNF classifier and boolean domains

Consider boolean vectors domains e.g. for categorical features we have features that dicrete values “yes” or “no”.
Then we have X = {0, 1}n where X = (010110 . . .).
A basic class over such boolean domains are Conjunctive Normal Form (CNF) formulas:

Definition 17.1 (CNF formula). Given variables x1, . . . , xn (take on values true/false) and literals xi, . . . ,¬xj ,
then the set of CNF formulas are the AND of our literals i.e.

φ = xi1 ∧ xi2 ∧ . . . ∧ ¬xik+1
∧ ¬xik+2

∧ . . .

To learn from a class of CNF classifiers:

Input S = (x1, y1), . . . , (xm, ym) where for a given example we have (xi, yi) = ((0110 . . .),+) (positive label) or
(xi, yi) = ((0110 . . .),−) (negative label).

Output A CNF formula φ that has small error (over the data generating distribution)

Question 17.1. Given X = {0, 1}n and |X| = 2n (n-dimensional domain), what is V C(CNFn)?

Answer. We note that |CNFn| ≤ 3n (variable xi can either be in the CNF, negated, or not in the CNF) so

V C(CNFn) ≤ n log 3 ≤ 2n

Thus given a ε, δ, in the realizable case a sample of size

c ·
n+ log 1

δ

ε

will suffice to learn from CNFn.
We now need to find an efficient algorithm that takes S = (x1, y1), . . . , (xm, ym) and if some CNF φ has LS(φ) = 0
(i.e. realizable) then the out would be such φ.
A candidate CNF learning algorithm:

1. Initialize
φ0 = x1 ∧ x2 ∧ . . . ∧ xn ∧ ¬x1 ∧ ¬x2 ∧ . . . ∧ ¬xn

thus for any x ∈ X we have φ0(x) = 0 (the above CNF always evaluates to false).

2. At each step t we have a formula φt and wish to derive φt+1.

We consider the t-th positively labelled example in S:

st = ((010110 . . .),+)
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We obtain φt+1 by deleting from φt every literal that is violated by the example.

3. At any time step t, the first t positively labelled examples should have the correct label, and since we are in
the realizable case, all prior negatively labelled examples should remain negatively labelled.

Let p be the number of positive labelled examples in S. Then φp+1 would agree with all instances in S i.e.
LS(φp+1) = 0.
On S of sie m the algorithm terminates in time O(m · n), so the runtime of our algorithm is

f(ε, δ, n) ≤ c ·
n+ log 1

δ

ε
· n ≈

n2 + log 1
δ

ε

17.3 Summary of efficient realizable and agnostic learners

In the realizable case the following classes have efficient (polynomial time) ERMH learners:

• Rectangles in Rd

• Halfspaces in Rd

• CNFn

Remark 17.1. In the agnostic case ERMH learning of each of the above classes is NP-hard.

Definition 17.2 (NP-hard). A problem is NP-hard if having a polynomial time solution to this problem implies
efficient solutions to all problems in the NP class.
We do not know of any such algorithms and believe no such algoithm exists i.e. NP 6= P .

17.4 Computationally hard realizable problems

Question 17.2. Are there any learning problems that are computational hard, even in the realizable case?

Answer. Yes. For example:

• Neural networks once the depth ≥ 3 and width ≥ 3.

• Three term DNF formulas.

Definition 17.3 (DNF formula). Given X = {0, 1}n φ that is in Disjunctive Normal Form (DNF) is in the
form

φ = φ1 ∨ φ2 ∨ φ3
where each φi is a CNF formula.

17.5 DNF realizable

ERMH over 3-term DNF formulas is NP-hard.
However there is an efficient learning algorithm that is not an ERMH learner.
Note that

|3-term DNFn| ≤
(
|CNFn|

)3 ≤ 33n

thus V C(3-term DNFn) ≤ 3n log 3.
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Note that for every φ = φ1 ∨ φ2 ∨ φ3, every x1, . . . , xn can be re-written as

(l1 ∧ l2 ∧ . . . ∧ lpq) ∨ (l′1 ∧ l′2 ∧ . . . ∧ l′pq) ∨ (l′′1 ∧ l′′2 ∧ . . . ∧ l′′pq)
⇒(l1 ∨ l′1 ∨ l′′1) ∧ (l2 ∨ ′2 ∨ l′′2) ∧ . . .
⇒y1 ∧ y2 ∧ . . .

