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Winter 2018 MATH 247 Final Exam Guide 1 TOPOLOGY

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 Topology

Theorem 1.1 (Cauchy-Schwarz inequality).

‖x · y‖ ≤ ‖x‖‖y‖

Definition 1.1 (Open ball). Let x ∈ Rn and r > 0. The open ball at radius r centred at x is denoted

Br(x) = {y ∈ Rn | ‖x− y‖ < r}

Definition 1.2 (Closed ball). Let x ∈ Rn, r > 0. The closed ball of radius r > 0 centred at x is denoted

Br(x) = {y ∈ Rn | ‖x− y‖ ≤ r}

Definition 1.3 (Open sets). A subset U ⊆ Rn is called an open set (or open) iff ∀x ∈ U , ∃r > 0 (r depends on
x) such that Br(x) ⊆ U .

1. Let Uα ⊆ Rn be open ∀α ∈ A (countably or uncountably many), then
⋃
α∈A Uα is open.

2. Let U1, . . . , Uk be open (must be finite number of sets). Then
⋂k
j=1 Uj is open.

Definition 1.4 (Closed sets). A subset F ⊆ Rn is called closed if F c = R \ F is open.

1. If F1, . . . , Fk is closed, then
⋃k
j=1 Fj is closed.

2. If Fα is closed ∀α ∈ A, then
⋂
α∈A Fα is closed.

Definition 1.5 (Interior). Let A ⊆ Rn (could be ∅). The interior of A0 or int(A) is⋃
V⊆A

V open in Rn

V

It is the union of all open subsets of Rn that are contained in A.

1. Ao is open.

2. A is open iff Ao = A.

Definition 1.6 (Closure). Let A ⊆ Rn (could be ∅). The interior of A or cl(A) is⋂
F⊇A

F closed in Rn

F

It is the intersection of all closed subsets of Rn that contains A.
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1. A is closed.

2. A is closed iff A = A.

The closure of the open ball Bε(x) is the closed ball Bε(x).

Definition 1.7 (Boundary). Let A ⊆ Rn. We define the boundary of A denoted ∂A = bd(A) to be

{x ∈ Rn | Bε(x) ∩A 6= ∅, Bε(x) ∩Ac 6= ∅ ∀ε > 0}

That is, x ∈ ∂A iff every open ball centred at x contains a point in A and a point in Ac.
Note that

∂Bε(x) = {y ∈ Rn | ‖y − x‖ = ε} = ∂(Bε(x))

(this is not true in general for all sets).

Proposition 1.1 (Characterization of boundary). Let A ⊆ Rn, then

∂A = A \Ao

This follows from the two claims:

1.
x ∈ A ⇐⇒ Bε(x) ∩A 6= ∅ ∀ε > 0

2.
x 6∈ Ao ⇐⇒ Bε(x) ∩Ac 6= ∅ ∀ε > 0

Definition 1.8 (Sequential characterization of limits). Let (xk) be a sequence of points in Rn, k ∈ N. We say (xk)
converges to a point x ∈ Rn iff for any ε > 0, ∃N ∈ N (N depends on ε in general)

k ≥ N ⇒ ‖xk − x‖ < ε

If (xk) converges to x, we denote
lim
k→∞

xk = x

where x is the limit of xk.
The limit of a convergent sequence is unique.

Definition 1.9 (Neighbourhood). Let x ∈ Rn. A subset U ∈ Rn is called a neighbourhood of x if ∃ε0 > 0 such
that Bε0(x) ⊆ U .

Proposition 1.2 (Convergent sequences and closed sets). x ∈ A iff ∃(xk) ∈ A such that limk→∞ xk = x.

Definition 1.10 (Bounded sequences). A sequence (xk) in Rn is called bounded if ∃M > 0 such that

‖xk‖ ≤M ∀k ∈ N

Definition 1.11 (Cauchy sequences). A sequence (xk) is called Cauchy if for any ε > 0 there exists an N ∈ N
such that

k, l ≥ N ⇒ ‖xk − xl‖ < ε

Proposition 1.3 (Convergent is Cauchy). (xk) is a convergent sequence iff it is Cauchy.

Lemma 1.1 (Convergence implies bounded). Every convergent sequence is bounded.
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Definition 1.12 (Subsequences). Let (xk) be a sequence in Rn. Let 1 ≤ k1 < k2 < . . . < ke < ke+1 < . . . be
a sequence of 1, 2, 3, 4, . . .. Then the corresponding sequence (yl) (or (xkl)) in Rn given by yl = xkl is called a
subsequence of (xk).

Proposition 1.4 (Subsequences converges to same limit). Suppose (xk)→ x. Then any subsequence (xkl) of (xk)
also converges to the same limit x.

Theorem 1.2 (Bolzano-Weierstrass). In Rn, every bounded sequence has a convergent subsequence.
This convergent subsequence is not unique.

Definition 1.13 (Connected sets). Let E be a non-empty subset of Rn.
We say E is disconnected if there exists a separation for E. A separation of E is a pair U, V open sets in Rn
such that

1. E ∩ U 6= ∅

2. E ∩ V 6= ∅

3. E ∩ U ∩ V = ∅

4. E ⊆ U ∪ V

E is connected if 6 ∃ any separation of E.

Theorem 1.3 (0,1 closed interval is connected). Let E = [0, 1] ⊆ R. Then E is connected.

