
Spring 2017 MATH 239 Course Notes TABLE OF CONTENTS

richardwu.ca

MATH 239 Course Notes
Introduction to Combinatorics

Kevin Purbhoo • Spring 2017 • University of Waterloo

Last Revision: March 4, 2018

Table of Contents

1 May 3, 2017 1
1.1 Division is sketchy . 1
1.2 A0 . 1

2 May 8, 2017 1
2.1 Generating functions . 1

3 May 10, 2017 2
3.1 Binomial Thoerem . 2
3.2 Coefficient Notation . 3
3.3 Formal Power Series (FPS) . 4

4 May 12, 2017 4
4.1 Formal Power Series (cont.) . 4
4.2 Adding FPS . 4
4.3 Multiplying FPS . 5
4.4 Composite FPS . 5
4.5 Algebraic Proofs with FPS . 6

5 May 15, 2017 7
5.1 Variations of Binomial Theorem . 7
5.2 Computing Coefficients . 7
5.3 Sum and Product Lemmas . 8

6 May 17, 2017 9
6.1 n Groups in Product Lemma . 9
6.2 Compositions . 10
6.3 Isomorphic Solution to Compositions . 11
6.4 Compositions with Constraints . 12
6.5 Empty Parts . 12

i

richardwu.ca

Spring 2017 MATH 239 Course Notes TABLE OF CONTENTS

7 May 23, 2017 13
7.1 10 Steps to Generating Series Problems . 13
7.2 Binary Strings . 14
7.3 Concatenation of Strings . 14
7.4 Concatenations of Sets of Strings . 14
7.5 Empty String . 14
7.6 Blocks . 15
7.7 Ambiguous vs Unambiguous . 15

8 May 24, 2017 15
8.1 Union . 15
8.2 Unambiguity for Complex Expressions . 15
8.3 Empty string ε . 15
8.4 A∗ (“Infinite” Unions) . 15
8.5 Brackets . 16
8.6 Generating Series for Sets of Strings . 16

9 May 26, 2017 16
9.1 Finite String Lemma . 16
9.2 Standard Decomposition of Binary Strings . 17
9.3 Block Decomposition . 18

10 May 29, 2017 18
10.1 Coefficient of Rational Functions . 18

11 May 31, 2017 20
11.1 Recurrence Relations for Rational Functions . 20

12 June 2, 2017 22
12.1 Notes on Recurrence Relations . 22
12.2 Characteristic Polynomial . 22
12.3 Presenting Recurrence Solutions . 22
12.4 Crazy Dice Problem . 23

13 June 5, 2017 24
13.1 Definition of Graphs . 24
13.2 Edge Terminologies . 24
13.3 Neighbours and Degree of Vertex u . 25
13.4 Graph Morphisms . 25

14 June 7, 2017 26
14.1 Special Graphs . 26
14.2 Handshaking Lemma . 27

15 June 9, 2017 27
15.1 Teams and Games Graph Problem . 27
15.2 Number of Odd Degree Vertices . 28
15.3 Walks . 28
15.4 Paths . 28

ii

Spring 2017 MATH 239 Course Notes TABLE OF CONTENTS

15.5 Walk → Path . 28

16 June 12, 2017 28
16.1 Transitivity (and Equivalence) of Paths . 28
16.2 Connected Graphs . 29
16.3 Subgraph . 29
16.4 Spanning (Subgraphs) . 29
16.5 N-Cycle . 30
16.6 Cycle in Graph . 30
16.7 Cycle Walks . 30
16.8 Component of a Graph . 30

17 June 14, 2017 30
17.1 Cut Induced by X . 30
17.2 Connected Graph via Proper Non-Empty Subset . 30
17.3 Eulerian Circuit/Tour . 31
17.4 Bridges . 31
17.5 Deletion of Bridges → 2 Components . 31

18 June 19, 2017 32
18.1 Certifying Properties . 32
18.2 Trees . 32
18.3 Forest . 32
18.4 Trees with At Least 2 Vertices of Degree One . 32
18.5 Number of Edges and Vertices in Trees . 32
18.6 Number of Vertices of Degree One ≥ Max Degree . 33
18.7 Leaf . 33

19 June 21, 2017 33
19.1 Spanning Trees . 33
19.2 Creating Cycles From Spanning Tree . 34
19.3 Disconnecting and Connecting Spanning Tree . 34
19.4 Bipartite Graphs and Odd Cycles . 34

20 June 23, 2017 35
20.1 Breadth-First Search Trees . 35
20.2 Shortest Path by Property of BFST . 35

21 June 26, 2017 36
21.1 Girth . 36
21.2 Shortest Cycle . 36
21.3 Planar Graphs . 36
21.4 Faces (of Planar Embeddings) . 36
21.5 Handshaking Lemma for Faces . 37

iii

Spring 2017 MATH 239 Course Notes TABLE OF CONTENTS

22 June 28, 2017 37
22.1 Alternate Definition of a Degree of Face . 37
22.2 Isomorphic Graphs and Degrees of Faces . 37
22.3 Euler’s Formula for Planar Graphs . 37
22.4 Degree of Faces and Girth . 38

23 June 30, 2017 39
23.1 Key Formulas for Planar Embeddings . 39
23.2 Proof of Non-Planar Graphs . 39
23.3 Edge Bound by Vertices for Planar Embeddings . 40
23.4 Edge Bound by Vertices for Bipartite Planar Embeddings . 40
23.5 Platonic Solids . 40

24 July 5, 2017 41
24.1 Prove That a Graph is Planar . 41
24.2 Kuratowski’s Theorem . 41
24.3 Kuratowski Example with Petersen Graph . 42

25 July 7, 2017 42
25.1 Recap on Planarity Checks . 42
25.2 Colouring Graphs . 42
25.3 2-Colourable and Bipartite . 43
25.4 n-Colourable and Kn . 43
25.5 6-Colourable for Every Planar Graph . 43

26 July 10, 2017 44
26.1 5-Colourable for Every Planar Graph . 44
26.2 Contracting Edges . 44
26.3 Matching . 44
26.4 Maximum vs Maximal Matching . 44

27 July 12, 2017 45
27.1 Perfect Matching . 45
27.2 Applications of Matchings . 45
27.3 Finding a Larger Matching . 45
27.4 M-Alternating and M-Augmenting Path . 46

28 July 14, 2017 46
28.1 Finding a Maximum Matching in Any Graph . 46
28.2 Cover Subset of Vertices . 46
28.3 Minimum Cover . 47
28.4 Konig’s Theorem . 47

29 July 17, 2017 47
29.1 Proof of Konig’s Theorem . 47

30 July 19, 2017 49
30.1 Bipartite Matching Algorithm . 49

iv

Spring 2017 MATH 239 Course Notes TABLE OF CONTENTS

31 July 21, 2017 50
31.1 Modelling Problems as Bipartite Graphs . 50
31.2 Hall’s “Marriage” Thoerem . 50

32 July 24, 2017 50
32.1 K-regular Bipartite Graph have Perfect Matching . 50
32.2 Bipartite Graph Example Problem . 51
32.3 Final Exam Notes . 52
32.4 Classes of Problems . 52

v

Spring 2017 MATH 239 Course Notes 2 MAY 8, 2017

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 May 3, 2017

1.1 Division is sketchy

Example 1.1. How many different outcomes are there from rolling 2 dices?
If dices are distinguishable:

6× 6 = 36

If dices are indistinguishable:
6× 6

2!
+

6

3
= 21

Note that when we create our tuples, (1, 2) and (2, 1) tuples are reduced to one element. We can divide by 2!, BUT
note that (k, k) tuples are mistakenly reduced by a factor of 2, thus we must add half of them back.
Division is sketchy!

1.2 A0

Note the Cartesian Power is defined as

Ak = A×A× ...×A = {(a1, ..., ak|a1, ..., ak ∈ A}

What is A0?
A0 = {()}

() is the empty list/tuple.
By extension

|Ak| = |A|k

And so |A0| = |A|0 = 1.

2 May 8, 2017

2.1 Generating functions

Abstracts all configurations (and thus countable) into a function-like representation.
Let S be a set of “configurations”.
Let w : S → N be a “weighted function” which assigns each configuration σ ∈ S a “weight” w(σ) ∈ N.
Note N = {0, 1, 2, . . .}.

Definition 2.1. The generating series for S with respect to w is

ΦS(x) =
∑
σ∈S

xw(σ)

1

Spring 2017 MATH 239 Course Notes 3 MAY 10, 2017

Example 2.1. Suppose S is a the set of binary strings of length 4 and w : S → N is the weight function.

w(σ) = # of 1s in σ

How many binary strings of length 4 have n 1s?
σ ∈ S w(σ) xw(σ)

0000 0 1
0001 1 x1

0010 1 x1

0100 1 x1

1000 1 x1

0011 2 x2

0110 2 x2

...
...

...
So our generating series would be

1 + 4x+ 6x2 + . . .+ x4

Note the coefficients are the count of each configuration xw(σ) or each weight w(σ).

3 May 10, 2017

Continuing from before. . .

Example 3.1. Another way to get ΦS(x)

ΦS(x) =
∑
n≥0

(
4

n

)
xn

=

(
4

0

)
x0 +

(
4

1

)
x1 + . . .+

(
4

4

)
x4 +

(
4

5

)
x5 + . . .

=

(
4

0

)
x0 +

(
4

1

)
x1 + . . .+

(
4

4

)
x4

3.1 Binomial Thoerem

We can also use the Binomial Theorem

(1 + x)m =
m∑
k≥0

(
m

k

)
xk

So
ΦS(x) = (1 + x)4

How can we find the number of elements in S? Plug in x = 1

|S| = ΦS(1)

2

Spring 2017 MATH 239 Course Notes 3 MAY 10, 2017

ΦS(x) =
∑
σ∈S

xw(σ)

=
∑
σ∈S

1

What about the sum of weights in S?
Φ′S(1)

In this example

Φ′S(x) = 1 · 0x−1 + 4 · 1x0 + 6 · 2x1 + 4 · 3x2 + 1 · 4x3

= 0 + 4 + 12 + 12 + 4 = 32

See Theorem 1.6.3. for more details.

Example 3.2. Let S be the set of all binary strings

S = {ε, 0, 1, 00, 01, 10, 11, . . .}

where ε is the empty string.
Define the weight function w : S → N where w(σ) is the length of σ.
Counting problem How many binary strings of length n? Answer is 2n.
What is ΦS(x)?

ΦS(x) =
∑
n≥0

2nxn

=
∑
n≥0

(2x)n

=
1

1− 2x

Note this is an infinite geometric series where |2x| < 1

3.2 Coefficient Notation

If we have a series A(x) =
∑

n≥0 anx
n, then we can write

[xn]A(x) = an

where [xn]A(x) means the coefficient of xn in A(x) or the number of elements of S where weight = n.

Example 3.3. By Binomial theorem

(1 + x)m =
m∑
n≥0

xk

=
∞∑
n≥0

xk

3

Spring 2017 MATH 239 Course Notes 4 MAY 12, 2017

such that
[xn](1 + x)m =

(
m

n

)

3.3 Formal Power Series (FPS)

Power series are
A(x) =

∑
x≥0

anx
n

What does formal mean? Use only algebraic manipulation.

Example 3.4.

2 + 2 = 4 good

(1 + x)(1− x) = 1− x2 good

1− x2

1− x
= 1 + x ∗

* Bad if you plug in x = 1 such that LHS is undefined. Good if you treat division as the inverse of multiplication.
In the good case, this is the formal interpretation.

Formal Two expressions are equal if you can get from one to the other using algebraic manipulations.

Analytic Two expressions are equal if they are equal when you plug in numbers.

We will NEVER plug in numbers and use the formal interpretations.

4 May 12, 2017

4.1 Formal Power Series (cont.)

What algebraic manipulations are we allowed?

Allowed • collecting like terms

• distribution laws allow standard alg. laws

NOT allowed • taking limits

4.2 Adding FPS

Simple example

Example 4.1.
(
∑
n≥0

anx
n) + (

∑
n≥0

bnx
n) =

∑
n≥0

(an + bn)xn

Breaking up summations

4

Spring 2017 MATH 239 Course Notes 4 MAY 12, 2017

Example 4.2.

(
∑
n≥0

nxn) + (
∑
n≥0

1

n+ 1
xn+1)

= (0x0 +
∑
n≥1

nxn) + (
∑
m≥1

1

m
xm)

=
∑
m≥1

(m+
1

m
)xm

4.3 Multiplying FPS

Example 4.3.

(
∑
n≥0

anx
n)(
∑
n≥0

bnx
n)

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + . . .

=
∑
n≥0

(
n∑
k≥0

akbn−k)x
n

It’s a good idea to modify the “dummy variable” in each summation if more complex manipulation is necessary.
Using the previous example to illustrate

Example 4.4.

(
∑
n≥0

anx
n)(
∑
n≥0

bnx
n)

= (
∑
k≥0

akx
k)(
∑
l≥0

blx
l)

=
∑
l≥0

(
∑
k≥0

akx
k)blx

l

=
∑
l≥0

(
∑
k≥0

akx
kblx

l)

=
∑
l≥0

∑
k≥0

akx
kblx

l

Now let’s substitute n = k + l→ l = n− k, where n ≥ 0 from our domain of k and l

=
∑
n≥0

∑
k ≥ 0nakbn−kx

n

=
∑
n≥0

(
∑

k ≥ 0nakbn−k)x
n

4.4 Composite FPS

Summations may also be expressed with a coefficient

5

Spring 2017 MATH 239 Course Notes 4 MAY 12, 2017

Example 4.5.