Thus we have an CNF formula. We pick a class H ′ ∈ CNFn such that H ′ ≥ H (H ′ covers our H for DNF ) and
V C(H ′) <∞.

18 March 21, 2019

18.1 Learning is the opposite of cryptography

Definition 18.1 (One-way functions). A one-way function is e.g. some f : N→ N whereby given x it is easy to
compute f(x), but given y it is hard to find x such that f(x) = y.

For example, as humans f(x) = x5 is a one-way function.
For machines even and for some M , (k, l)→ (kl) mod M is in general a hard problem (for particularly k, l,M i.e.
RSA).
A trapdoor function is one that has a secret key that can invert the function. A lunch break attack
records a sample of pairs (f(mi),mi) where mi is the input. The lunch break attack then learns from the class
H = {fkey | all possible keys} and fkey is a function over all keys of length l.
Since |H| ≤ 2l, then V C(H) ≤ l = key length. But we know that in cryptography learning such a function is hard:
this tells us that learning functions from even finite VC-dimension H canbe hard.

18.2 Basic learning algorithms

In general, realizable ERM and especially non-ERM algorithms are computationally efficient whereas in the
agnostic case it is not.

Linear predictors Given X = Rn, H = {hW,b | w ∈ Rn, b ∈ R} such that for every x,w, b we have

hw,b(x) = sign(w · x+ b)

i.e. hw,b(x) = 1 if
∑n

i=1 xiwi + bi > 0 and −1 otherwise.
Some advantages of linear predictors:

1. Fast to compute/infer at test time

2. Interpretable

3. “Easy to learn”

How do we train/learn linear predictors in the realizable case? Given S = {(x̄1, y1), . . . , (x̄m, ym)} where x̄i ∈ Rn
and yi ∈ {−1, 1}, we assume there exists some hw,b such that LS(hw,b) = 0. Our goal is to find such w, b.

Method 1: Linear programming Given a set of linear constraints:

a11x1 + a12x2 + . . .+ a1nxn ≥ b1
...
am1 x1 + am2 x2 + . . .+ amn xn ≥ bm
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and a linear objective u1x1 + . . . + unxn, we find a vertex (x1, . . . , xm) that satisfies the constraints and
maximizes the objective.

Geometrically we have some convex hull C in Rn space defined by our constraints and we want x ∈ C such
that u · x is maximized.

We can thus transform our learning task (given S find hw,b) into a linear programming task since we know
there exists w, b such that LS(hw,b) = 0: we find w1, . . . , wn and b satisfying w · xi + b > 0 for (xi, 1) and
w · xj + b ≤ 0 for (xj ,−1), thus we have:

w1x
i
1 + w2x

i
2 + . . . wnx

i
n + b > 0 (xi, 1) ∈ S

w1x
j
1 + w2x

j
2 + . . . wnx

j
n + b ≤ 0 (xj ,−1) ∈ S

Note that we have two issues with the current formulation:

1. We have strict inequalities whereas linear programming requires non-strict inequalities. Since we have
finitely many points, we can simplify specify that linear link of the +1 points are all ≥ than the minimum
(and vice versa for −1 points).

2. We do not really have an objective function since we only care that the constraints are satisfied.

Perceptrons A perceptron has a layer of n input neurons for each coordinate xi, i = 1, . . . , n, and m weights wi
for i = 1, . . . , n.
It then takes the linear combination and checks

∑
xiwi ≥ b or

∑
xiwi ≤ b.