Definition 1.14 (Convex sets). A non-empty subset E of Rn is called convex if for any x, y ∈ E then

tx+ (1− t)y ∈ E ∀t ∈ [0, 1]

i.e. the line segment between any 2 points in E is contained in E.

Corollary 1.1 (Convex implies connected). Any convex subset E of Rn is connected.
This implies that Rn is connected.

Definition 1.15 (Open cover). Let E be a subset of Rn. An open cover of E is a collection of open subsets Uα,
α ∈ A, of Rn such that

E ⊆
⋃
α∈A

Uα

(finite or infinite union of open subsets).

Definition 1.16 (Compact sets). The subset E is called compact iff every open cover of E admits a finite
subcover.
That is, if

⋃
Uα, α ∈ A, is an open cover of E, then ∃ a finite subset A0 of A such that

E ⊆
⋃
α∈A0

Uα

Theorem 1.4 (Heine-Borel). Let E be a subset of Rn. E is compact iff E is both closed and bounded.
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2 Limits and continuity

Definition 2.1 (Limits of functions). Let V ⊆ Rn be an open set with x0 ∈ V . Let f : V \ {x0} → Rm for some m
(i.e. f is defined at all points of V except possibly at x0).
We say limx→x0 f(x) exists and equals L ∈ Rm iff ∀ε > 0, ∃δ > 0 such that

0 < ‖x− x0‖ < δ ⇒ ‖f(x)− L‖ < ε

(note that Bδ(x0) ⊆ V must hold).

Example 2.1 (Showing limit does not exist). Key idea: find some path (towards x) that does not have a constant
limit.
Suppose we wish to find

lim
(x,y)→(2,3)

(x− 2)2

(x− 2)2 + (y − 3)2

where f(x, y) defined everywhere except (2, 3).
Suppose we have paths/lines with slope m where (y − 3) = m(x− 2). Along this line we have

f(x, y) =
(x− 2)2

(x− 2)2 + (y − 3)2

=
1

1 +m2

So f is a constant function which depends on the slope of the line/path.

Example 2.2 (Showing limit does exist). Key idea: use the definition and reduce ‖f(x)− L‖ to ‖x− a‖ < δ.
Suppose we wish to find

lim
(x,y)→(0,0)

x4

x2 + y2

We expect the limit to converge since the degree of the numerator is > degree of denominator, thus numerator → 0
“much faster” than the denominator so the quotient should go to zero.
Observe that

x2

x2 + y2
≤ 1 (x, y) 6= (0, 0)

Thus

| x4

x2 + y2
| = x4

x2 + y2
= x2

(
x2

x2 + y2

)
≤ x2 x2

x2 + y2
≤ 1

≤ x2 + y2

< δ2 = ε

Thus we can take δ =
√
ε.

Proposition 2.1 (Sequential characterization of limits of functions). For f : V \{x0} ⊆ Rn → Rm, limx→x0 f(x) = L
iff the sequence f(xk) converges to L for every sequence (xk) in V \ {x0} converging to x0.
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Example 2.3 (Showing limits DNE with sequential characterization). Suppose we want to solve

lim
(x,y)→(0,0)

x√
x2 + y2

cos(
1√

x2 + y2
)

By sequential characterization of limits

lim
(x,y)→(0,0)

h(x, y) = 0 ⇐⇒ lim
k→∞

h(xk, yk) = 0

for all sequences (xk, yk) ∈ R2 converging to (0, 0).
Thus consider (xk, yk) = ( (−1)

k

kπ , 0), so we have

h(xk, yk) =
(−1)k 1

kπ√
1

k2π2

cos(
1√
1

k2π2

)

= (−1)k cos(kπ)

= 1 ∀k

Similarly when (xk, yk) = ( (−1)
k+1

kπ , 0), we have the limit approaching to −1. Since they have different limits, then
the limit DNE so fx is not continuous at (0, 0).

Proposition 2.2 (Properties of limits). Let f, g : V \ {x0} ⊆ Rn → Rm and suppose

lim
x→x0

f(x) = L lim
x→x0

g(x) = M

then

lim
x→x0

(f(x) + g(x)) = L+M (additive)

lim
x→x0

cf(x) = cL (scalar multiplicative)

lim
x→x0

f(x)

g(x)
=

L

M
if m = 1,M 6= 0

lim
x→x0

(f(x)g(x)) = LM if m = 1

Definition 2.2 (Component functions). Let f : U ⊆ Rn → Rm, U is open. Then for x ∈ U

f(x) = (f1(x), . . . , fm(x)) ∈ Rm

fi : U → R, 1 ≤ i ≤ m are the component functions of f (real-valued).

Lemma 2.1 (Convergence of components). x0 ∈ V open in Rn. Let f : V \ {x0} → Rm. Then limx→x0 f(x) =
L = (L1, . . . , Lm) iff limx→x0 fi(x) = Li ∀i = 1, 2, . . . ,m.

Theorem 2.1 (Squeeze theorem). Suppose f, g, h : V \ {x0} → R (m = 1!). If f(x) ≤ g(x) ≤ h(x) ∀x ∈ V \ {x0}
(this only needs to hold in a neighbourhood of x0) and limx→x0 f(x) = limx→x0 h(x) = L ∈ R, then

lim
x→x0

g(x) = L

5
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Proposition 2.3 (Norm of limits). Suppose f : V \ {x0} → Rm and limx→x0 f(x) = L then

lim
x→x0

‖f(x)‖ = ‖ lim
x→x0

f(x)‖ = ‖L‖

Definition 2.3 (Continuity (at a point)). f is continuous at x0 iff ∀ε > 0, ∃δ > 0 such that

‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ε

i.e. limx→x0 exists and equals f(x0).