(1 + 3x)
∑
n≥0

nxn

= (1
∑
n≥0

nxn) + (3x
∑
n≥0

nxn)

= (
∑
n≥0

nxn) + (
∑
n≥0

(3x)nxn)

= (
∑
n≥0

nxn) + (
∑
n≥0

3nxn+1)

. . .

4.5 Algebraic Proofs with FPS

Example 4.6. How do we justify (without using infinite geometric series formula)∑
n≥0

2nxn =
1

1− 2x

We can write A(x)B(x) = 1→ A(x) = 1
B(x)

(1− 2x)
∑
n≥0

2nxn) = (
∑
n≥0

2nxn)− (2x
∑
n≥0

2nxn)

=
∑
n≥0

2nxn −
∑
n≥0

2n+1xn+1

=
∑
m≥0

2mxm −
∑
m≥1

2mxm

= (1 +
∑
m≥1

2mxm)−
∑
m≥1

2mxm

= 1

Note there is no concept of “radius of convergence” since these are simply algebraic manipulations (formal).

Using the same logic, we may derive the general form

1

1− x
=
∑
n≥0

xn

Example 4.7. We can then deduce the previous example using substitution x = 2x

1

1− 2x
=
∑
n≥0

(2x)n =
∑
n≥0

2nxn

6

Spring 2017 MATH 239 Course Notes 5 MAY 15, 2017

Example 4.8. There is however also incorrect ways to do this (THIS IS WRONG!). That is let x = x− 1
2

1
3
2 − x

=
1

1− (x− 1
2)

=
∑
n≥0

(x− 1

2
)n

=
∑
n≥0

∑
k≥0

xk(−1

2
)n−k

(
n

k

)

=
∑
k≥0

∑
n≥0

xk(−1

2
)n−k

(
n

k

)

=
∑
k≥0

(
∑
n≥0

(−1

2
)n−k

(
n

k

)
)xk

Notice that the nested summation is an infinite sum which requires taking a limit.
The right way is to do

1
3
2 − x

=
2

3
(

1

1− 2
3x

) =
2

3

∑
n≥0

(
2

3
x)n

=
2

3

∑
n≥0

(
2

3
)nxn

=
∑
n≥0

(
2

3
)n+1xn

5 May 15, 2017

5.1 Variations of Binomial Theorem

•

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k n ∈ N

•

(1 + x)n =

n∑
k=0

(
n

k

)
xk

•

(1− x)−n =

n∑
k=0

(
n+ k − 1

k

)
xk

this is the Negative Binomial Theorem

5.2 Computing Coefficients

Example 5.1. Compute
[xn](2 + x2 + x3)m

7

Spring 2017 MATH 239 Course Notes 5 MAY 15, 2017

The solution is

(2 + x2 + x3)m = 2m(1 +
1

2
x2 +

1

2
x3)m

= 2m
∑
k≥0

(
m

k

)
(
1

2
x2 +

1

2
x3)k

= 2m
∑
k≥0

(
m

k

)
(
1

2
x2)k(1 + x)k

= 2m
∑
k≥0

(
m

k

)
2−kx2k

∑
j≥0

(
k

j

)
xj

=
∑
k≥0

∑
j≥0

(
m

k

)(
k

j

)
2m−kx2k+j

Let n = 2k + j or j = n− 2k

=
∑
n≥0

(

bn
2
c∑

k≥0
2m−k

(
m

k

)(
k

n− 2k

)
)xn

∴ [xn](2 + x2 + x3)m =

bn
2
c∑

k≥0
2m−k

(
m

k

)(
k

n− 2k

)

5.3 Sum and Product Lemmas

Sum Lemma Suppose S = A ∪B where A ∩B = ∅ and we have a weight function on S. Then

ΦS(x) = ΦA(x) + ΦB(x)

Proof.

ΦS(x) =
∑
σ∈S

xw(σ)

=
∑
σ∈A

xw(σ) +
∑
σ∈B

xw(σ)

= ΦA(x) + ΦB(x)

Product Lemma

Example 5.2. You have 5 loonies and 4 toonies.

(a) How many ways to make $9?

(b) $10?

Let S be the set of all coins where A is the set of loonies and B the set of toonies.

8

Spring 2017 MATH 239 Course Notes 6 MAY 17, 2017

of loonies 0 1 2 3 4 5
Toonie weights x0 x1 x2 x3 x4 x5

0→ x0 x0 x1 x2 x3 x4 x5

1→ x2 x2 x3 x4 x5 x6 x7

2→ x4 x4 x5 x6 x7 x8 x9

3→ x6 x6 x7 x8 x9 x10 x11

4→ x8 x8 x9 x10 x11 x12 x13

∴ ΦS(x) = x0 + x1 + x2 + . . .+ x13

= x0 + x1 + 2x2 + 2x3 + 3x4 + 3x5 + 3x6 + 3x7 + 3x8 + 3x9 + 2x10 + 2x11 + x12 + x13

So to answer the question

(a)
[x9]ΦS(x) = 3

(b)
[x10]ΦS(x) = 2

This is stupid. Note this is the same as

ΦS(x) = (1 + x+ x2 + x3 + x4 + x5)(1 + x2 + x4 + x6 + x8)

Note that S is a composite product, that is

S = [x] =

{
L specifies how many loonies
T specifies how many toonies

}
so

ΦS(x) = ΦL(x)ΦT (x)

Let A be a set with weight function α. Let B be a set with weight function β. Let S = A×B and disjoint
weight function w : S → N where w(a, b) = α(a) + β(b). Then

ΦS(x) = Φα(x)Φβ(x)

Note the weight of a composite function must be the sum of the weights of the individual functions.

6 May 17, 2017

6.1 n Groups in Product Lemma

Example 6.1. You have 5 loonies and 4 toonies. I have 8 loonies and 3 toonies. How man ways can we make $20
together?
Note that we cannot combine the loonies and toonies since WLOG X loonies from you and Y loonies from me is
different than say Y loonies from you and X loonies from me.
Let S be the set of all combinations of loonies and toonies we can produce together.

9

Spring 2017 MATH 239 Course Notes 6 MAY 17, 2017

Let L1 be set of ways YOU can contribute loonies. T1 YOU can contribute toonies. Similarly for L2 and T2 for ME.
That is for example

L1 = {0, 1, 2, 3, 4, 5} loonies

For each of these sets, define the weight of a configuration as the dollar amount. So we have

S = L1 × T1 × L2 × T2

or in other words, one must specify an element for all four subsets to specify an element of S.
We can use the product lemma here since it satisfies wS(a, b, c, d) =

∑
i∈{a,b,c,d}wI(i), so

ΦS(x) = ΦL1(x)ΦT1(x)ΦL2(x)ΦT2(x)

= (x0 + x1 + x2 + . . .+ x5)(x0 + x2 + x4 + . . .+ x8)(x0 + x1 + x2 + . . .+ x8)(x0 + x2 + x4 + x6)

We can use the finite geometric series formula

ΦS(x) = (
x0 − x6

1− x
)(
x0 − x10

1− x2
)(
x0 − x9

1− x
)(
x0 − x8

1− x2
)

So we can then solve for the coefficient

[x20](
x0 − x6

1− x
)(
x0 − x10

1− x2
)(
x0 − x9

1− x
)(
x0 − x8

1− x2
)

as the number of ways to make $20.

6.2 Compositions

Example 6.2. How many ways can you add up to 5 using 3 numbers ≥ 1?

(3, 1, 1)
(1, 3, 1)
(1, 1, 3)
(2, 2, 1)
(2, 1, 2)
(1, 2, 2)

Definition 6.1. A composition of n with k parts is a sequence (c1, . . . , ck) of positive integers (1, 2, 3, . . .) such that

c1 + c2 + . . .+ ck = n

The numbers c1, . . . , ck are called the parts of the composition. k is the number of parts.
Let S be the weight of a composition (c1, . . . , ck) with exactly k parts. Define the weight of a composition in S as

w((c1, . . . , ck)) = c1 + . . .+ ck

that is, the number of elements in S with weight n is the answer to our question.
Let N≥1 = {1, 2, 3, . . .}, or positive integers. Then

S = (N≥1)× . . .× (N≥1) = (Ngeq1)k

10

Spring 2017 MATH 239 Course Notes 6 MAY 17, 2017

Define a weight function on N≥1

w : N≥1 → N
α(i) = i

Then we have
w((c1, . . . , ck)) = α(c1) + . . .+ α(ck)

which we can use the product lemma.

ΦS(x) = (ΦN≥1
(x))k from Product Lemma

= (
∑
i≥1

xi)k

= (x(1− x)−1)k from geometric series

Now we must find [xn] from this last equation. Remember our negative binomial theorem

(1− x)n =
∑
k≥0

(
n+ k − 1

k

)
xk

So

[xn]xk(1− x)−k = [xn−k](1− x)−k

=

(
(n− k) + k − 1

n− k

)
=

(
(n− 1

n− k

)
=

(
(n− 1

n− 1− (n− k)

)
=

(
n− 1

k − 1

)
therefore there are

(
n−1
k−1
)
ways to compose n with k parts.

6.3 Isomorphic Solution to Compositions

Another way to find out compositions using an isomorphism does not involve generating functions.
Let there be an equation of the sum of n 1s with n− 1 + signs. We must figure out a way to split this up into k
groupings of sums.

(1 + 1 + 1 + . . .+ 1 + 1)

To group this into k groupings, we can choose k − 1 of these n− 1 + signs and convert them into commas (,).

(1 + 1, 1, 1 + . . .+ 1, 1 + 1)

Thus we have
(
n−1
k−1
)
ways.

11

Spring 2017 MATH 239 Course Notes 6 MAY 17, 2017

6.4 Compositions with Constraints

Example 6.3. Determine the number of compositions of n with k parts (k ≥ 1) such that the first part is odd and
the other parts are ≥ 2.
Solution Let us define

S set of compositions with k parts such that first part is odd and other parts ≥ 2

Weight function w(c1, . . . , ck) = c1 + . . .+ ck

First part let Nodd = {1, 3, 5, 7, . . .}, set of positive integers

Other parts let N≥2 = {2, 3, 4, . . .}, set of positive integers that are ≥ 2

So we have for our set S

S = Nodd × N≥2 × N≥2 × . . .× N≥2
= Nodd(N≥2)k−1

which translates to the weight functions

ΦNodd
(x) = x+ x3 + x5 + x7 + . . .

=
x

1− x2

and

ΦN≥2
(x) = x2 + x3 + x4 + x5 + . . .

=
x2

1− x

By Product Lemma we have the final weight function

ΦS(x) = ΦNodd
(x)Φk−1

N≥2

= (
x

1− x2
)(

x2

1− x
)k−1

So the answer to our problem is

[xn]ΦS(x) = [xn](
x

1− x2
)(

x2

1− x
)k−1

6.5 Empty Parts

Example 6.4. How many compositions of n in which all parts are odd? There could be 0 parts.
By convention, there is one composition with 0 parts: () and it is a composition of 0.
Solution Let us define

S set of all configurations with only odd parts

Weight function w(c1, . . . , ck) = c1 + . . .+ ck for any k ≥ 0

So the set of all compositions with k parts, all odd, is (Nodd)k.

12

Spring 2017 MATH 239 Course Notes 7 MAY 23, 2017

A composition in this S can have 0 parts or 1 part or 2 parts. . . Ṫhat means

S = (Nodd)0 ∪ (Nodd)1 ∪ (Nodd)2 ∪ . . .

=
⋃
k≥0

(Nodd)k

By the Sum Lemma since these are disjoint sets

ΦS(x) = Φ(Nodd)0(x) + Φ(Nodd)1(x) + . . .

=
∑
k≥0

Φ(Nodd)k
(x)

By the product lemma for each Nodd set
Φ(Nodd)k

(x) = (
x

1− x2
)k

So our final weight function for S is

ΦS(x) =
∑
k≥0

(
x

1− x2
)k = 1 + (

x

1− x2
) + (

x

1− x2
)2 + . . .

=
1

1− x
1−x2

Taking the coefficients as the answer

[xn]ΦS(x) = [xn]
1

1− x
1−x2

7 May 23, 2017

7.1 10 Steps to Generating Series Problems

Example 7.1. How many compositions of n with k parts?

(0) Do you even need generating series to solve it?

(1) Identify parameters in problem (and any constants to be treated as parameter). In the example, n and k are
the parameters.

(2) Create set of configurations S by removing one of the parameters. In the example, removing n means
generating all configurations with k parts. Remove k means generating all configurations that compose to n.
We’d remove n to generate k part configurations.

(3) Provide precise mathematical definition of S. Usually unions (Cartesian products) based on simpler sets
A1, A2, In the example, we’d have k simpler sets and take the Cartesian product of them.

(4) Re-introduce the missing parameter as the weight function so that the problem can be stated as "How many
elements of S with weight n?". In this example, we can re-introduce n as the missing parameter.

(5) Define weight functions on simpler sets A1, A2,

(6) Check that weight functions behave correctly for product lemma. In this example, they correspond to the
composition of k parts to some n.

13

Spring 2017 MATH 239 Course Notes 7 MAY 23, 2017

(7) Compute the generating series for each simpler set ΦA1(x),ΦA2(x), For the example, this is the N≥1 set
for each Ai.

(8) Use S description from step (3) using sum and/or product lemma to get an expression for ΦS(x).

(9) Simplify ΦS(x).

(10) Answer is [xn]ΦS(x).

7.2 Binary Strings

String composed of only 0s and 1s.

Example 7.2. How many binary strings are there of length n in which every 0 is followed by exactly 1, 2, or 3 1s?

Good "0110101110101"

Bad "101001"

Bad "1101111"

7.3 Concatenation of Strings

Concatenation of two strings a, b→ ab is the string whose digits are the digits of a followed by the digits of b.
For example, a = 0110 and b = 11010, then ab = 011011010 or aa = 01100110.