In an online learning setting, it iterates through every (x̄i, yi) by first computing h(x̄i and comparing it to the
true answer yi.
We initialize before the first iteration w0, b0. At each stage t, upon seeing f(x̄i) we update to wt+1 and bt+1 based
on update rules (Rosenblatt 1958). Assuming all b’s are 0:

wt+1 = wt if sign(wi · x̄i) = yi

wt+1 = wt + yi · x̄i if sign(wi · x̄i) 6= yi

This algorithm converges fast whenever there exists w∗ such that for all i, sign(w∗ · x̄i) = yi.
We let B be the minimal norm such that for some w∗ we have ‖w∗‖ = B
Thus for all 1 ≤ i ≤ m if we converge we have

h(x̄i)(w
∗ · x̄i) ≥ 1
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19.1 Novikoff’s theorem for perceptrons

Theorem 19.1 (Novikoff’s theorem). Given input S = {(x1, y1), . . . , (xm, ym)} where xj ∈ Rn, yi ∈ {−1, 1}, if S
is linearly separable then for some w∗ we have LS(hw∗) = 0. Thus for some w∗ we have ∀i 〈w∗, xw〉yi ≥ 1. Let
BS = min{‖w‖ | ∀i, 〈w, xi〉yi ≥ 1}.
The number of updates of the perceptron algorithm on any linearly separable, realizable S is ≤ (RBS)2 where
R = maxi‖xi‖.

19.2 Non-realizable percetron inputs

How do we handle non-linearly seaparable inputs (i.e. not realizable by class of halfspaces Hsn)?
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One trick: change the way data is represented.

Example 19.1. Suppose x1 < x2 < x3 < x4 < x5 with labels +,+,−,−,+. Clearly {xi, yi} is not linearly
separable, however if we map xi → (xi, x

2
i ) ∈ R2 (map into R2 as a parabola) then we there exists coefficient vector

w such that for all 1 ≤ t ≤ m, 〈w, (xi, x2i )〉 = yi (where w = (w1, w2) and 〈w, (xi, x2i )〉 = w1xi + w2x
2
i ).

We can view the linear classifier over the new representation as a polynomial classifier over the old representation.
In general we can perform the mapping

x→ (x, x2, x3, . . . , xα) ∈ Rα

We can also repeat this trick for an x = (x1, . . . , xm) ∈ Rn where:

x→ (x1, . . . , xn, x1x2, x1x3, . . . , x1xn, x2x3, x2x4, . . . , x2xn, . . . , x
2
1, . . . x

2
n) ∈ Rn

2

where we have all monomials of degree ≤ 2 over x1, . . . , xm.

Some important questions:

1. Can we guarantee that under the new representation S will be linearly separable?

2. Can we control the sample complexity of these new classifiers?

3. What happens to the computational complexity?

To answer the above:

1. By going to a large enough dimension of representation every S can be made separable.

That is for S = {(x1, y1), . . . , (xm, ym)} we can map X → (00 . . . 1000) ∈ Rn for some large enough n.

Note that

mH(ε, δ) ≈
V C(H) + log 1

δ

ε2

⇒ε ≈

√
V C(H) + log 1

δ

m

and also for large n, V C(H) = n becomes very big, so sample complexity blows up.

2. It turns out that we can control the generalization error in terms of BS = min{‖w‖ | 〈w, xt〉yi ≥ 1}, which
can be controlled as there exists such linear classifiers with small BS . The above becomes

mH(ε, δ) ≈
BS + log 1

δ

ε2

⇒ε ∼

√
BS + log 1

δ

m
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20.1 Weak learnability

We recall that many ERMH learners in the PAC learnable and agnostic PAC learnable cases are computationally
hard.
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What if we trade computational hardness with a laxer requirement of accuracy? Given some distribution D and
labelling function f , perhaps there exists a weak learner that is computationally efficient whose error is better
than a random guess.

Definition 20.1 (γ-weak learner). A learning algorithm A is a γ-weak learner for class H if there exists function
mH : (0, 1)→ N such that for every δ ∈ (0, 1) and every distribution D over X and labelling function f : X → {±1}
the realizable assumption holds when running the algorithm on m ≥ mH(δ) iid examples.
That is the algorthm returns a hypothesis such that with probability ≥ 1− δ we have L(D,f)(h) ≤ 1

2 − γ.

Definition 20.2 (γ-weak learnable). A hypothesis class H is γ-weak learnable if there exists a γ-weak learner
for that class.

Remark 20.1. We note the almost identical definition to PAC learning which we herein refer to as strong
learning.
Note that strong learnability requires us find an arbitrarily good classifier whereas weak learnability only requires
us find one that has error ≤ 1

2 − γ.