Definition 2.4 (Sequential characterization of continuity). By the sequential characterization of limits, f is
continuous at x0 iff whenever (xk) is a sequence in U converging to x0, then f(xk) is a sequence in Rm converging
to f(x0).

Definition 2.5 (Continuity (on a set)). f is continuous on U (an open set) if it is continuous at every x ∈ U .

Proposition 2.4 (Continuity of components). If f : U ⊆ Rn → Rm, f is continuous at x0 ∈ U iff fi : U ⊆ Rn → R
is continuous at x0 for all i = 1, . . . , n.

Proposition 2.5 (Composition is continuous). Let f : U ⊆ Rn → Rm be continuous on U . Let g : V ⊆ Rm → Rp
be continuous on V . Suppose f(U) = {f(x) | x ∈ U} ⊆ V so the composition

h = g ◦ f : U ⊆ Rn → Rp

is defined g(f(x)). Then h = g ◦ f is continuous on U .

Proposition 2.6 (Dot product is continuous). Suppose f, g : U ⊆ Rn → Rm. Define f · g : U ⊆ Rn → R by

(f · g)(x) = f(x) · g(x) = f1(x)g1(x) + f2(x)g2(x) + . . .+ fm(x)gm(x)

If f, g continuous at x0, then f · g is continuous at x0.

Definition 2.6 (Inverse image). Let f : U ⊆ Rn → Rm, U is open. Let A ⊆ Rm.
The inverse image of A under f is denoted f−1(A) and is defined to be

f−1(A) = {x ∈ U | f(x) ∈ A}

Proposition 2.7 (Continuous iff inverse image of open/closed is open/closed). f : U ⊆ Rn → Rm, U is open. Then
f is continuous on U iff f−1(V ) is open in Rn whenever V is open in Rm.
Similarly, f is continuous iff f−1(V ) is closed whenever V is closed.

Remark 2.1 (Continuity and open/closed domain). From above, note it is not true that if U is open, then f(U)
is open for a continuous f on U . Consider f(x) = x2 and U = (−1, 1)⇒ f(U) = [0, 1].
Similarly for closed.

Proposition 2.8 (Continuity carries compact into compact). Let f : U ⊆ Rn → Rm continuous on U which is
open. Let K ⊆ U be compact. Then f(K) = {f(x) | x ∈ K} is compact in Rm.

Proposition 2.9 (Continuity carries connected into connected). Let f : U ⊆ Rn → Rm continuous on U which is
open. Let E ⊆ U be connected on Rn. Then f(E) is connected.

Theorem 2.2 (Extreme value theorem). Let f : U ⊆ Rn → R, U is open (m = 1!) and f is continuous on U .

6
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Let K ⊆ U be compact. Then ∃x1, x2 in K

f(x1) ≤ f(x) ≤ f(x2) ∀x ∈ K

and x1, x2 need not be unique.

Theorem 2.3 (Intermediate value theorem). Let f : U ⊆ Rn → R, where U open (m = 1!).
Suppose f is continuous on U and let E ⊆ U be connected. Let x, y ∈ E such that f(x) < f(y). Then for each
w ∈ (f(x), f(y)), ∃z ∈ E such that f(z) = w.

Definition 2.7 (Uniform continuity). Let f : U ⊆ Rn → Rm, U is open, and let D ⊆ U .
We say that f is uniformly continuous on D iff ∀ε > 0 ∃δ > 0 such that

∀x, y ∈ D ‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε

Theorem 2.4 (Uniform continuity and compact sets). Let f : U ⊆ Rn → Rm be continuous on U open. Let
K ⊆ U be compact.
Then f is uniformly continuous on K.

3 Differentiation

Definition 3.1 (Single variable differentiability). Let f : U ⊆ R → R, U open, and a ∈ U . We say f is
differentiable at a iff

lim
h→0

f(a+ h)− f(a)

h

exists. If so, we call the limit the derivative of f at a and we denote it

f ′(a) =
df(a)

dx
= (Df)a

Remark 3.1 (Single variable differentiability implies continuity). If f : R → R is differentiable at a then f is
continuous at a.

Definition 3.2 (Partial derivative). Let i ∈ {1, . . . , n}. The partial derivative of f in the xi-direction at the
point a is defined to be

∂f

∂xi
(a) = lim

h→0

f(a+ hei)− f(a)

h

if it exists.

Definition 3.3 (Directional derivative). Consider the rate of change of f at a in the direction of any unit vector u
(i.e. in between the standard vectors ei).
This is called the directional derivative of f at a in the u-direction and is denoted

(Duf)a = lim
h→0

f(a+ hu)− f(a)

h

(for f : R→ R).

Definition 3.4 (Class of continuous functions). Let f : U ⊆ Rn → R, U open. We say f is in C0(U) if f is
continuous on U .
In general, for k ∈ N, f is in Ck(U) if f is in Ck−1(U) and all ∂kf

∂xik ...∂xi1
exist and are continuous on U .

7
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Theorem 3.1 (Mean value theorem). Let f : U ⊆ R→ R (m = n = 1!), U open, be continuous on [a, b] ∈ U and
differentiable on (a, b). There ∃c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a)

Theorem 3.2 (Commutativity of mixed partial derivatives). Let f : U ⊆ Rn → R, U open. Let a ∈ U . Suppose
∂f
∂xj

, ∂f
∂xk

exist and are continuous (j 6= k, j, k ∈ {1, . . . , n}) on a neighbourhood of a.