7.4 Concatenations of Sets of Strings

Let A,B be sets of strings. Then
AB = {ab|a ∈ A, b ∈ B}

For example, let A = {1, 01}, B = {1, 10}. Then

AB = {11, 110, 011, 0110}

Note however when there are duplicate elements from the Cartesian product (concatenation of a ∈ A, b ∈ B

BA = {11, 101, 101, 1001}
= {11, 101, 1001}

Note that BA is ambiguous since we cannot deduce B and A now.

7.5 Empty String

The empty string ε is a string of length 0. That is

aε = a = εa

14

Spring 2017 MATH 239 Course Notes 8 MAY 24, 2017

7.6 Blocks

0010100000001110→ 00|1|0|1|0000000|111|0

Note we can form 7 blocks 00, 1, 0, 1, 0000000, 111, 0 from this string.
Therefore, a block is a maximal, non-empty substring using only one digit. Maximal is defined as “as big
as possible and can’t be extended further”. Therefore, 0000 in the block of 0000000 is not a block since it’s not
maximal.

7.7 Ambiguous vs Unambiguous

Concenation of sets of strings is very similar to the Cartesian product. Note

AB = {ab|a ∈ A, b ∈ B}

is very similar to
A×B = {(a, b)|a ∈ A, b ∈ B}

where the difference is a comma.
If the map f : A×B → AB defined by f((a, b)) = ab is a bijection, then AB is unambiguous.

8 May 24, 2017

8.1 Union

Give A,B set of strings, A ∪B performs as usual. Note A ∪B is unambiguous if A ∩B = ∅.
Let A = {1, 01} and B = {1, 10}. Then AB ∪BA = {11, 110, 011, 0110, 101, 1001}.

8.2 Unambiguity for Complex Expressions

Note a complicated expressions (made with ∪ and concatenation) we say the expression is unamabiguous iff each
individual operation is unambiguous.
For example, AB∪BA is ambiguous since AB and BA are umabiguous. Furthermore, AB∩BA = ∅ thus AB∪BA
is unambiguous.

8.3 Empty string ε

Note ε is not included in any given set that does not include it explicitly (e.g. ε 6∈ {0, 1}.

8.4 A∗ (“Infinite” Unions)

Let A be a set of strings. Then A∗ is

A∗ = {ε} ∪A ∪AA ∪AAA ∪ . . .

=
⋃
k≥0

Ak

where A0 = {ε} and Ak = AAA . . . A or the concatenation of k As (the kth concatenation power).
Note this can be ambiguous since Ak can be the cartesian product e.g. Ak = A×A× . . .×A. In the context of
strings, we usually mean concatenation power.
Aside: This ∗ operator is very similar to the ∗ operator in regex!

15

Spring 2017 MATH 239 Course Notes 9 MAY 26, 2017

{0, 1}∗ set of all binary strings (not {0, 1}0 includes or ε).

{0}∗ all strings with only 0s → {ε, 0, 00, 000, . . .}

{1}∗ {ε, 1, 11, 111, . . .}

{0}{0}∗ {0, 00, 000, 0000, . . .} (all blocks of 0s)

{1}{1}∗ {1, 11, 111, 1111, . . .} (all blocks of 1s)

Note these are all unambiguous (with respect to ∗ operation).
Take {0, 01, 10}∗. This is ambiguous since the element 010 can be either (0)(10) or (01)(0) which is unambiguous.

Example 8.1. From last class, we want a set of strings in which every 0 is followed by exactly 1,2, or 3 1s. We
would like to formulate this in terms of an unambiguous A∗.
Note that ({0}{1, 11, 111})∗ fits our definition. However, note that we can start with any number of ones too.
Therefore the correct answer is

{1}∗({0}{1, 11, 111})∗

8.5 Brackets

() control order of operations

{} constructs a set

8.6 Generating Series for Sets of Strings

Unless otherwise specified, the weight function of a string is the length of the string.
There are three theorems

Sum Lemma If A,B are sets of strings and A ∪B is unambiguous, then

ΦA∪B(x) = ΦA(x) + ΦB(x)

Product Lemma (Concetenation vs. Cartesian products) If A,B are sets of strings and AB is unambiguous, then

ΦAB(x) = ΦA(x)ΦB(x)

which is “weight preserving”, that is
ΦAB(x) = ΦA×B(x)

by the product lemma ΦA×B(x) = ΦA(x)ΦB(x).

9 May 26, 2017

9.1 Finite String Lemma

If A is a set of strings and A∗ is unambiguous then

ΦA∗(x) = (1− ΦA(x))−1

16

Spring 2017 MATH 239 Course Notes 9 MAY 26, 2017

Proof. Recall A∗ = {ε} ∪A ∪AA ∪AAA ∪ Then we have

A∗ is unambiguous thus any two sets X ∪ Y must also be unambiguous (sum lemma)
ΦA∗(x) = Φ{ε}(x) + ΦA(x) + ΦAA(x) + . . .

=
∑
k≥0

ΦAk(x)

A∗ is unambiguous thus Ak is unambiguous (product lemma)

=
∑
k≥0

(ΦA(x))k

=
1

1− ΦA(x)

Example 9.1. Determine the number of binary strings of length n in which every 0 is followed exactly by 1,2 or 3
1s.
We saw that the set of binary strings of this type is

S = {1}∗({0}{1, 11, 111})∗

This is unambiguous (talk about why later) thus

ΦS(x) = Φ{1}∗(x) · Φ({0}{1,11,111})∗(x)

=
1

1− Φ{1}(x)
· 1

1− Φ({0}{1,11,111})(x)

=
1

1− x
· 1

1− Φ{0}(x) · Φ{1,11,111}(x)

=
1

1− x
· 1

1− (x)(x+ x2 + x3)

=
1

(1− x)(1− x2 − x3 − x4)

Therefore our answer is
[xn]

1

(1− x)(1− x2 − x3 − x4)

9.2 Standard Decomposition of Binary Strings

Recall that {0, 1}∗ is an unambiguous expression for the set of all binary strings.
You may also represent this in another way. For example, if we focus on 0 being “special” (0-decomposition), we
may get

{1}∗({0}{1}∗)∗

where the 0s are our fixed dividers. We may also have (for a 0-decomposition)

({1}∗{0})∗{1}∗

17

Spring 2017 MATH 239 Course Notes 10 MAY 29, 2017

Similarly for a 1-decomposition

{0}∗({1}{0}∗)∗ OR
({0}∗{1})∗{0}∗

Note these decompositions are unambiguous.
Can we use these decompositions to prove unambiguity for other unions? Yes!
Note in our previous example (0s followed by 1,2, or 3 1s), we replaced our {1}∗ with a subset {1, 11, 111}.

{1}∗({0}{1}∗)∗

→ {1}∗({0}{1, 11, 111})∗

This is called a restriction on the 0-decomposition. This is unambiguous because it’s a restriction (subset) of
the unambiguous 0-decomposition.

9.3 Block Decomposition

Recall that blocks of 0s and 1s can be represented by {0}{0}∗ and {1}{1}∗, respectively (must have at least one
element in each block).
Thus the block decomposition looks like

{1}∗({0}{0}∗{1}{1}∗)∗{0}∗

Note the first and last {X}∗. This is because our block representation (inside the parentheses)
enforces at least one 0 at the beginning and one 1 at the end; however, the string could start off
with a block of 1s and/or end with a block of 0s. Thus we need to prepend/append the union set to
cover all binary strings.
Another variation

{0}∗({1}{1}∗{0}{0}∗)∗{1}∗

Example 9.2. Determin the number of binary strings of length n in which all blocks have odd length (are odd).
Let S be the set of all binary strings in which all blocks are odd. That is

S = ({ε} ∪ {1}{11}∗)({0}{00}∗{1}{11}∗)({ε} ∪ {0}{00}∗)

Then we can use the Finite Union Lemma to find ΦS(x).

10 May 29, 2017

10.1 Coefficient of Rational Functions

Note that for our previous enumeration problems, we have received answeres in the form of

[xn]
f(x)

g(x)

where f(x) and g(x) are polynomials. This is called a rational function.

18

Spring 2017 MATH 239 Course Notes 10 MAY 29, 2017

Remark: If degree(f) ≥ degree(g), then we can write

f(x) = q(x)g(x) + r(x)

for some unique:

(i) q(x) is a polynomial

(ii) r(x) is a polynomial such that degree(r) < degree(g)

Therefore for our initial answer

[xn]
f(x)

g(x)
= [xn](q(x) +

r(x)

g(x)
)

= [xn]q(x) + [xn]
r(x)

g(x)

Example 10.1. Find

[xn]
6x4 − 5x3 − 5x2

6x2 − 5x+ 1

Long division gives us
6x4 − 5x3 − 5x2

6x2 − 5x+ 1
= (x2 − 1) +

1− 5x

1− 5x+ 6x2

For our remainder term, we can use partial fraction decomposition which gives us

(x2 − 1) +
1− 5x

1− 5x+ 6x2
= (x2 − 1) +

1− 5x

(1− 2x)(1− 3x)

= (x2 − 1) +
3

1− 2x
− 2

1− 3x

Note our last 2 terms are simply 3(1 + 2x+ 4x2 + 8x3 + . . .) and 2(1 + 3x+ 9x2 + 27x3 + . . .). Thus we can formulate
this generally for the coefficient xn.

Generalization: We want [xn]f(x)g(x) where degree(f) < degree(g) and g(x) = (1−a1x)(1−a2x) . . . (1−akx) where
a1, . . . , ak are distinct. That is

f(x)

g(x)
=

c1
1− a1x

+
c2

1− a2x
+ . . .+

ck
1− akx

Note however that (1− aix)−1 = 1 + aix+ a2ix
2 + Thus

[xn]
f(x)

g(x)
= c1a

n
1 + c2a

n
2 + . . .+ cka

n
k

If a1, . . . , ak are not distinct, then remember our partial decomposition looks slightly different.

Example 10.2. Find

[xn]
2x2 − 4x+ 6

x3 − x2 − x+ 1

thus
x3 − x2 − x+ 1 = x(x2 − 1)− 1(x2 − 1) = (x− 1)2(x+ 1)

thus we have
2x2 − 4x+ 6

x3 − x2 − x+ 1
=

3

1 + x
+

1

1− x
+

2

(1− x)2

19

Spring 2017 MATH 239 Course Notes 11 MAY 31, 2017

How do we deal with (1− x)−2. Take the negative binomial series. That is

(1− x)−2 =
∑
m≥0

(
m+ 2− 1

m

)
xm =

∑
m≥0

(m+ 1)xm

expanding out our rational functions into geometric series

2x2 − 4x+ 6

x3 − x2 − x+ 1
= 3

∑
i≥0

(−x)i +
∑
j≥0

xj + 2
∑
m≥0

(m+ 1)xm

Taking the xn coefficient
3(−1)n + 1 + 2(n+ 1) = 3(−1)n + 2n+ 3

11 May 31, 2017

11.1 Recurrence Relations for Rational Functions

Note it’s possible to decompose a rational function using recurrence relations (This is just a demonstration of how
it works, later we will use a cleaner solution).

Example 11.1.

an = [xn]
6x4 − 5x3 − 3x2

6x2 − 5x+ 1

Let A(x) =
∑

n≥0 anx
n. A(x) is what we want to break our rational function down so we can write it in terms of

infinite geometric series. So let’s write

A(x) =
6x4 − 5x3 − 3x2

6x2 − 5x+ 1

⇐⇒ (6x2 − 5x+ 1)A(x) = 6x4 − 5x3 − 3x2

Multiplying out 6x2 − 5x+ 1 with A(x) = a0 + a1x+ a2x
2 + . . ., we want our final sum to be the LHS.

a0 a1x a2x
2 a3x

3 a4x
4 a5x

5

6x2 6a0x
2 6a1x

3 6a2x
4 6a3x

5

−5x −5a0x −5a1x
2 −5a2x

3 −5a3x
4 −5a4x

5

+1 a0 a1x a2x
2 a3x

3 a4x
4 a5x

5

−3x2 −5x3 +6x4

In order for this to be true, we have the following equations (along the column)

a0 = 0

− 5a0 + a1 = 0

6a0 − 5a1 + a2 = −3

6a1 − 5a2 + a3 = −5

6a2 − 5a3 + a4 = 6

6a3 − 5a4 + a5 = 0

6a4 − 5a5 + a6 = 0

6a5 − 5a6 + a7 = 0

20

Spring 2017 MATH 239 Course Notes 11 MAY 31, 2017

Note the last three terms are 0 that is 6an−2 − 5an−1 + an = 0 for all n ≥ 5.
So we have a recurrence relation

an = 5an−1 − 6an−2 ∀n ≥ 5

with initial conditions

a0 = 0

a1 = 0

a2 = −5

a3 =?

a4 =?

(figure out ? values on your own)

Example 11.2. Let us go from a recurrence relation to the rational form.
Let c0 = 1, c1 = 0, c2 = 0 and cn = 7cn−1 − 16cn−2 + 12cn−3 for all n ≥ 3.
Find a rational function p(x)

q(x) such that cn = [xn]p(x)q(x) .
Solution Let C(x) =

∑
n≥0 cnx

n. Multiplying out the given recurrence equation (setting it to 0) with C(x).