Note that the sample complexity of PAC learnable H satisfies

mH(ε, δ) ≥ C1
V C(H) + log 1

δ

ε

for some constant C1. Applying ε = 1
2 − γ we see if V C(H) = ∞ then H is not γ-weak learnable, thus weak

learnability is characterized by VC dimensio as well. As noted in the fundamental of PAC learnable so weak learning
is just as hard as PAC learning, however we do end up with the upside of computation efficiency.
One approach is to take a “simple” hypothesis class B and apply ERM with respect to B as the weak learning
algorithm. We require B to satisfy two requirements:

1. ERMB is efficiently implementable

2. For every sample labeled by some hypothesis from H, the ERMB hypothesis will have at most error ≤ 1
2 − γ

21 April 2, 2019

21.1 Decision stumps

The big issues with linear halfspaces:

1. Expressive power (approximation error) where in LP (h) ≤ minh∈H LP (h) + ε minh∈H LP (h) is too high.

2. Computational complexity (in the agnostic case)

Let the 3-piece classifier hypothesis class H3 = {h(s,t,b) | s ≤ t, b ∈ {−1, 1}} where

h(s,t,b)(x) =

{
b if x ∈ [s, t]

−b otherwise

i.e. H3 can partition the real line into 3 intervals of −1, 1,−1 or 1,−1, 1 labellings.
Let B be the class of decision stumps (threshold functions) over R.
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Claim. ERMB is a γ-weak learner for H3.
What γ-value can we guarantee?
There are parts of S to the leftmost, middle, rightmost that are homogeneously labelled. At least one of those parts
contains ≤ 1

3 in mass over S. We can thus choose an h ∈ B that produces errors only on this part.
For such a h ∈ B we have

LS(h) ≤ 1

3
=

1

2
− 1

6

What about L(D,f)(h), the true error?

Sine V C(B) = 2 then for m >
2+log 1

δ
ε2

we have |LS(h)− LP (h)| < ε with probability ≥ 1− δ.
Thus given a δ > 0 we pick m(δ) such that for all h ∈ B |LS(h)− LP (h)| < 1

12 with probability ≥ 1− δ, and thus
for m > m(δ) we have with probability ≥ 1− δ

L(D,f)(A(S)) ≤ 1

3
+

1

12
=

1

2
− 1

12

Thus ERMB is γ = 1
12 -weak learnable.

Remark 21.1. In general we can pick any m(δ) such that we can get any arbitrary γ-weak learnable guarantees
up to γ = 1

6 .

21.2 Weak learners in practice

We begin with two questions:

1. Which weak learners are used in practice?

2. How can we “boost” weak learners to get small errors?

To answer the first question, we often we use decision stumps as weak learners. For example, across some d-
dimensional space e.g. Rd and for each dimension i, we choose the best decision stump partitioning on the ith
dimension by iterating through all m points and choosing the split point that minimizes the error. We thus perform
m · d comparisons.

Example 21.1. Suppose we wanted to detect a faces in an image using decision stumps in a 24 × 24 greyscale
image.
Consider all rectangles over the image (≈ 244). There are four possible labellings of the rectangles (given two
decision trumps along each dimension):
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Figure 21.1: Types of rectangle shading. For a given rectangle these are all the same size. Note that the
partitioning is exact where we either divide the rectangle exactly in half or in thirds for a given dimension.

Within each rectangle and for each type we associate the value of the sum of the pixels in the red rectangles subtract
the sum of the pixels in the blue rectangles.
Then for an image, we produce a ≈ 4 · 244-length vector where we have a value for each of the 4 types for each of
the ≈ 244 rectangles.
A stronger learner can then decide which of the rectangle filters (i.e. which features in the vector) are most important
in detecting a face by training on a sample of faces. For example, the learner may choose the following two filters
for a set of faces:

Figure 21.2: First feature measures difference in intensity between eyes and upper cheeks. Second feature compares
intensities in eye region vs intensity across bridge of nose.

21.3 Boosting and AdaBoost

We know that PAC learning is computationally infeasible in the agnostic case.
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We may ask ourselves: maybe weak learning is easier? In 1990, Robert Schapire showed that this is not the case.