Furthermore, suppose that ∂2f
∂xj∂xk

exists in a neighbourhood of a and is continuous on a.

Then ∂2f
∂xk∂xj

exists at a and
∂2f

∂xk∂xj
(a) =

∂2f

∂xj∂xk
(a)

Definition 3.5 (Differentiability). For f : U ⊆ Rn → Rm, U open, let x0 ∈ U .
We say f is differentiable at x0 if ∃ a linear map T : Rn → Rm such that

lim
h→0

‖f(x0 + h)− f(x0)− T (h)‖
‖h‖

= 0

Proposition 3.1 (Differentiability implies continuity). Let f : U ⊆ Rn → Rm, U open, and a ∈ U . Suppose f is
differentiable at a. Then f is continuous at a.

Theorem 3.3 (Differentiable map is matrix of partial derivatives). Let f : U ⊆ Rn → Rm and a ∈ U . Suppose f
is differentiable at a.
We have

f(x) ∈ Rm = (f1(x), . . . , fm(x))

where fj : U ⊆ Rn → R are the component functions of f , 1 ≤ j ≤ m.
Then all the partial derivatives ∂fi

∂xj
exists at a for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Moreover,

T = (Df)a =


∂f1
∂x1

(a) . . . ∂f1
∂xn

(a)
... . . .

...
∂fm
∂x1

(a) . . . ∂fm
∂xn

(a)


is the m× n matrix whose (i, j)-entry is ∂fi

∂xj
(a). This shows (Df)a is unique if it exists.

Definition 3.6 (Gradient). For f : U ⊆ Rn → R (note m = 1!), a ∈ U , and f differentiable at a, then (Df)a is a
1× n matrix also called the gradient denoted

(∇f)(a) = (Df)a =
[
∂f
∂x1

(a) . . . ∂f
∂xn

(a)
]

Lemma 3.1 (Differentiability of components). Let f : U : Rn → Rm, a ∈ U . Then f is differentiable at a iff each
component function f : U ⊆ Rn → R is differentiable at a ∀i = 1, . . . ,m.

Proposition 3.2 (Linear combinations are differentiable). Let f, g : U ⊆ Rn → Rm. Suppose f, g both differentiable
at a ∈ U . Let λ, µ ∈ R. Then λf + µg : U ⊆ Rn → Rm or

(λf + µg)(x) = λf(x) + µg(x)

is differentiable at a and
(D(λf + µg))a = λ(Df)a + µ(Dg)a

8
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Theorem 3.4 (Partials exist and continuous implies differentiability). Let f : U ⊆ Rn → Rm, a ∈ U . Suppose all
∂fi
∂xj

exists on a neighbourhood of a and are continuous at a.
Then f is differentiable at a.
(The premises are sufficient but not necessary).

Remark 3.2 (Checking for differentiability). To check if f : U ⊆ Rn → Rm is differentiable at a ∈ U

1. If f is not continuous at a, then f is not differentiable at a

2. If any of ∂fi
∂xj

do not exist at a, f is not differentiable at a

3. Let (Df)a be the m× n matrix whose i, j entry is ∂fi
∂xj

(a). Then f is differentiable at a ⇐⇒

lim
h→0

‖f(x0 + h)− f(x0)− T (h)‖
‖h‖

= 0

4. We can avoid step 3 if we know all ∂fi
∂xj

exist on a n’h’d of a and are continuous at a (this implies f is
differentiable at a by theorem 3.4).

Proposition 3.3 (Product rule for differentiability). Let U ⊆ Rn, f, g : U → Rm, a ∈ U .
Suppose f, g are both differentiable at a. Then we claim f · g : U → R, where (f · g)(x) = f(x) · g(x) is differentiable
at a and

D(f · g)a = f(a)T (Dg)a + g(a)T (Df)a (3.1)

Theorem 3.5 (Chain rule). Let f : U ⊆ Rn → Rm be differentiable at a ∈ U . Let g : V ⊆ Rn → Rp be
differentiable at b = f(a) ∈ V . Assume f(U) ⊆ V .
Then g ◦ f : U ⊆ Rn → Rp is differentiable at a and

D(g ◦ f)a = (Dg)f(a)(Df)a

Proposition 3.4 (Linearization using derivative). Let f : Rn → R. Then

f(x)− f(x0) = (Df)x0(x− x0) +Rx0(h)

where h = x− x0 for some remainder term Rx0(h).
We say f is differentiable at x0 iff limh→0

Rx0 (h)

‖h‖ = 0.

Definition 3.7 (Graph of function). Let f : U ⊆ Rn → R. The the graph of f is

Γf = {(x1, . . . , xn, y) ∈ Rn+1 | y = f(x1, . . . , xn)}
= {(x1, . . . , xn, f(x1, . . . , xn) | (x1, . . . , xn) ∈ U}

Theorem 3.6 (Rolle’s theorem). Let f : R→ R, f is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b),
then there exists at least one c ∈ (a, b) such that f ′(c) = 0.

Theorem 3.7 (Single variable Taylor’s theorem). Let I ⊆ R be an interval, let p be a non-negative integer. Let
h : I → R be (p+ 1)-times differentiable on I. Let t0 6= t ∈ I. Then ∃θ between t0 and t (exclusively) such that

h(t) =

p∑
k=0

h(k)(t0)

k!
(t− t0)k +

h(p+1)(θ)

(p+ 1)!
(t− t0)p+1

where θ may not be unique.