C(x) = c0 c1x c2x
2 c3x

3 c4x
4 c5x

5

−7xC(x) = −7c0x −7c1x
2 −7c2x

3 −7c3x
4 −7c4x

5

+16x2C(x) = +16c0x
2 +16c1x

3 +16c2x
4 +16c3x

5

−12x3C(x) = −12c0x
3 −12c1x

4 −12c2x
5

(1− 7x+ 16x2 − 12x3)C(x) = c0 (c1 − 7c0)x +(c2 − 7c1 + 16c0)x
2 +0x3 +0x4 +0x5

= 1 −7x +18x2

Thus we have

C(x) =
1− 7x+ 18x2

1− 7x+ 16x2 − 12x3

Factoring the denominator
1− 7x+ 16x2 − 12x3 = (1− 2x)2(1− 3x)

So then by partial decomposition we get

A

1− 2x
+

B

(1− 2x)2
+

C

1− 3x

which maps to the coefficient
cn = (α+ βn)2n + γ3n

for some α, β, γ ∈ R and for ALL n ≥ 0.
This is called the general solution to the recurrence (note we only use the denominator which is independent of
our initial conditions).

cn = 7cn−1 + 16cn−2 + 12cn−3

This means that every sequence that satisfies this recurrence is of this form and every sequence of this form satisfies
the recurrence.

21

Spring 2017 MATH 239 Course Notes 12 JUNE 2, 2017

Note that the original problem had initial conditions c0 = 1, c1 = 0, c2 = 2. Compare this with cn = (α+βn)2n+γ3n

n = 0 : 1 = (α+ β · 0)20 + γ30

n = 1 : 0 = (α+ β · 1)21 + γ31

n = 2 : 2 = (α+ β · 2)22 + γ32

Three equations three unknowns, solve for α, β, γ.

12 June 2, 2017

12.1 Notes on Recurrence Relations

How many initial conditions do we need?

Theorem 12.1. Suppose ∑
i≥0

aix
i =

p(x)

q(x)

is a rational function and

q(x) = 1 +
k∑
j=1

qjx
j

Then {an} satisfies the recurrence

an = −
k∑
j=1

qjan−j

for n ≥ max(deg(q(x), 1 + p(x))). The initial conditions are determined by p(x). (You can see this holds for our
previous examples).

12.2 Characteristic Polynomial

For the recurrence

an +
k∑
j=1

qjan−j = 0

the characteristic polynomial is

xk +

k∑
j=1

qjx
k−j = 0

12.3 Presenting Recurrence Solutions

Example 12.1. Solve the recurrence

cn = 7cn−1 − 16cn−2 + 12cn−3

with initial conditions c0 = 1, c1 = 0, c2 = 2.

22

Spring 2017 MATH 239 Course Notes 12 JUNE 2, 2017

Solution The characteristic polynomial is

x3 − 7x2 + 16x− 12 = (x− 2)2(x− 3)

So the roots are 2, 2, 3. Note that the characteristic polynomial does not map 1-1 to our derivation with the
table thing, however, it works out in the end (think of factoring the denominator then taking the partial fraction
decomposition, which translates to a bunch of geometric series rni where ri is a given root. Note this always works
since there’ll always be k roots by the fundamental theorem of algebra).
That is our general solution would be

cn = (α+ βn)2n + γ3n

Let’s plug in our initial conditions, that is n = 0, 1, 2

1 = c0 = (α+ β · 0)20 + γ30

0 = c1 = (α+ β · 1)21 + γ31

2 = c2 = (α+ β · 2)22 + γ32

Example 12.2. For a polynomial with four 2 roots, three 1 roots, and two 7 roots

(α+ βn+ γn2 + ∂n3)2n + (ε+ φn+ µn2)1n + (θ + σn)7n

12.4 Crazy Dice Problem

Find 2 six-sided dice (not ordinary, can be different) that gives the same probability table as two ordinary dice.

2 3 4 5 6 7 8 9 10 11 12
1/36 2/36 3/36 . . .

Solution Let S be the set of sides of an ordinary die (1, 2, 3, 4, 5, 6).
Let A be the set of sides on the first crazy dice. Similarly B for the second.
In each case, define weight of a side to be the number on it. Thus we have

ΦS(x) = x+ x2 + x3 + x4 + x5 + x6

Goal is to find ΦA(x) and ΦB(x).
Key Point Total number of ways to roll n on crazy dice should be equal to total # of ways to roll on 2 ordinary
dice. Translating this problem into generating series (where weight is sum of sides)

ΦA×B(x) = ΦS×S(x)

ΦA(x)ΦB(x) = ΦS(x)2

by product lemma.
Converting ΦS(x)2 into its geometric series rational form we get

∴ ΦA(x)ΦB(x) = (
x− x7

1− x
)2

To find ΦA(x) and ΦB(x), we can factor the RHS and distribute the factors in a way such that we get a reasonable
answer for each.

23

Spring 2017 MATH 239 Course Notes 13 JUNE 5, 2017

Factoring the RHS

x− x7

1− x
=
x(1− x6)

1− x
factor x

=
x(1− x3)(1 + x3)

1− x
difference of squares

=
x(1− x)(1 + x+ x2)(1 + x)(1− x+ x2)

1− x
difference/sum of cubes

= x(1 + x+ x2)(1 + x)(1− x+ x2) cancelling denom

Since we square the RHS, we get

∴ ΦA(x)ΦB(x) = x · x(1 + x)(1 + x)(1 + x+ x2)(1 + x+ x2)(1− x+ x2)(1− x+ x2)

Note that the # on each die must be ≥ 1. Also ΦA(1) = ΦB(1) = 6 (Since they must have 6 sides each). Furthermore
ΦA(0) = ΦB(0) = 0 (there can’t be any constants).
Thus the only case where this holds is

ΦA(x) = x(1 + x)(1 + x+ x2)(1− x+ x2)2 = x+ x3 + x4 + x5 + x6 + x8

ΦB(x) = x(1 + x)(1 + x+ x2) = x+ 2x2 + 2x3 + x4

So we have our crazy dice with sides 1,3,4,5,6,8 and 1,2,2,3,3,4. We can extend this for multiple dice with different
number of sides.

13 June 5, 2017

13.1 Definition of Graphs

A graph G consists of a finite set V (G) called the vertices and another finite set E(G) called the edges.
An edge is an unordered pair of distinct vertices.

Example 13.1. Consider V (G) = {a, b, c, d, e}. Then perhaps E(G) = {{a, b}, {b, c}, {c, d}, {a, d}, {a, e}}.
This can be drawn in multiple ways (but still satisfies the set of edges and vertices).

Note that V (G) is a finite set (no infinite graphs). E(G) is a true set (no concept of multiple edges for two given
vertices). Furthermore, an edge consists of distinct vertices (no loops). Edges are also unordered pairs of vertices
(undirected).

13.2 Edge Terminologies

If e = {u, v} ∈ E(G) is an edge, then

• u and v are adjacent

• u and v are neighbours

• e is incident with u (and with v)

• e joins u and v

24

Spring 2017 MATH 239 Course Notes 13 JUNE 5, 2017

13.3 Neighbours and Degree of Vertex u

The set of all neighbours of a vertex u ∈ V (G) is denoted N(u).
The degree of u ∈ V (G) is deg(u) = |N(u)| (also the number of edges incident with u). In the previous example,
N(a) = {b, d, e} or deg(a) = 3.

13.4 Graph Morphisms

N graphs be not be the same but have the same structure.

Figure 13.1: Isomorphic Graphs

In Figure ??, all vertices have degree 2 and each vertex from each graph can be mapped one-to-one to another
vertex in the other graph. These graphs are isomorphic.

Definition 13.1. Two graphs G1, G2 are isomorphic if there exists a bijection

f : V (G1)→ V (G2)

that “preserves adjacencies”. That is

{u, v} ∈ E(G1) ⇐⇒ {f(u), f(v)} ∈ E(G2)

The map f is called an isomorphism.

In the previous example, we have f : V (G1)→ V (G2) such that

f(a) = 1

f(b) = 4

f(c) = 2

f(d) = 5

f(e) = 3

Then you would check each edge in G1 incident to their respective two vertices holds in G2.

25

Spring 2017 MATH 239 Course Notes 14 JUNE 7, 2017

14 June 7, 2017

Graphs must have labels!

14.1 Special Graphs

K-regular graph A graph is k-regular if every vertex has degree k.

Complete (K-regular) graph A graph where every pair of distinct vertices are adjacent. A complete graph Kp

with p vertices is also a K-regular graph (p− 1 regular). Thus there are
(
p
2

)
edges.

Figure 14.1: Complete Kp graphs with p vertices

Cycle (2-regular) Formal description later.

Petersen graph

26

Spring 2017 MATH 239 Course Notes 15 JUNE 9, 2017

Figure 14.2: Cycle graphs Cp with p vertices

Bipartite graph A graph G is bipartite if V (G) can be partitioned into (A,B) such that every edge of G joins a
vertex in A to a vertex in B (a given vertex may be incident to multiple edges). Note that the pair (A,B) is
a bipartition.

Complete bipartite graph A graph Km,n is a complete bipartite graph if there is a bipartition (A,B) with
|A| = m, |B| = n and every vertex in A is adjacent to every vertex in B. Thus |V (Km,n)| = m + n and
|E(Km,n)| = mn.

N-cube graph A graph Qn is n-cube if:

Let V (Qn) be the set of all binary strings of length n. Edges: two vertices (strings) are adjacent if they differ
in exactly one position. For example, {011011, 011001} ∈ E(Q6). Note that V (Qn) = 2n. Furthermore, note
that n-cube graphs are also regular where k = n or Qn is n-regular. Furthermore, note that Qn is bipartite
where A = strings with even # of 1s, B = strings with odd # of 1s.

Planar graph A graph is planar if it can be drawn with no edges crossing. Some graphs (e.g. K4, Q3,K2,3) can
be drawn planar. A lot of graphs cannot however. We will prove this later.

14.2 Handshaking Lemma

If G is a graph with q edges then ∑
v∈V (G)

deg(v) = 2q

Proof. Two ways of counting the # of half-edges in G: formally, count pairs (v, e) such that e is incident with v.

Example 14.1. How many edges in Qn?
There are 2n vertices and each vertex has degree n. Therefore 2q =

∑
v∈V (Qn)

deg(v) = n2n, so q = n2n−1.

15 June 9, 2017

15.1 Teams and Games Graph Problem

There are 11 teams a 60 hours of time allotted. Each game takes 2 hours. How many games can each team play if
all teams must play the same # of games?
3,4,5, or 6 games?

27

Spring 2017 MATH 239 Course Notes 16 JUNE 12, 2017

We can solve this using graphs.
Let the vertices be teams and the edges be games played between two teams. Note that the graph must be k-regular
(where degree of each vertex is k.
How many edges are there in the graph? There will be q = 11k

2 edges or in other words 2q =
∑

v∈V (G) deg(v). Note
that q is not an integer if k = 5. k = 6 is too large obviously. Thus the answer is k = 4.

15.2 Number of Odd Degree Vertices

In every graph, the number of vertices of odd degree is even.

Proof. Otherwise
∑

v∈V (G) deg(v) is odd (odd number of odd degrees = odd even with the even degrees) which is
impossible (since each edge adds two degrees to the sum, can’t have half an edge).

15.3 Walks

Definition 15.1. Let x, y be two vertices (x = y is allowed) in a graph G. A walk in G from x to y is an
alternating sequence of vertices and edges v0, e1, v1, e2, v2, . . . , en, vn where v0 = x, vn = y and ei = {vi−1, vi} for all
i = 1, . . . , n.
Note: sometimes we omit the edges when we specify a walk and simply write v0, v1, . . . , vn. Note this would not
work if there are multiple edges (which is not permitted in this course).
Note: given a vertex a, the sequence of vertices a, a is not a walk nor path since they are not different vertices (also
no one edge loops back to a itself).

Definition 15.2. The length of the above walk is n. Note it is the number of edges, NOT vertices.

Definition 15.3. A walk v0, v1, . . . , vn is closed if v0 = vn.

15.4 Paths

Definition 15.4. A path is a walk with no repeated vertices.

15.5 Walk → Path

Theorem 15.1. Let G be a graph and let x, y ∈ V (G). If there is a walk from x to y, then there is a path from x
to y.

Proof. Assume there exists at least one walk from x to y.
Consider a shortest walk v0, e1, v1, e2, . . . , en, vn. I claim this must be a path.
Suppose it is not a path. Then there exists i < j such that vi = vj . But then v0, e1, v1, e2, v2, . . . , |vi . . . |, vj , ej+1, vj+1, ej+2, vj+2, . . . , en, vn
is a walk with length < n (once we take out the block).
Hence this is not the shortest walk and thus it is a contradiction.

16 June 12, 2017

16.1 Transitivity (and Equivalence) of Paths

Theorem 16.1. Suppose x, y ∈ V (G). If there is a path from x to y and a path from y to z, then there is a path
from x to z.

28

Spring 2017 MATH 239 Course Notes 16 JUNE 12, 2017

Proof. If v0, v1, . . . , vn is a path from x to y and u0, u1, . . . , um is a path from y to z, then v0, v1, . . . , vn, u1, . . . , um
is a walk from x to z.
By the previous theorem, there is a path from x to z.

Remark: The relation x ≡ y if there is a walk from x to y is an equivalence relation. In other words (in terms of
the three properties of equivalence relations: reflexitivity, symmetry, and transitivity)

1. For any vertex x there is a walk from x to x (assuming there is more than 1 vertex)

2. If there is a walk from x to y, then there is a walk from y to x

3. If there is walk from x to y and from y to z, then there is a walk from x to z

Note paths only satisfy transitivity and symmetry (you can’t have a path from a vertex to itself).

16.2 Connected Graphs

Definition 16.1. A graph is connected if for any two vertices x, y ∈ V (G) there is a path from x to y.

To prove a graph is connected use the “Hub model” .

Theorem 16.2. Suppose there exists a vertex x ∈ V (G) (the hub) such that for every vertex y, there is a path
from x to y. Then G is connected.

Example 16.1. The n-cube graph Qn is connected. Recall vertices are connected if they differ by 1 position in
their binary string.