Theorem 21.1. If you can efficiently γ-weak learn a class H for γ > 0 then one can efficiently (strong) learn it.

Remark 21.2. The above theorem automatically implies weak learning cannot be easy.

Yoav Freund and Rob Schapire subsequently came up with a boosting algorithm called AdaBoost in 1996. A
boosting algorithm combines weak learners to get a strong learner.

AdaBoost Given a sample S and a weak learner A, we learn a series of hypothesis h0, h1, h2, . . . over the
distributions D0, D1, D2, . . . over S where D0 is a uniform distribution over S i.e. D0(xi, yi) = 1

m and h0 =
A(S,D0).
Given ht, Dt, how do we generate ht+1, Dt+1? The idea is we want Dt+1 to increase the mass Dt+1(xi, yi) for every
i where ht(xi) 6= yi i.e. increase the emphasis on incorrectly labelled points by the previous ht. ht+1 is then the
hypothesis A(S,Dt+1).
Our final hypothesis hT is defined as

hT = sign
( T∑
t=1

αtht
)

where the weights αt per weak learned ht is inversely proportional to L(S,Dt)(ht).
Note that if A is γ-weak learnable, then we can show

LS(h) ≤ 1

eγT

after T steps where

γ = min
1≤i≤T

(1

2
− LS(hi)

)
Boosting thus solves two issues:

1. Computational complexity of training expressive H’s: use simple “weak class” of B’s that is easy to train

2. h’s in B’s cannot achieve small train error: boosting solves this

Note that once LS(h) < 1
|S| , then LS(h)→ 0, thus in roughly T ≈ logm we get zero train error.

22 April 4, 2019

22.1 Issues with boosting

One issue with boosting is that it tends to overfit: what is the true error LP (h)?

Solution. Note that in order to ensure |LS(h)− LP (h)| is small, we recall uniform convergence and the fact that

|LS(h)− LP (h)| ≤

√
V C(H̄) + log 1

δ

m

where in our case H̄ = L(B, T ) is a linaer combination of size T of members of B.
Note that V C(L(B, T )) ≈ T · V C(B) so if we control either V C(B) and T (fewer steps) we can reduce the overall
V C(H̄).

Another issue: in the overall error LS(h) = 1
eγT

we have γ = min{12 − LS(hi)} = min{γi}: note that this is a min
over all hi. In practice we notice that γi → 0 so we cannot always achieve LS(h) = 0.
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22.2 Generalization and types of errors

As mentioend briefly above, one issue with every learning tool is generalizing well i.e. ensuring |LS(h)− LP (h)| is
low. Note that in general we have

LP (A(S)) ≈ computation error + |LP (h)− LS(h)|+ min
h∈H

LP (h)

where absLP (h)− LS(h) is the generalization error and minh∈H LP (h) is the approximation error.
Note that computation error is the error that is a result of getting A(S) as close as possible to ĥ: the hypothesis
that minimizes LS . This usually involves more computation e.g. iterating over all h ∈ H.
Approximation error is the best possible error we get on the true distribution P within our hypothesis class H.

22.3 Neural networks

A neural network predictor is determined by < V,E, σ, w̄ > where V,E is the graph (vertices, edges), σ is the
activation function (what do nodes compute) and w̄ are the weights over edges.
Suppose (V,E) forms a directed acyclic graph (DAG). σ is a function from R to R that a node v computes.
Then for input x̄ and a node v

v(x̄) = σ
(∑

i

wiui(x̄)

where wi are the weights on the input edges and ui(x̄) are the node activations feeding into v.
Some common activation functions:

1. Threshold function: σ(z) = sign(z)

2. Sigmoid function: σ(z) = 1
1+e−z

3. ReLU piecewise linear: σ(z) = max(0, z)

How do neural networks handle the fundamental challenges?

1. Expressive power: every function can be computed by a neural entwork with very simple σ (universal
approximation theorem).

If a function can be computed in time T (m) then a neural network of size T (m)2 can compute it.

2. Computational complexity: training is NP-hard.

However during inference, given h and test x computing h(x) is easy.

3. Generalization: For a neural network with graph (V,E) then V C(NN) ≈ |E|.
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