9
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Theorem 3.8 (Taylor’s theorem). We denote

(D(k)f)a(ξ) =

n∑
j1,...,jk=1

∂kf

∂xj1 . . . ∂xjk
(a)ξ1 . . . ξk

for k ≥ 1 and (D(0)f)a = f(a).
Let U ⊆ Rn open, f : U ⊆ Rn → R be in Cp+1(U). Let a ∈ U , ξ ∈ Rn such that {a+ tξ | t ∈ [0, 1]} ⊆ U .
Then ∃θ ∈ (0, 1) such that

f(a+ ξ) =

p∑
k=0

(D(k)f)a(ξ)

k!
+

1

(p+ 1)!
(D(p+1)f)a+θξ(ξ)

Proposition 3.5 (Lipschitz function). Let f : U ⊆ Rn → R. Suppose f ∈ C1(U). Let K be a compact subset of
Rn with K ⊆ U . If E ⊆ K is convex, ∃ a constant M > 0 (depending on f and on K but not on E) such that

‖f(x)− f(y)‖ ≤M‖x− y‖ ∀x, y ∈ E

This says the restriction of f on E is Lipschitz: in particular any Lipshitz function on a set E is uniformly
continuous on E (for any ε, choose δ = ε

M ). Note however that uniform continuity does not imply Lipschitz.

Theorem 3.9 (More general Taylor’s theorem). f : U ⊆ Rn → R (U open, as always). Suppose f ∈ Cp(U)
(previously had Cp+1(U)). Let a ∈ U , ξ ∈ Rn such that {a+ tξ, t ∈ [0, 1]} ⊆ U . Then

f(x) =

p∑
k=0

D(k)f)a(ξ)

k!
+Ra,p(x)

where x = a+ ξ and where

lim
x→a

Ra,p(x)

‖x− a‖p
= 0

3.1 Optimization

Let f : U ⊆ Rn → R real-valued be differentiable on U .

Definition 3.8 (Local minimum). Let a ∈ U . We say f has a local minimum at a if ∃ε > 0 such that

f(x) ≥ f(a) ∀x ∈ Bε(a)

Definition 3.9 (Local maximum). We say f has a local maximum at a if ∃ε > 0 such that

f(x) ≤ f(a) ∀x ∈ Bε(a)

Definition 3.10 (Critical points). A point a ∈ U such that (∇f)(~a) = 0 is called a critical point of f .

Definition 3.11 (Saddle point). A critical point a ∈ U of f is called a saddle point if ∃ε > 0 such that ∀ε′ ∈ (0, ε),
∃x, yBε′(a)

f(x) < f(a) < f(y)

Definition 3.12 (Bilinear symmetric forms). H is bilinear on Rn i.e. H : Rn × Rn → R such that

H(av + bw, u) = aH(v, u) + bH(w, u)

H(v, aw + bu) = aH(v, w) + bH(v, u)

10
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where a, b ∈ R and u, v, w ∈ Rn.
We have for x =

∑n
i=1 xiei and y =

∑n
j=1 yjej

H(x, y) =
n∑

i,j=1

H(ei, ej)xiyj

Denote Hij = H(ei, ej) where H is an n× n matrix. H is symmetric if H(x, y) = H(y, x) for all x, y ∈ Rn i.e. iff
Hij = Hji.

Definition 3.13 (Quadratic form). We define the quadratic form Q associated to the symmetric bilinear form
H to be the map Q : Rn → R given by

Q(x) = H(x, x) =
n∑

i,j=1

Hijxixj

Notice Q(0) = 0 always.

1. We say Q is positive definite if Q(x) > 0 ∀x 6= ~0.

2. We say Q is positive semi-definite if Q(x) ≥ 0 ∀x ∈ Rn.

3. We say Q is negative definite if Q(x) < 0 ∀x 6= ~0.

4. We say Q is negative semi-definite if Q(x) ≤ 0 ∀x ∈ Rn.

5. We say Q is indefinite if ∃x, y ∈ Rn such that Q(x) > 0, Q(y) < 0.

For indefinite, non-degenerate means no z 6= ~0⇒ Q(z) = 0. Degenerate if there is such a z.

Lemma 3.2 (Bounds on quadratic forms). Let Q be a quadratic form associated to symmetric bilinear form of H.

1. If Q is positive definite, ∃M > 0 such that Q(x) ≥M‖x‖2 ∀x ∈ Rn.

2. If Q is negative definite, ∃M > 0 such that Q(x) ≤ −M‖x‖2 ∀x ∈ Rn.

Definition 3.14 (Hessian). The Hessian of f at a ∈ U is the n×n symmetric matrix (Hess f)a whose i, j entry
is

∂2f

∂xi∂xj
(a)

Theorem 3.10 (Second derivative test). Let f : U ⊆ Rn → R, f ∈ C2(U). Let a be a critical point for f
((∇f)(a) = ~0).
Let Hij = ∂2f

∂xi∂xj
(a) and H be the Hessian of f at a with quadratic form Q.

1. If Q is positive definite, then f has a local min at a.

2. If Q is negative definite, then f has a local max at a.

3. If Q is indefinite, then a is a saddle point of f .

(otherwise test fails and any of the 3 can happen).