Proof. Let x = 0000 . . . 0. Pick any vertex y ∈ V (Qn). Let i1, i2, . . . , ik be the positions of 1s in y. Let xj be the
string with 1s in positions i1, i2, . . . , ij and 0s elsewhere for j = 0, . . . , k.
Thus x0 = x and xk = y and x0, x1, x2, . . . , xk is a path from x to y. Therefore Qn is connected by “Hub
Theorem”.

How do we prove a graph is not connected? We will show this later.

16.3 Subgraph

Let G be a graph. A subgraph H of G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). Note as per our
definition of graphs, H need not be connected (that is there can be singular vertices without any incident edges).
Note the vertices and edges in any walk gives a subgraph. If the walk is a path, that subgraph is isomorphic
to somehing like Figure 16.1 where two vertices have degree 1 and the others have degree 2. A path graph is
connected.

16.4 Spanning (Subgraphs)

Let G be a graph and H be a subgraph. We say H is spanning if V (G) = V (H) (note V (H) need not be
connected!! What we think of “spanning” as in Prim’s MST is a spanning tree).

29

Spring 2017 MATH 239 Course Notes 17 JUNE 14, 2017

16.5 N-Cycle

Definition 16.2. An n-cycle is a graph Cn such that

V (Cn) = {v1, . . . , vn}
E(Cn) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {v1, vn}}

For example, a 6-cycle graph has 6 vertices connected in a cycle.

16.6 Cycle in Graph

A cycle in a graph G is a subgraph of G that is a cycle.
The girth g(G) of a graph G is the length of the shortest cycle. If there are no cycles, then g(G)→∞.
Note a spanning cycle in a graph is called a Hamilton Cycle. It is easy to verify a Hamilton cycle but may be
difficult to find or certify there is not a Hamilton cycle.

16.7 Cycle Walks

Note in any cycle Cn, there are 2n closed walks around the circle (For each of the n vertices, you can walk one way
or the other way). These are called cycle walks.

16.8 Component of a Graph

A component of a graph is a maximal (i.e. cannot be extended, NOT maximum) connected subgraph.
Note a graph is connected if and only if it has one component.

17 June 14, 2017

17.1 Cut Induced by X

Given a partition (X,Y) of graph G such that there are no edges having an end in X and an end in Y , then there
is no path from any vertex X to any vertex Y . If X and Y are both non-empty, then G is not connected.

Definition 17.1. Given a subset X of V (G), a cut δ(X) induced by X is the set of edges that have exactly one
end in X (In other words, the set of edges coming out of X, and possibly into Y in a partition (X,Y) of G).

17.2 Connected Graph via Proper Non-Empty Subset

Theorem 17.1. A graph G is connected ⇐⇒ for every proper non-empty subset X ⊂ V (G) we have δ(X) 6= ∅.

Note proper means X 6= V (G) and non-empty means X 6= ∅. Together these should be at least one vertex in X
and at least one vertex not in X.
See course notes for details.
Note: this gives us a strategy for proving a graph is not connected, that is find a set X ⊂ V (G) such that X 6= ∅,
X 6= V (G), and δ(X) = ∅ (the cut of X has no outwards edges).

30

Spring 2017 MATH 239 Course Notes 17 JUNE 14, 2017

17.3 Eulerian Circuit/Tour

Definition 17.2. An Eulerian circuit of a graph is a closed walk that contains every edge of G once.

Theorem 17.2. Let G be a connected graph. G has a Eulerian circuit if and only if each vertex has even degree.

Proof. Proof by induction. See course notes for details.

Note that a graph with no edges and only vertices still has an Eulerian Tour! (a walk from vertex a to itself visits
“every edge”)

17.4 Bridges

Definition 17.3. Let G be a graph, e ∈ E(G). Define G− e to be the spanning subgraph of G (V (G− e) = V (G))
such that E(G− e) = E(G) \ {e}.
A bridge in a graph G is an edge e ∈ E(G) such that G− e has more components than G.

17.5 Deletion of Bridges → 2 Components

Lemma 17.1. Let G be a connected graph (1 component). If e ∈ E(G) is a bridge ⇐⇒ G−e has 2 components
exactly.
If e = {x, y} then x and y are in different components of G− e.
Note: This means for non-connected graphs, deletion of a bridge increases the number of components by 1.

Proof. Let z ∈ V (G). We will show that either z is in the same component as x in G − e or z is in the same
component as y in G− e.
Since G is connected, there is a path from z to x (v0, e1, v1, . . . , en, vn where v0 = z, vn = x).
If this path does not include e, then it is also a path in G− e. In this case z is in the same component as x in G− e.
If this path includes e, since vn = x, e = en, vn−1 = y. Thus v0, e1, v1, . . . , en−1, vn−1 this is a path from z to y in
G− e. In this case z is in the same component as y in G− e.
Therefore G− e has at most 2 components.
But e is a bridge so G− e has at least 2 components.
Therefore G− e has exactly 2 components: the component of x and the component of y.

Theorem 17.3. Let G be a graph. An edge e ∈ E(G) is a bridge ⇐⇒ e is not contained in any cycle.

Proof. Forward direction:
Assume e is a bridge. Suppose e is contained in a cycle. Write e = {x, y}. Let x, e, y, e2, v2, . . . , x be the cycle walk.
Then y, e2, v2, . . . , x is a path from x to y in G− e.
Therefore x and y are in the same component of G − e. This means e is not a bridge by the previous lemma
which is a contradiction.
Backwards direction:
Assume e is not in a cycle. Suppose e is not a bridge. Then x and y are in the same component of G− e. Therefore
there is a path y, e2, v2, . . . , x from y to x in G− e. These vertices and edges together with e make a cycle, which is
contradiction.

Theorem 17.4. If x, y ∈ V (G) and there exists two distinct paths from x to y, then G contains a cycle.
See course notes for details.

31

Spring 2017 MATH 239 Course Notes 18 JUNE 19, 2017

18 June 19, 2017

18.1 Certifying Properties

To show a graph contains a property, we can for example:

Connectedness Show a path exists between every pair of distinct vertices.

Non-connectedness Product a cut (two non-empty sets of vertices A and B that partition V (G) such that no
edge of G joins a vertex in A to a vertex in B

Bridge Show that e = uv is a bridge by producing cut (A,B) where u ∈ A and v ∈ B

Non-bridge e is not a bridge if a cycle contains e

18.2 Trees

Definition 18.1. A tree is a connected graph with no cycles.

Lemma 18.1. There is a unique path between every pair of vertices u and v in a tree T .

Proof. For any 2 vertices u and v in T , there is at least 1 path joining them since T is connected. Since T has no
cycles, there is at most one path by previous corollary (two distinct paths → cycle).

Lemma 18.2. Every edge of a tree T is a bridge.

Proof. An edge e of T is not in a cycle, so by previous theorem (bridge ⇐⇒ not in a cycle) e is a bridge.

18.3 Forest

Definition 18.2. A graph with no cycles (which may not be connected) is called a forest, where every component
is a tree.

18.4 Trees with At Least 2 Vertices of Degree One

Theorem 18.1. A tree with at least 2 vertices has at least two vertices of degree one.

Proof. Find and construct the longest path w0, w1, . . . , wn in tree T between vertices v = w0 and v = wn. This
path is at least length one since any edge in a non-trivial tree is a path of length one, so u 6= v.
There is one vertex adjacent to v in the path, that is wn−1. Suppose deg(v) > 1, then there is another vertex w
adjacent to v. Vertex w cannot be in the path since this would imply a cycle, thus we can extend the “longest path”
by adding edge {v, w} to it. This is a contradiction of the longest path thus deg(v) = 1. Similarly deg(u) = 1.

18.5 Number of Edges and Vertices in Trees

Theorem 18.2. If T is a tree, then |E(T)| = |V (T)| − 1.

Proof. Proof by mathematical induction on p the number of vertices.
During the proof for p vertices (assuming IH holds for fewer than p vertices), note by previous theorem there is
vertex u in T with degree one. Let v be the neighbour of u in T and let e be the edge {u, v} (e is a bridge). Thus
T \ e is not connected and thus it has exactly 2 components, one of which is the vertex u (since it had degree one).
The other graph has p− 1 vertices, is connected with no cycles and is thus a tree. By the IH, it has p− 2 edges,
thus |E(T)| = |V (T)| − 1.

32

Spring 2017 MATH 239 Course Notes 19 JUNE 21, 2017

Note the converse is not true! For example, if you have 4 vertices and 3 edges, you can have a triangle and a
vertex all by itself.
If however the graph is connected and has p− 1 edges, then it is a tree.

18.6 Number of Vertices of Degree One ≥ Max Degree

Theorem 18.3. Let nr denote the number of vertices of degree r in T . Note that if T tree contains a vertex of
degree r, then n1 ≥ r.

Proof. Note from a previous corollary where we note
∑

v∈V (G) deg(v) = |E(G)|. Let p = |V (T)| and assume p ≥ 2.
From the above theorem, we have

2p− 2 =
∑

v∈V (T)

deg(v)

therefore

−2 =
∑

v∈V (T)

deg(v)− 2 =
n−1∑
r=0

nr(r − 2)

Note n0 = 0 since a tree is connected, so we get

− 2 = −n1 +
∑
r≥3

(r − 2)nr

n1 = 2 +
∑
r≥3

(r − 2)nr

Since (r − 2)nr ≥ 0 when r ≥ 3, it follows n1 ≥ 2. Furhtermore if T contains a vertex of degree r, then
n1 ≥ 2 + (r − 2) = r.

18.7 Leaf

Definition 18.3. A vertex of degree 1 in a tree is called a leaf.

19 June 21, 2017

19.1 Spanning Trees

Definition 19.1. A spanning subgraph which is also a tree is called a spanning tree.

Theorem 19.1. A graph G is connected if and only if it has a spanning tree.

Proof. Reverse direction:
We are given the graph has a spanning tree T . By a previous Lemma (unique path between every pair of vertices in
tree T), each of these paths is also contained in G, and G has the same vertices as T (spanning), so G is connected.
Forward direction:
We are given G is connected. If G has no cycles, then G itself is a spanning tree of G. Otherwise G has a cycle.
Remove any edge e of some cycle. Then G− e is still connected (a bridge cannot be in a cycle by previous theorem).
Note G− e has fewer cycles than G. Repeat this process until we have a connected, spanning subgraph with no
cycles. This subgraph is a spanning tree of G.

33

Spring 2017 MATH 239 Course Notes 19 JUNE 21, 2017

Corollary 19.1. If G is connected with p vertices and q = p− 1 edges, then G is a tree.
Note from previous theorem, if G is connected then it contains a spanning tree T . Note T has p vertices thus by
previous theorem it has p− 1 edges. Note G only has p− 1 edges, thus G = T , so G is a tree.

19.2 Creating Cycles From Spanning Tree

Theorem 19.2. If T is a spanning tree of G and e is not an edge in T , then T + e contains exactly one cycle C.
Moreover, if e′ is any edge on C, then T + e− e′ is also a spanning tree of G.

Proof. Let e = {u, v}. Any cycle in T + e must use e since T has no cycles. Such a cycle consists of e along with a
u, v − path in T . By previous lemma (unique path for pairs of vertices in tree), a unique path for u, v − path in T ,
hence there is exactly one cycle C in T + e.
If e′ is any edge in C, then e′ is not a bridge. So T + e− e′ is still connected. Since it has n− 1 edges, by previous
corollary it is a tree.

19.3 Disconnecting and Connecting Spanning Tree

Theorem 19.3. If a T is a spanning tree of G and e is an edge in T , then T − e has 2 components. If e′ is in the
cut induced by one of the components, then T − e+ e′ is also a spanning tree of G.

Proof. The first is a consequence of the lemma where every edge is a bridge in a tree.
Let C1, C2 be the two components of T − e. Suppose e′ = {u, v} where u ∈ V (C1) and u ∈ V (C2).
Let x ∈ V (C1). For any y ∈ V (C1) there exists x, y − path since C1 is connected.
If y ∈ V (C2), since C1, C2 are each connected, there exists an x, u− path P1 and a v, y − path P2. Then P1, e, P2

form an x, y − path, thus T − e+ e′ is connected. Since T − e+ e′ has n− 1 edges, it is a tree.

19.4 Bipartite Graphs and Odd Cycles

Theorem 19.4. A graph G is bipartite if and only if G has no odd cycles.

Proof. Forward direction:
If G is bipartite, then every subgraph of G is bipartite, including all cycles. For a cycle to be bipartite it must be
even.
Backwards direction:
Assume G is connected. Let T be a BFST of G rooted at r. We will prove

1. If G has an edge e = {x, y} (in the original graph) joining two vertices of the same level (level(x) = level(y),
then it has an odd cycle

2. If G has no edge joining two vertices of the same level, then G is bipartite

Putting these two together gives us our result.

1. There are two paths from x to r: x, pr(x), . . . , r and x, y, pr(y), . . . , r. Within these is a cycle (it must be odd
since they are both paths of equal length (x and y are on the same level), then it must be odd.

2. If G has no edge joining 2 vertices of the same level, then for every edge {x, y} ∈ E(G) we have |level(x)−
level(y)|= 1 (note if we have an edge that jumps multiple levels, then that would be in the BFST instead so
this holds). Exactly one of x, y has odd level (non-empty sets). So we take A = {v ∈ V (G)|level(v)odd} and
B = {v ∈ V (G)|level(v)even}, thus (A,B) is a bipartition.

34

Spring 2017 MATH 239 Course Notes 20 JUNE 23, 2017

20 June 23, 2017

20.1 Breadth-First Search Trees

The algorithm is as follows with input graph G and a vertex (the “root” of the BFST)
We loop on the following

• Take next vertex in queue: x

• Add any neighbors of x that aren’t already in the tree to the tree (BFST)

• Add the new vertices into the queue

Note: when adding vertices to the tree and queue, the algorithm does not say anything about the order. For
homework/tests, one must follow the prescribed order when there is a choice.

Definition 20.1. A BFST is the output of the BFST algorithm.

Theorem 20.1. If G is a connected graph, then the BFST algorithm will produce a spanning tree. (If G is not
connected, then there is no spanning tree so it doesn’t produce one).
Thus this is an if and only if statement.

Proof. Forward directions:
Assume G is connected. Let T be a BFST. Consider δ(V (T)) (cut induced by vertices of T).
In the BFST algorithm, we ensure that for every vertex x ∈ V (T) all neighbors of x are in V (T). So δ(V (T)) = ∅.
Since G is connected, this is only possible if V (T) = ∅ or V (T) = V (G). We know the root of the tree is in V (T),
thus V (T) 6= 0→ V (T) = V (G), so it’s a spanning subgraph and by construction T is a tree.

Definition 20.2. If T is a BFST rooted at r, for any vertex x ∈ V (T), we define the parent of x to be the first
neighbor of x before x in the queue.
The root r therefore has no parent. We write pr(x) for the parent of x where pr(r) = ∅.

Definition 20.3. The level of x is level(x) = level(pr(x)) + 1 where level(r) = 0.

20.2 Shortest Path by Property of BFST

Assume G is a connected graph. Let T be a BFST of G, rooted at r.
For every edge {x, y} ∈ E(G), |level(x)− level(y)| ≤ 1. See course notes for details. We can use this property to
find the shortest path from x to y.

Theorem 20.2. Let x, y ∈ V (G) where G is a connected graph.
If T is a BFST rooted at x, then the unique path from x to y in T is the shortest path from x to y in G.
This is the path y, pr(y), pr(pr(y)), pr3(y), . . . , x and is the length of level(y).

35

Spring 2017 MATH 239 Course Notes 21 JUNE 26, 2017

Proof. We need to show that every path v0, v1, . . . , vn with v0 = y, vn = x has length n ≥ level(y). We have

n =
n∑
i=1

1 ≥
n∑
i=1

|level(vi)− level(vi−1)|

≥ |
n∑
i=1

level(vi)− level(vi−1)|

= |level(v1)− level(v0) + level(v2)− level(v1) + level(v3)− level(v3) + . . .+ level(vn)− level(vn−1)
= |level(vn)− level(v0)|
= |level(y)− level(x)|
= level(y)

Intuitive idea: Each step in the path can only go up one level at best.

21 June 26, 2017

21.1 Girth

Definition 21.1. If G is a graph with a cycle, then the girth of G is defined to be the length of a shortest cycle.

21.2 Shortest Cycle

How do we find the shortest cycle? We can use the BFST algorithm.

1. For each vertex v ∈ V (G), construct a BFST Tv rooted at v

2. For every edge f ∈ E(G) \ E(Tv), consider Tv + f (we have a bunch of these). Tv + f must contain a cycle.
Out of all Tv + f , there exists our shortest cycle (with length girth).

21.3 Planar Graphs

Definition 21.2. A planar embedding of a graph G is a drawing of G in the plane with no edges crossing. That
is a graph is planar if it has a planar embedding (the drawing itself).

1. 3-cube is planar (can flatten the cube) with no edges crossing.

2. K5: got stuck trying to find a planar embedding (does not mean it is not planar).

There are infinitely many ways to draw a graph, thus trying a couple and failing does not prove a graph is not
planar.

21.4 Faces (of Planar Embeddings)

Definition 21.3. A planar embedding divides the plane into regions called faces. Note the region around the
graph is also a face.

Note the following addition definitions:

• Two faces are said to be adjacent if they are incident with a common edge

36

Spring 2017 MATH 239 Course Notes 22 JUNE 28, 2017

• The boundary of a face is the subgraph consisting of vertices and edges incident with the face

• The degree of a face is

(# of non-bridges in the boundary) + 2(# of bridges in the boundary)

Why 2 for bridges? In a planar embedding, note that:

• a bridge is incident with only one face

• a non-bridge is incident with two faces

Proof uses Jordan curve theorem.

21.5 Handshaking Lemma for Faces

Theorem 21.1. The total degree of faces is 2 times the number of edges or for a planar embedding with faces
f1, . . . , fs

2|E(G)| =
s∑
i=1

deg(fi)

Proof. Each edge contributes:

• 1 to the degree of 2 different faces if the edge is not a bridge

• 2 to the degree of 1 face if the edge is a bridge

Either way the edge contributes 2 to the sum of the degrees of the faces.

22 June 28, 2017

22.1 Alternate Definition of a Degree of Face

For connected graphs, the degree of a face is equal to the length of its boundary walk.
For example in a graph with 4 vertices, 3 connected in a triangle labeled 1, 2, 3 and 1 vertex sticking out from vertex
2 on the triangle labeled 4, the outer face’s boundary walk would be 1, 2, 4, 2, 3, 1 of length 5 (number of commas),
thus the outer face has degree 5.

22.2 Isomorphic Graphs and Degrees of Faces

Given two isomorphic graphs, the degrees of each individual face may differ. Regardless, the sum of of the degrees
of faces is still the same (obviously from the handshaking lemma).
Can we determine the number of faces in a planar embedding from the graph? Yes!

22.3 Euler’s Formula for Planar Graphs

Theorem 22.1. If P is a connected planar embedding with p vertices, q edges, and s faces then

p− q + s = 2

We will first prove the generalization

37

Spring 2017 MATH 239 Course Notes 22 JUNE 28, 2017

Theorem 22.2. For a graph with p vertices, q edges, s faces and c components

p− q + s = c+ 1

Proof. By induction on q the number of edges
Base case: If P is a planar embedding with q = 0 edges then note c = p (every vertex is a component by itself).
Furthermore s = 1 (the whole plane is the only region/face). Thus p− q + s = p+ 1 = c+ 1.
Induction hypothesis: Assume q ≥ 1 and the result is true for planar embeddings with q − 1 edges.
Inductive step: Let P be a planar embedding with q edges, p vertices, s faces, and c components. Let e be any
edge of P . Consider P − e:

• If e is a bridge then P − e has

– p vertices

– q − 1 edges

– s faces (same face on both sides of a bridge)

– c+ 1 components (deleting a bridge creates 1 more component by theorem)

Note P − e is planar so by the inductive hypothesis

p− (q − 1) + s = (c+ 1) + 1→ p− q + s = c+ 1

as desired.

• If e is not a bridge then P − e has

– p vertices

– q − 1 edges

– s− 1 faces (non-bridge incident with 2 different faces which becomes one when e is deleted)

– c components (not a bridge)

By the induction hypothesis

p− (q + 1) + (s− 1) = c+ 1→ p− q + s = c+ 1

as desired.

22.4 Degree of Faces and Girth

Theorem 22.3. If P is a planar embedding with a cycle, then every face f of P has

deg(f) ≥ girth(P)

38

Spring 2017 MATH 239 Course Notes 23 JUNE 30, 2017

Proof. Sketch of proof

cycle → non-bridge edges
→ more than one face
→ no face is all of the plane
→ boundary of every face must contain a cycle
→ degree of face ≥ length of that cycle ≥ girth

23 June 30, 2017

23.1 Key Formulas for Planar Embeddings

Where p = # of vertices, q = # of edges, s = # of faces, and f1, . . . , fs are the faces:

1.
∑

v∈V (G) deg(v) = 2q (Handshake Lemma for vertices; holds for any graph)

2.
∑s

i=1 = deg(fi) = 2q (Handshake Lemma for faces)

3. p− q + s = 2 (Euler’s formula for connected graphs)

4. deg(fi) ≥ girth(G) for all fi

23.2 Proof of Non-Planar Graphs

We can use the key formula to prove that some graphs are not planar.

Example 23.1. Let’s prove K5 (complete graph with 5 vertices) is not planar.

Proof. Suppose to the contrary that we have a planar embedding of K5. Therefore p = 5 and q =
(
5
2

)
= 10.

K5 is connected so by Euler’s formula s = 2 + q − p = 7. Let f1, . . . , f7 be the faces. Notice that the smallest cycle
has length 3, thus by (4) we have deg(fi) = 3.
Handshake Lemma for faces says 2q = 20 =

∑
deg(fi) ≥ 7 · 3 = 21. This is a contradiction, thus K5 has no planar

embedding.

Exercise: Use the same technique for the Petersen graph, K3,3.

Example 23.2. K3,3 is not planar.

Proof. Note p = 6, q = 3 · 3 = 9, s = 2 + q − p = 5.
Note the girth is 4, so deg(fi) ≥ 4.
2q = 18 =

∑
deg(fi) ≥ 5 · 4 = 20 which is a contradiction.

If no contradiction is extracted, then G may or may not be planar (indeterminate).

39

Spring 2017 MATH 239 Course Notes 23 JUNE 30, 2017

23.3 Edge Bound by Vertices for Planar Embeddings

Theorem 23.1. If P is a planar embedding, with p ≥ 3 vertices and q edges, then

q ≤ 3p− 6

The converse is not necessarily true (cannot prove a graph is planar using this).
This theorem is often used in contrapositive: that is if q > 3p− 6, then the graph is not planar.

Proof. We will prove this for connected graphs.

Proof. There are two cases:

Case 1 If P does not have a cycle, then it’s a tree so q = p− 1. Since p ≥ 3, then q = p− 1 ≤ 3p− 6.

Case 2 If P has a cycle then P has s = 2 + q − p faces f1, . . . , fs. Note that deg(fi) ≥ girth(P) ≥ 3 (minimum
cycle is 3). So 2q =

∑
deg(fi) ≥ 3s, where s ≤ 2q

3 .

Thus 2q
3 ≤ 2 + q − p→ q ≤ 3p− 6.

23.4 Edge Bound by Vertices for Bipartite Planar Embeddings

Theorem 23.2. If P is a bipartite planar embedding with p ≥ 4 vertices and q edges, then

q ≤ 2p− 4

Proof. Proof is similar to above, but girth(P) ≥ 4 (bipartite min cycle).

23.5 Platonic Solids

3-d objects where there is a planar embedding (e.g. tetrahedral, cube, etc.). There are only 5 platonic solids. Why?

Proof. Note that the planar embeddings of Platonic solids have the following properties:

• Every vertex has same degree d

• Every faces has same degree d∗

We can deduce that

1. pd = 2q (Handshake Lemma for vertices)

2. sd∗ = 2q (Handshake Lemma for faces)

3. p− q + s = 2 (Euler’s Formula)

40

Spring 2017 MATH 239 Course Notes 24 JULY 5, 2017

From (1), note that q = dp
2 From (2) we get s = 2q

d∗ = pd
d∗ .

Thus from (3) we get

p− dp

2
+
pd

d∗
= 2

→ p− dp(1

2
− 1

d∗
) = 2

→ p− 2 = dp(
1

2
− 1

d∗
)

→ d =
p− 2

p
(
1

2
− 1

d∗
)−1

Note p−2
p ≤ 1, thus

d < (
1

2
− 1

d∗
)−1

→ (d− 2)(d∗ − 2) < 4

Note that d ≥ 2 (if you have more than 1 vertex, it must have at least degree 2) and d∗ ≥ 3.
Thus there are 5 possibilities for (d, d∗) that are 3d: (3, 3), (3, 4), (4, 3), (5, 3), (3, 5). Note that (2, n) for any n is a
n-sided 2-d polygon, thus it is not a platonic solid. Therefore there are 5 Platonic solids.

24 July 5, 2017

24.1 Prove That a Graph is Planar

Note we can NEVER use the properties before to prove a graph is planar. That means there are some
graphs that are non-planar for which we cannot prove (currently).

24.2 Kuratowski’s Theorem

Note if we have a K5 graph (graph with 5 vertices of degree 4, pentagon with star in the centre) and we add vertices
(internal vertices) on the edges adjacent to the 5 vertices (BUT not on the intersection of the internal edges), instead
of an edge joining the 5 vertices, we have a path. Note that the paths have no internal vertices in common (if we
do not put a vertex on two simultaneous edges).
This is called an edge subdivision of K5. (We are dividing the edges of K5 into paths of length ≥ 2) It is not
planar.
Note: If we did somehow end up putting a vertex on the intersection of two internal edges, then we will get a planar
graph!
More formally

Theorem 24.1. A graph is non-planar if and only if it has a subgraph that is isomorphic to an edge subdivision of
K5 or K3,3.

Proof. Backwards direction:

• K5 and K3,3 are non-planar

• Edge subdivisions of K5 and K3,3 are non-planar (why?)

• Any graph containing a non-planar subgraph is non-planar (Similarly, subgraph of a planar graph is planar)

41

Spring 2017 MATH 239 Course Notes 25 JULY 7, 2017

Forwards direction:
Hard.

24.3 Kuratowski Example with Petersen Graph

Note the Petersen graph has vertices with degrees at most 3. This tells us we are looking for a subgraph of K3,3

instead of K5 (which requires degree 4).
We do this by finding 3 partition A and 3 partition B vertices then find paths/edges between the A and B vertices.
Note in the above Petersen graph, we can let e, f, b ∈ A and a, i, h ∈ B. We now describe the unique paths (with
no common internal vertices) from each vertices in A to B.
The paths are (from the Petersen graph)

a, e

a, f

a, b

i, f

i, g, b

i, d, e

h, f

h, j, e

h, c, b

where the middle vertices are the unique internal vertices (that subdivided this graph). Thus the Petersen graph is
not planar.