11
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Example 3.1 (Second derivative test fails). Consider

f(x, y) = x4 + y2 g(x, y) = −x4 − y2 h(x, y) = x3 + y2

which all have one critical point at (0, 0). Note their Hessians at (0, 0 are

(Hess f)(0,0) =

[
0 0
0 2

]
(Hess g)(0,0) =

[
0 0
0 −2

]
(Hess h)(0,0) =

[
0 0
0 2

]
Note that ∃x 6= ~0 where xTHx = 0 (so not definite). Furthermore, they all map to either positive or negative values
so they are not indefinite.

Definition 3.15 (Matrix norm). Define the norm on Rn×n by taking the usual Euclidean norm on Rn2

‖A‖2 =
n∑

i,j=1

A2
ij

Note that
‖Ax‖ ≤ ‖A‖‖x‖ ∀x ∈ Rn

Theorem 3.11 (Inverse function theorem). Let f : U ⊆ Rn → Rn be in Ck(U) for some k ≥ 1.
Let V = f(U), let a ∈ U such that (Df)a is invertible (note that n = m since we require square matrices for
invertibility).
Then ∃ open set Ũ ⊆ U containing a, an open set Ṽ ⊆ V contain f(a), and a map g : Ṽ → Ũ (with g(Ṽ ) = Ũ)
such that g(f(x)) = x ∀x ∈ Ũ and f(g(y)) = y ∀y ∈ Ṽ .
Moreover, g ∈ Ck(Ṽ ) for the same k and if b ∈ Ṽ then

(Dg)b = [(Df)f−1(b)]
−1

Also
f

∣∣∣∣
Ũ

: Ũ → Ṽ

is a bijection.

Example 3.2 (Applying inverse function theorem). Let (x, y) = f(u, v) = (uv, u2 + v2) where f : R2 → R2. Note
that f ∈ C∞(R2) since fi are polynomials.
We want to prove f−1 exists and is C∞ in some nonempty open set containing (2, 5).
For f(a, b) = (2, 5), find all points (u, v) ∈ R2 such that f(u, v) = (2, 5).

uv = 2⇒ v =
2

u

u2 + v2 = 5⇒ u2 +
4

u2
= 5

⇒ u4 − 5u2 + 4 = 0

⇒ (u2 − 1)(u2 − 4) = 0

So (u, v) = {(1, 2), (−1,−2), (2, 1), (−2,−1)}.
Note that

(Df)(u,v) =

[∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

]
=

[
v u
2u 2v

]

12
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Thus det((Df)(u,v) = 2v2 − 2u2 = 2(v2 − u2) 6= 0 for any of our points.
So by the inverse function theorem, for any of these 4 points (a, b) there is an open n’h’d Ũ of (a, b) and an open
n’h’d of Ṽ of (2, 5) such that f : Ũ → Ṽ is invertible and f−1 ∈ C∞(Ṽ ).

Theorem 3.12 (Implicit function theorem). Let f : W ⊆ Rn+m → Rn be in Ck(W ) for k ≥ 1. Suppose
f(y0, x0) = 0 for some (y0, x0) ∈W .
Let A be the n× n matrix where Aij = ∂fi

∂yj
(y0, x0).

If det(A) 6= 0 (i.e. A invertible) then ∃W ′ ⊆ W open n’h’d of (y0, x0) and an open n’h’d U of x0 in Rm and a
function h : U ⊆ Rm → Rn, h ∈ Ck(U) for the same k such that

{(y, x) ∈W ′ | f(y, x) = 0} = {(h(x), x), x ∈ U}

i.e. on W ′, the points where f = 0 can be expressed as y as a function of x.

Example 3.3 (Applying implicit function theorem). Given x0, y0, u0, v0, s0, t0 nonzero real numbers that satisfy
the simultaneous equations

u2 + sx+ ty = 0 v2 + tx+ sy = 0 2s2x+ 2t2y − 1 = 0 s2x− t2y = 0

(this is almost impossible to solve explicitly: we may only want to know it exists).
Show that ∃ smooth (C∞) functions u(x, y), v(x, y), s(x, y), t(x, y) defined on an open n’h’d of (x0, y0) such that
u, v, s, t satisfy the equations and

u(x0, y0) = u0 v(x0, y0) = v0 s(x0, y0) = s0 t(x0, y0) = t0

We’ll apply the implicit function theorem. Define f : R6 = R4+2 → R4 where

f(u, v, s, t, x, y) =


u2 + sx+ ty
v2 + txsy

2s2x+ 2t2y − 1
s2x− t2y

 ∈ R4

By hypothesis, f(u0, v0, s0, t0, x0, y0) = 0. Also

Df =


2u 0 x y . . .
0 2v y x . . .
0 0 4sx 4ty . . .
0 0 2sx −2ty . . .


So we have

A =


2u0 0 x0 y0
0 2v0 y0 x0
0 0 4s0x0 4t0y0
0 0 2s0x0 −2t0y0


where det(A) = (2u0)(2v0)(−8s0x0t0y0 − 8s0x0t0y0) = 64u0v0s0t0x0y0 6= 0 since they’re all non-zero.
So u, v, s, t exist by be the implicit function theorem in a n’h’d of (x0, y0) and are in C∞ (since f is in C∞,
polynomials).

Theorem 3.13 (Methods of Lagrange multipliers). Let 1 ≤ k ≤ n. Let W ⊆ Rn (open). Let f : W ⊆ Rn → R and
g : W ⊆ Rn → Rk (component functions g1, . . . , gk are the constraint functions).
Let S = {w ∈W | g(x) = 0} (the “constraint” set). Let a ∈ S.

13
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Suppose

1. f has a local extrema at a subject to the constraints g(x) = 0 (i.e. f restricted to S has a local extrema at a).

2. rank((Dg)a) = k (where (Dg)a is k × n thus maximal rank).

Then ∃λ ∈ Rk such that
(Df)a + λ(Dg)a = ~0

Example 3.4 (Applying Lagrange multipliers). Find all extrema of f(x, y, z) = x2 + y2 + z2 subject to the 2
constraints: x− y = 1 and y2 − z2 = 1.
There exists points on constraint set with arbitrary large distance from origin (no global max).
We know there will exist a global min (which will also be a local min). We expect 2 local minima since y2− z2 = 1
cuts twice into the other constraint plane.
We have

g1(x, y, z) = x− y − 1 = 0 g2(x, y, z) = y2 − z2 − 1 = 0

and from Lagrange multipliers we know ∇f + λ∇g1 + µ∇g2 = 0, thus

2x+ λ = 0

2y − λ+ 2µy = 0

2z − 2µz = 0⇒ z(1− µ) = 0

From the last constraint, either µ = 1 or z = 0:

µ = 1 Then the second equation becomes 4y = λ and the first equation becomes 2x+ 4y = 0 so x = −2y.

From our original constraint equations, we have from g1 −3y = 1⇒ y = −1
3 and from g2

1
9−z

2 = 1⇒ z2 = −8
9

which is a contradiction since squares are always positive.

z = 0 From g2 we have y = ±1 and from g1 we have x = y + 1.

Thus we have two solutions (2, 1, 0) and (0,−1, 0) (which satisfy all the other equations too).

Thus we have f(2, 1, 0) = 5 (some local min) and f(0,−1, 0 = 1 (global min).

4 Integration

We almost always consider only sets D that are bounded. We sometimes require f : D → Rm to be bounded: this
requires further effort.

Definition 4.1 (Box). Let I = [a1, b1]× [a2, b2]× . . .× [an, bn] ⊆ Rn. I is the Cartesian product of closed bounded
intervals, i.e. x ∈ I ⇐⇒ ai ≤ x ≤ bi for all i = 1, . . . , n. We’ll call I a box in Rn.
It is clear I is compact because it’s closed and bounded.

Definition 4.2 (Size of box). Define the size of a box I µ(I) ∈ R to be

µ(I) = (b1 − a1)(b2 − a2) . . . (bn − an) =

n∏
k=1

(bk − ak)

Definition 4.3 (Zero size). Let E ⊆ Rn. We say E has zero size (and write µ(E) = 0) iff ∀ε > 0, ∃ boxes
I1, . . . , IN with E ⊆

⋃N
k=1 Ik and

∑N
k=1 µ(Ik) < ε (i.e. we can cover E by finitely many boxes whose sizes sum to as

small as we want). Note I1, . . . , Ik need not be disjoint.

14
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Proposition 4.1 (Continuous graphs of compact sets have zero size). Let K ⊆ Rn be compact. Let f : U ⊆
Rn → R be continuous on U with K ⊆ U . Define

Γf,K = {(x, f(x)) ∈ Rn+1 | x ∈ Rn}

or the “graph of f over the set K”. Then Γf,k has size zero.

Corollary 4.1 (Boundary of box have zero size). Let I be a box in Rn then ∂I has zero size.

Definition 4.4 (Non-zero size). E ⊆ Rn does not have zero size iff ∃ε0 > 0 such that ∀ finite collections of
boxes I1, . . . , In with E ⊆

⋃N
j=1 Ij , we have

∑n
j=1 µ(Ij) ≥ ε0.

Non-zero size does not imply it’s sizeable (consider unbounded set).

Lemma 4.1 (Technical lemma for non-zero size). A subset E ⊆ Rn does not have zero size iff ∃ε̃0 > 0 such
that ∀ finite collections of boxes I1, . . . , In with E ⊆

⋃N
j=1 Ij where int(Ij) ∩ E 6= ∅, we have

∑n
j=1 µ(Ij) ≥ ε̃0.

Definition 4.5 (Partitions of box). Let I = [a1, b1]× [a2, b2]× . . .× [an, bn] be a box in Rn.
For j ∈ {1, . . . , n}, choose tj,0, tj,1, . . . , tj,Nj Nj ≥ 1 such that aj = tj,0 < tj,1 < tj,2 < . . . < tj,Nj−1 < tj,Nj = bj .
Let Pj = {tj,l | l = 0, 1, . . . , Nj} and P = P1 × P2 × . . .× Pn.
Then x ∈ P ⇐⇒ xj ∈ Pj for all j = 1, . . . , n.
Such a P is a called a partition of the box.
P has N1 ×N2 × . . .×Nn elements.

Definition 4.6 (Subdivision of box). A partition P of I determines a subdivision of I into N1 × . . .×Nn boxes
of the form

Ik1,...,kn = [t1,k1 , t1,k1+1]× . . .× [tn,kn , tn,kn+1]

where kj ∈ {0, 1, . . . , Nj − 1}.

Definition 4.7 (Riemann sum). Let f : I → Rm, I ⊆ Rn be a box and P be a partition of I. Let Iα where α ∈ P
be the corresponding subdivision of I. Then I =

⋃
α∈P Iα.