25 July 7, 2017

25.1 Recap on Planarity Checks

To check if a graph is planar or not:

1. Can you draw a planar embedding? If yes, then it’s planar. Otherwise...

2. Is Euler’s formula violated for connected graphs? If yes, then it’s not planar. Otherwise...

3. For connected bipartite graphs, p ≥ 3 vertices and q edges, is q ≤ 2p− 4 violated? If yes, then it’s not planar.
Otherwise...

4. For connected graphs, p ≥ 3 vertices and q edges, is q ≤ 3p − 6 violated? If yes, then it’s not planar.
Otherwise...

5. Can you find a subdivision K5 or K3,3? If yes, then it’s not planar.

25.2 Colouring Graphs

Definition 25.1. A k-colouring of a graph G is a function from V (G) to a set of size k (elements are called
colours) so adjacent vertices always have different colours. A graph with a k-colouring is called k-colourable.

42

Spring 2017 MATH 239 Course Notes 25 JULY 7, 2017

25.3 2-Colourable and Bipartite

Theorem 25.1. A graph is 2-colourable if and only if it is bipartite.

Proof. If a graph is bipartite, then we can colour all vertices in A one colour and all vertices in B another colour.
Note all edges include one vertex from each set and join vertices of different colours hence it is 2-colourable.
If a graph is 2-colourable, then we can assign vertices of one colour as partition A and the other as B. By definition,
all edges join vertices of different colours hence it is a bipartition.

25.4 n-Colourable and Kn

Theorem 25.2. A graph Kn is n-colourable, and not k-colourable for k < n.

Proof. A graph with n vertices is n-colourable (each vertex has a different colour thus there can be no adjcaent
vertices with the same colour).
Note graph Kn is not k-colourable for any k < n since that would result in two arbitrary vertices having the same
color. Since in a Kn a given vertex is adjacent to all other vertices, there will be two adjcaent vertices with the
same colour.

25.5 6-Colourable for Every Planar Graph

We first must prove an important corollary from q ≤ 3p− 6.

Theorem 25.3. Every planar graph has a vertex of at most degree five.

Proof. This is obviously true for |V (G) ≤ 2. for p = |V (G)| ≥ 3 and q = |E(G)| we have

q ≤ 3p− 6

⇐⇒ 2q

p
≤ 6− 12

p

This shows that the average degree of a vertex is less than six. Thus there exists a vertex of degree at most five.

We can use this to show:

Theorem 25.4. Every planar graph is 6-colourable.

Proof. Proof by induction on p vertices: note for graphs with p = 1 or one vertex, it can obviously be 6-colourable
so this is true.
Induction hypothesis assumes that all planar graphs on p ≤ k vertices are 6-colourable, k ≥ 1.
We have a graph G with p = k + 1 vertices. We know from the previous thoerem that a planar graph has one
vertex v of degree at most five. We take G− v and colour it with 6 colours from the induction hypothesis. Then we
introduce v back in that is adjacent with at most 5 colours. We can thus colour it with one of 6 colours that is not
the same as any of its 5 adjcaent colours hence this graph G is 6-colourable by induction.

43

Spring 2017 MATH 239 Course Notes 26 JULY 10, 2017

26 July 10, 2017

26.1 5-Colourable for Every Planar Graph

Theorem 26.1. Every planar graph is 5-colourable.
We will prove this by induction on p = |V (G)|.

Proof. Case 1: If there is a vertex of degree at most 4, we can use the same argument we used in 6-colourable
proof.
Case 2: There is no vertex of degree at most 4. By Corollary 7.5.5, there is a vertex of degree 5, say v. Main idea:
Can we ensure that G− v have a 5-colouring in which two of u1, u2, u3, u4, u5 (neighbors) use the same colour?
Note that if there is an edge between every vertex ui, uj where i 6= j then they all must be different colours. However,
this cannot happen since G will have a K5 subgraph. So there exists ui, uj , i 6= j such that ui, uj are not neighbors.
Let’s say they are u2 and u4.
In our original graph G, let e2, e4 be the edges between v and u2, u4 respectively. We contract edges e2, e4 which
would move the (4 each) incident edges of e2 and e4 to a new vertex w (replaced v). w is incident to u1, u3, u5
still. Note that this new graph H has 2 fewer vertices and is still planar thus by the induction hypothesis H is
5-colourable.
So between u1, u3, u5, w we have 4 colours. When we expand the edges again, we can assign u2, u4 the colour of w
(colouring still holds since w was incident to the edges of u2, u4) and v the 5th colour that was not used amongst
u1, u3, u5, w in H.

26.2 Contracting Edges

Note in the 5-colourable proof we used edge contraction. Formally, G/e is G with edge e = uv contracted. We
identify the two vertices u and v and combine them into one vertex (combining incident edges), delete edge e, then
remove any parallel edges.

26.3 Matching

Definition 26.1. A matching M in a graph G = (V,E) is a subset of edge set M ⊆ E such that no two edges
share a vertex. That is if M is a matching then for every vertex v, either |M ∩ δ(v)| = 1 or |M ∩ δ(v)| = 0.

Note that every graph has a matching since the empty set is a matching and {e} is a matching for any e ∈ E.
Therefore all matchings M of edges e is bounded by

|M | ≤ |V |
2

26.4 Maximum vs Maximal Matching

Definition 26.2. A maximum matching is a matching that uses as many edges as possible (out of all matchings).

Definition 26.3. A maximal matching is a matching that cannot be made any bigger by adding an edge (so a
maximal matching may not be a maximum matching, only maximal given the edges in the matching).

44

Spring 2017 MATH 239 Course Notes 27 JULY 12, 2017

27 July 12, 2017

27.1 Perfect Matching

A perfect matching is a matching where every vertex is matched.
Some observations about perfect matchings:

(i) A graph must have even number of vertices to have a perfect matching (thus a graph with odd number of
vertices has no perfect matching)

(ii) A graph with even number of vertices DOES NOT imply there exists a perfect matching (e.g. graph with two
vertices and no edges)

(iii) The Petersen graph has multiple perfect matchings

(iv) If a graph has a perfect matching, then the maximum matchings are the same as the perfect matchings

27.2 Applications of Matchings

Example 27.1. Job applications with set of applicants A = {a, b, c} and set of jobs/positions J = {1, 2, 3, 4}. Let’s
say:

• a is qualified for 1, 2

• b is qualified for 2, 4

• c is qualified for 1, 3, 4

Our goal is to give as many applicants a job and (a) each applicant gets at most one position and (b) each position
is assigned at most one applicant.
This is isomorphic to finding a maximum matching in the associated bipartite graph.

We can apply the same concept to numerous important problems (organ donation).

27.3 Finding a Larger Matching

Easy Strategy Given a graph G and a matching M , we can try to add more edges to the matching M .

This however does not work for maximal matchings.

Sophisticated Strategy Same we have a graph where there is a longest path (that includes all vertices)
1, 8, 2, 3, 7, 6, 4, 5 (length 7 with 8 vertices).

Let’s say we initially started with the maximal matching M with 3 edges {8, 2}, {3, 7}, and {6, 4}. Note 1
and 5 are M-unmatched.

The path itself is called a M-augmenting path.

What we can do is invert the edges in our matching (throw away the 3 edges and take {1, 8}, {2, 3}, {7, 6},
and {4, 5}). Thus we get a maximum and perfect matching with 4 edges.

45

Spring 2017 MATH 239 Course Notes 28 JULY 14, 2017

27.4 M-Alternating and M-Augmenting Path

Definition 27.1. Let G be a graph and let M be a matching. Let P = e1, e2, . . . , ek (ordered sequence of edges).
Then P is an M-alternating path if ∀i ∈ {1, . . . , k − 1} exactly one of ei and ei+1 is in M .

Definition 27.2. An M-augmenting uv-path P is an M-alternating path with the additional property that both
ends u and v are M-unmatched.

Note that if there is an M-augmenting path P then we can obtain a bigger matching M∗ as follows:

• We have two sets of edges: M and P . We can draw a venn diagram for this.

• Note the intersect of M and P are all matching edges on the path.

• M∗ = M∆P = M ∪ P \ (M ∩ P): we take all edges in M outside of P (leave as), remove all edges that
are currently on the path P and in the matching M (M ∩ P), and we take all edges in the path not in the
matching (the inverting the edges part).

In our above example, note that M ⊂ P (all edges in M were on the path). This may not be the case for all
examples! Furthermore, |M∗| = |M |+ 1 (we added one additional edge to our matching).

Lemma 27.1. A matching M with an M-augmenting path is NOT a maximum matching.

Note M-augmenting paths in a matching M in a graph G need not be maximal, as long as the end points are
unmatched in the entire graph.

28 July 14, 2017

28.1 Finding a Maximum Matching in Any Graph

1. Start with M = ∅ (one may instead start with a maximal matching)

2. If M is a max matching, then STOP (done)

3. Otherwise find an M-augmenting path P , then update M = M∆P . Go to step 2.

There are two difficulties with this algorithm:

1. How do you know that the current matching M is maximum?

2. How do you find an M-augmenting path P?

We will answer this for bipartite graphs.

28.2 Cover Subset of Vertices

Definition 28.1. In a graph G = (V,E) in a subset S of vertices (S ⊆ V) is a cover if every edge of G has at
least one of its ends in S (that is, S hits/covers every edge).

Note a cover can include full edges (e.g. an edge has both ends in S).

46

Spring 2017 MATH 239 Course Notes 29 JULY 17, 2017

28.3 Minimum Cover

Given a graph G, what is the size of the smallest cover or minimum cover?
Note that it does not necessarily equal the size of the maximum matching (e.g. K3 has a maximum matching of
size 1 but a minimum cover of size 2).
Is it true that for any graph G that the size of a maximum matching is ≤ size of a minimum cover? We can reform
this question: is |M | ≤ |C| for any matching M for any cover C of a given graph G?
Yes this is true.

Example 28.1. Given a matching of size 3 M = {{1, 2}, {3, 6}, {4, 5}, to cover each edge of the matching, we need
to select at least 1 endpoint from each edge in M . This is because a matching only matches a vertex once, thus no
vertex is repeated in the matching. We thus must choose a vertex from every edge to cover every edge M for a total
of at least 3 vertices thus |C| ≥ 3.

Lemma 28.1. If M is a matching of G and C is a cover of G then |M | ≤ |C|.

Lemma 28.2. Suppose that for a graph G you have a matching M and a cover C such that |M | = |C| (equality).
Then M is a maximum matching and C is a minimum cover (The converse is not necessarily true as shown before
with K3).

28.4 Konig’s Theorem

Theorem 28.1. In a bipartite graph, the size of a maximum matching is equivalent to the size of a minimum cover.

29 July 17, 2017

29.1 Proof of Konig’s Theorem

Proof. Idea behind the proof:
We have:

• a bipartition (A,B)

• matching with saturated (touch matching edge) and unsaturated vertices

• Reachable/unreachable vertices

Reachable/Unreachable:

• Let X0 be the set of all unsaturated vertices in A. Every vertex in X0 is reachable.

• If y is a vertex such that there exists an alternating path from a vertex x ∈ X0 to y, then y is reachable

• All other vertices is unreachable

Example 29.1. In the above figure, let the LHS be A and the RHS be B. Let M = {{a, z}, {b, x}}.
Note X0 = {c} (unsaturated in A). Thus c is reachable. Note c, x and c, y are alternating paths of length 1 with 1
unmatched edge, thus x and y are reachable.
Note c, x, b is an alternating path of length 2 (unmatched, matched edge) thus b is also reachable. c, x, b, w is an
alternating path of length 3 (unmatched, matched, unmatched) thus w is reachable.
Note there is no alternating path to a, thus all vertices are reachable except for a.

Lemma 1:

47

Spring 2017 MATH 239 Course Notes 29 JULY 17, 2017

Lemma 29.1. Let X be the set of reachable vertices in A, and Y set of reachable vertices in B.
If u ∈ X and e = {u, v} is an edge of G, then v ∈ Y .
That is there is no edge between the reachables in A to the unreachable in B (but there may be edges between
every other reachable/unreachable groups in A and B, obviously not between groups in the same part).
By definition, if u is a reachable vertex, there is an alternating path P (u) from a vertex in X0 to u. Note: if u ∈ X
(last vertex) then the last edge in P (u) must be in M .
Proof of lemma:

Proof. Assuming u ∈ X the last vertex in P (u), there are two cases:

1. If e ∈M (in matching), then e must be the last edge in P (u).

Why? The last edge in P (u) is in M and incident with u, and since this is a matching only one matching
edge is incident with a saturated u.

2. If e 6∈M , then consider P (u). We want to show that v ∈ Y .

If P (u) reaches v before reaching u, then v is reachable or v ∈ Y (since u ∈ X ⊆ A).
If v is in this path then v is reachable (done), so assume it isn’t.

Write P (u) = x, . . . , u where x ∈ X0. Then x, . . . , u, v is a path from x to v.

Furthermore, this is alternating because e 6∈M and the last edge in P (u) is in M . So v is reachable and thus
v ∈ Y (since u ∈ X ⊆ A).

Lemma 2:

Lemma 29.2. If v ∈ Y and e = {u, v} ∈M , then u ∈ X.
That is all matching edges must be between saturated vertices in the reachable parts, or between saturated vertices
in the unreachable parts.

Proof. Similar to previous lemma. See course notes.

Lemma 29.3. C = Y ∪ (A \X) is a cover (reachable parts of B (Y) and unreachable parts of A (A \X) form a
cover.

Proof. See diagram. This is an immediate consequence of Lemma 1: G has no edges joining a vertex in X and a
vertex in B \ Y .

Lemma 29.4. Let M be any matching. Is there an unsaturated vertex in Y (or B reachable)?

Proof. Two possibilities:

Yes Suppose v ∈ Y is an unsaturated vertex. Since v ∈ Y , v is reachable, so there exists an alternating path P (v)
starting at an unsaturated vertex in X (reachable of A) and ending at v.

P (v) is an augmenting path since both ends are unsaturated. Thus M cannot be a maximum matching.

No Every vertex in C (our cover which is Y and A \X, saturated parts of A) is saturated. Also since there are no
matching edges joining a vertex in Y to a vertex in A \X (by Lemma 2), every edge in M is incident with a
unique vertex in C (see diagram)

We have a one-to-one correspondence between M and C, therefore |C| = |M |, and as proven last week M is a
maximum matching and C is a minimum cover.

48

Spring 2017 MATH 239 Course Notes 30 JULY 19, 2017

Finally, suppose now that M is a maximum matching. As we just showed, this implies there is no unsaturated
vertex in Y . Therefore C = Y ∪ (A \X) is a min cover of the same size as M .

30 July 19, 2017

30.1 Bipartite Matching Algorithm

We modify breadth first search with some changes:

• Queue begins with all vertices in X0 (unsaturated vertices in A)

• Note instead of a tree, we get a forest

• If active vertex is in A, only include non-matching edges (so we can only follow blue edges out of A)

• If active vertex is in B, only include matching edges (we can only follow red edges out of B)

Example 30.1. In the given graph, we first start with X0 = {1, 4}. Push 1 and 4 into queue. 1 is active.
Note every time we push in a vertex, we draw out the corresponding edge to generate a tree.
Push in 8, done with 1. Our queue is 4, 8.
Push in 10, done with 4. Our queue is 8, 10.
Push in 3, done with 8. Our queue is 10, 3.
Push in 5, done with 10. Our queue is 3, 5.
Push in 6 and 9, done with 3. Our queue is 5, 6, 9.
There are no adjacent vertices to 5 left. Similarly for 6 and 9. Thus we are done.
We end up with two trees that start at 1 and 4.
Let X be {vertices in forest} ∩A and Y be {vertices in forest} ∩B. Thus

X = {1, 3, 4, 5}
Y = {6, 8, 9, 10}

We can thus draw out our diagram with the four groups with the vertices and edges.
Note there are unsaturated vertices in Y thus there are augmenting paths and our current matching isn’t maximum.
That is 1, 8, 3, 6 and 1, 8, 3, 9 are augmenting paths. We flip the edges in one of these paths and repeat.
Note X0 = {4}. Begin our queue with 4.
Push in 8, 10. Queue is 8, 10.
8 is active, push in 1. Queue is 10, 1.
10 is active, push in 5. Queue is 1, 5.
No available vertices adjacent to either 1 or 5. We are done.
Note that there are no unsaturated vertices in Y in the configuration X = {1, 4, 5} and Y = {8, 10}.
Thus we have a maximum matching {{1, 8}, {2, 7}, {3, 6}, {5, 10}} where our min cover C = Y ∪(A\X) = {2, 3, 8, 10}.

49

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

31 July 21, 2017

31.1 Modelling Problems as Bipartite Graphs

Note we can model problems like assigning workers to shifts as bipartite graphs (A is workers and B is shifts).
If a worker wants to work 2 shifts, then we can simply create a copy of it as a second vertex in A, and we can
generalize this to n shifts or m workers per shift.
We can even model more complicated problems: if there are a group of students each of whom represent a certain
number of clubs, how can we form a matching such that as many clubs are represented for a conference but one
student cannot represent two clubs at the same time?

31.2 Hall’s “Marriage” Thoerem

Let G be a bipartite graph with bipartition (A,B). When is it possible to find a matching that saturates every
vertex in A?
Note:

• If |A| > |B|, then obviously this is not possible

• IfD ⊆ A (D is any subset ofA), then we must have |D| ≤ |N(D)| whereN(D) = {v ∈ B : v adjacent to same vertex in D}.
Otherwise we cannot match everyone in D anyways and thus every vertex in A cannot be matched.

Hall’s Theorem:

Theorem 31.1. Let G be a bipartite graph with bipartition (A,B). There exists a matching saturating every
vertex in A if and only if for every subset D ⊆ A we have |D| ≤ |N(D)|.

Proof. Forwards direction:
We showed this by showing that to saturate every vertex in A, there must be enough neighbours in B for every
such subset D ⊆ A.
Backwards direction:
We need to show that if a maximum matching M have size |M | < |A|, then there exists a set D such that
|N(D)| < |D| (contrapositive).
Suppose |M | < |A|. Suppose M is a maximum matching.
Take D = X (X in the construction from Konig’s theorem, the reachable vertices in A). Then since |M | < |A| there
is an unsaturated vertex in X.
Since M is a maximum matching there is no unsaturated vertex in Y , thus |X| > |Y | (if you look at Konig’s
theorem diagram).
Also N(X) ≤ Y (in fact, N(X) = Y from the Konig diagram).
Thus |N(X)| < |X| as desired.

32 July 24, 2017

32.1 K-regular Bipartite Graph have Perfect Matching

Theorem 32.1. If G is a k-regular bipartite graph (k ≥ 1) then G has a perfect matching.

Proof. Let (A,B) be the bipartition of G.

Lemma 32.1. |A| = |B|.
Proof of lemma:

50

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

Proof. We can show this by counting in two ways:

• Every edge is incident with exactly one vertex in A thus

q =
∑
v∈A

deg(v) = k|A|

• Similarly for vertices in B
q =

∑
v∈B

deg(v) = k|B|

thus k|A| = k|B| → |A| = |B|.

Let D ⊆ A. To show there is a perfect matching, we first show that |N(D)| ≥ |D|.
Count edges incident with a vertex in D: Let

Q = {e ∈ E(G) : e is incident with a vertex in D}

Note that
|Q| =

∑
v∈D

deg(v) = k|D|

Now consider what happens with B: Every edge in Q is incident with a vertex in N(D). But there are 0 or more
edges not in Q that are incident with a vertex in N(D). Thus

|Q| ≤
∑

v∈N(D)

deg(v) = k|N(D)|

Therefore we have
k|D| ≤ k|N(D)|

so |N(D)| ≥ |D|.
Since this is true for every set D ⊆ A, by Hall’s Theorem G has a matching that saturates every vertex in A.
Since |A| = |B|, this is a perfect matching.

32.2 Bipartite Graph Example Problem

Example 32.1. Let there be a deck of 36 cards labelled 1-8.
There are i cards labelled i (1 card labelled 1, 2 cards labelled 2, etc.)
Deal the deck into 6 piles of 6 cards. Show that it’s possible to pick one card from each pile such that there are no
two cards with the same label.
Solution: Create a bipartite graph with bipartite (A,B) such that

A = {p1, p2, . . . , p6} set of piles
B = {1, 2, 3, 4, . . . , 8}

There is an edge from i to pj if there is a card labelled i in pile pj .
We want to show that there is a matching that saturates every vertex in A (every pile has one unique label associated
with it).
Let D ⊆ A (subset of piles).
Consider cards in piles from D. How many different labels must we have?
Let d = |D|. We can do cases on d (number of piles in subset) to show that |N(D)| ≥ |D|:

51

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

d = 1 We have 6 cards (a given pile has 6 cards), thus we must have at least 1 label.

d = 2 We have 12 cards in total. Note there is at most 8 cards of one label, thus we must have at least 2 labels.

d = 3 We have 18 cards in total. There is at most 8 cards of 8 and 7 cards of 7. Thus we must have at least 3 labels.

d = 4 24 cards in total. At most 8 + 7 + 6 = 21 cards of labels 8, 7 and 6. We must have at least 4 labels.

Similarly for d = 5, 6. Thus in all cases, number of labels is |N(D)| and we have |N(D)| ≥ |D|.
By Hall’s theorem, every vertex in A can be saturated for a given matching.

32.3 Final Exam Notes

There will not be questions on:

• Section 2.8 - Recursive Decompositions of Binary Strings

• Section 3.4 - Nonhomogeneous Recurrence Relations

• Section 7.4 - Platonic Solids

32.4 Classes of Problems

• Extreme structures (e.g. longest path, shortest walk, maximum matching, etc.):

We can use longest path to deduce a cycle by showing that the vertices have all degree at least 2 (thus we do
not ever have to backtrack).

We can use shortest walk to deduce a shortest path (by taking out loops or extract out a part of the walk
that has a repeated vertex).

• Induction (use only when the question forces you to):

– delete an edge

– delete a vertex

– delete a cycle

This is useful if a deletion of the above preserves the hypothesis. So this is useful:

– planar graphs: deleting a vertex/edge/cycle still maintains planarity

– trees: deleting a leaf (some vertex + edge) still maintains tree. Deleting an edge creates two trees.

A contrary example is for k-regular graphs: induction on vertices is usually a bad idea

• Subgraphs are graphs (e.g. show that certain properties do/don’t hold for a given component)

• Use only what’s explicitly mentioned (e.g. only focus on edges explicitly mentioned and ignore rest of graph,
for example edges of explicitly mentioned matchings)

52

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

Figure 14.3: A Petersen graph

53

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

Figure 14.4: Bipartite graphs

54

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

Figure 14.5: Complete bipartite graphs Km,n

Figure 14.6: N-cube graphs Qn with 2n vertices.

55

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

Figure 14.7: K4 graph drawn as planar

Figure 16.1: A Path Graph

56

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

Figure 24.1: A Petersen graph

57

Spring 2017 MATH 239 Course Notes 32 JULY 24, 2017

Figure 26.1: Maximum and maximal matching for a given graph.

Figure 29.1: Example bipartite graph

58

	May 3, 2017
	Division is sketchy
	A0

	May 8, 2017
	Generating functions

	May 10, 2017
	Binomial Thoerem
	Coefficient Notation
	Formal Power Series (FPS)

	May 12, 2017
	Formal Power Series (cont.)
	Adding FPS
	Multiplying FPS
	Composite FPS
	Algebraic Proofs with FPS

	May 15, 2017
	Variations of Binomial Theorem
	Computing Coefficients
	Sum and Product Lemmas

	May 17, 2017
	n Groups in Product Lemma
	Compositions
	Isomorphic Solution to Compositions
	Compositions with Constraints
	Empty Parts

	May 23, 2017
	10 Steps to Generating Series Problems
	Binary Strings
	Concatenation of Strings
	Concatenations of Sets of Strings
	Empty String
	Blocks
	Ambiguous vs Unambiguous

	May 24, 2017
	Union
	Unambiguity for Complex Expressions
	Empty string
	A* (``Infinite'' Unions)
	Brackets
	Generating Series for Sets of Strings

	May 26, 2017
	Finite String Lemma
	Standard Decomposition of Binary Strings
	Block Decomposition

	May 29, 2017
	Coefficient of Rational Functions

	May 31, 2017
	Recurrence Relations for Rational Functions

	June 2, 2017
	Notes on Recurrence Relations
	Characteristic Polynomial
	Presenting Recurrence Solutions
	Crazy Dice Problem

	June 5, 2017
	Definition of Graphs
	Edge Terminologies
	Neighbours and Degree of Vertex u
	Graph Morphisms

	June 7, 2017
	Special Graphs
	Handshaking Lemma

	June 9, 2017
	Teams and Games Graph Problem
	Number of Odd Degree Vertices
	Walks
	Paths
	Walk Path

	June 12, 2017
	Transitivity (and Equivalence) of Paths
	Connected Graphs
	Subgraph
	Spanning (Subgraphs)
	N-Cycle
	Cycle in Graph
	Cycle Walks
	Component of a Graph

	June 14, 2017
	Cut Induced by X
	Connected Graph via Proper Non-Empty Subset
	Eulerian Circuit/Tour
	Bridges
	Deletion of Bridges 2 Components

	June 19, 2017
	Certifying Properties
	Trees
	Forest
	Trees with At Least 2 Vertices of Degree One
	Number of Edges and Vertices in Trees
	Number of Vertices of Degree One Max Degree
	Leaf

	June 21, 2017
	Spanning Trees
	Creating Cycles From Spanning Tree
	Disconnecting and Connecting Spanning Tree
	Bipartite Graphs and Odd Cycles

	June 23, 2017
	Breadth-First Search Trees
	Shortest Path by Property of BFST

	June 26, 2017
	Girth
	Shortest Cycle
	Planar Graphs
	Faces (of Planar Embeddings)
	Handshaking Lemma for Faces

	June 28, 2017
	Alternate Definition of a Degree of Face
	Isomorphic Graphs and Degrees of Faces
	Euler's Formula for Planar Graphs
	Degree of Faces and Girth

	June 30, 2017
	Key Formulas for Planar Embeddings
	Proof of Non-Planar Graphs
	Edge Bound by Vertices for Planar Embeddings
	Edge Bound by Vertices for Bipartite Planar Embeddings
	Platonic Solids

	July 5, 2017
	Prove That a Graph is Planar
	Kuratowski's Theorem
	Kuratowski Example with Petersen Graph

	July 7, 2017
	Recap on Planarity Checks
	Colouring Graphs
	2-Colourable and Bipartite
	n-Colourable and Kn
	6-Colourable for Every Planar Graph

	July 10, 2017
	5-Colourable for Every Planar Graph
	Contracting Edges
	Matching
	Maximum vs Maximal Matching

	July 12, 2017
	Perfect Matching
	Applications of Matchings
	Finding a Larger Matching
	M-Alternating and M-Augmenting Path

	July 14, 2017
	Finding a Maximum Matching in Any Graph
	Cover Subset of Vertices
	Minimum Cover
	Konig's Theorem

	July 17, 2017
	Proof of Konig's Theorem

	July 19, 2017
	Bipartite Matching Algorithm

	July 21, 2017
	Modelling Problems as Bipartite Graphs
	Hall's ``Marriage'' Thoerem

	July 24, 2017
	K-regular Bipartite Graph have Perfect Matching
	Bipartite Graph Example Problem
	Final Exam Notes
	Classes of Problems