For each Iα choose xα ∈ Iα. Then the Riemann sum for f with respect to partition P is

S(f, P ) =
∑
α∈P

f(xα)µ(Iα)

Definition 4.8 (Refinement of partition). Let P and Q be two partitions of the same box I. We say that Q is a
refinement of P if Pj ⊆ Qj for all j = 1, . . . , n.
That is, all the subboxes JB of I corresponding to Q are themselves subboxes of one of the subboxes Iα of I
corresponding to P .
Note that

I =
⋃
α

Iα =
⋃
β

Jβ

each Iα is a union of some Jβ ’s.

Remark 4.1 (Common refinement). Let P and Q be any two partitions of I. There always exists a partition R of
I where Rj = Pj ∪Qj for all j that is a common refinement.

Definition 4.9 (Riemann integral of box). Let I ⊆ Rn be a box. Let f : I → Rm. f is Riemann integrable on
I iff ∃y ∈ Rm such that ∀ε > 0, there exists a partition Pε of I such that, for any refinement P of Pε and any
Riemann sum S(f, P ) corresponding to P , we have

‖S(f, P )− y‖ < ε

15
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Moreover, the Riemann integral of f over I is

y =

∫
I
f

Theorem 4.1 (Cauchy criterion for Riemann integrable). Let I ⊆ Rn be a box, f : I → Rm. f is Riemann
integrable on I iff ∀ε > 0, ∃ partition Pε of I such that for any refinements P,Q of Pε and any Riemann sums
S(f, P ), S(f,Q) we have

‖S(f, P )− S(f,Q)‖ < ε

Lemma 4.2 (Simplified Cauchy criterion). f : I → Rm is integrable on I iff ∀ε > 0, ∃ partition Pε of I such that
if S1(f, Pε), S2(f, Pε) are any two Riemann sums for f with respect to Pε, then

‖S1(f, Pε)− S2(f, Pε)‖ < ε

(note: we no longer require that this holds for all Riemann sums of all refinements).

Theorem 4.2 (Integrable on box when bounded size zero discontinuity). Let I ⊆ Rn be a box. Let f : I → Rm be
bounded. Let S ⊆ I be the points in I where f fails to be continuous. If S has size zero, then f is Riemann
integrable on I.

Definition 4.10 (Riemann integral). Let D ⊆ Rn be bounded. Let f : D → Rm. Choose any box I in Rn such
that D ⊆ I (possible since D is bounded).
Define f̃ : I → Rm by f̃(x) = f(x) if x ∈ D and f̃(x) = 0 if x 6∈ D (i.e. f̃ is the extension by zero of f from D to I).
We say f is Riemann integrable on D iff f̃ is Riemann integrable on I and we write∫

D
f =

∫
I
f̃

Theorem 4.3 (Integrable on bounded general set with size zero boundary). Let D 6= ∅ and bounded subset of Rn
with µ(∂D) = 0. Suppose f : D → Rm is bounded and continuous, then f is integrable on D.

Definition 4.11 (Indicator function). Let D ⊆ Rn be any subset. We define the indicator function XD : Rn →
R of D to be

XD(x)

{
1 , if x ∈ D
0 , if x 6∈ D

Definition 4.12 (Size of general sets). Let D ⊆ Rn be bounded. We say that D is sizeable iff XD is integrable
on D.
If D is sizeable, then the size of D is

µ(D) =

∫
D

1 =

∫
D
XD =

∫
I
XD

for any box I ⊇ D.

Theorem 4.4 (Characterization of sizeability). Let D 6= ∅ and bounded. Then D is sizeable iff ∂D has size
zero.

Proposition 4.2 (Properties of Riemann integrals). Let D ⊆ Rn be bounded.

16
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1. Let f, g : D → Rm be integrable on D. Let λ, µ ∈ R. Then λf + µg is integrable on D and∫
D

(λf + µg) = λ

∫
D
f + µ

∫
D
g

2. Let f : D → R (m = 1!) be integrable on D and non-negative. Then
∫
D f ≥ 0.

3. Let D be sizeable and f : D → R (m = 1!) be integrable on D and ∃M1,M2 ∈ R such that M1 ≤ f(x) ≤M2

∀x ∈ D. Then M1µ(D) ≤
∫
D f ≤M2µ(D).

4. Let D1, D2 ⊆ Rn be bounded with µ(D1 ∩D2) = 0.

Let f : D1 ∪D2 → Rm. Suppose f is integrable on D1 and D2. Then f is integrable on D1 ∪D2 and∫
D1∪D2

f =

∫
D1

f +

∫
D2

f

5. Let D ⊆ Rn be bounded. If f : D → Rm is integrable on D, then ‖f‖ : D → R where ‖f‖(x) = ‖f(x)‖ is
integrable on D and

‖
∫
D
f‖ ≤

∫
D
‖f‖

Theorem 4.5 (Mean value theorem for integration). Let D ⊆ Rn be compact, connected, and sizeable. Let
f : D → R be continuous on D. Then ∃ at least one point x0 ∈ D such that∫

D
f = f(x0)µ(D) (4.1)

Theorem 4.6 (Fubini’s theorem). Let I be a box in Rn. Let J be a box in Rm. Then I × J is a box in
Rn+m = Rn × Rm.
Let f : I × J → Rp. Suppose that f is integrable on I × J and for each x ∈ I the function where y 7→ f(x, y) i.e.
f(x, ·) : J → Rp is integrable on J , that is ∫

J
f(x, ·) = F (x) ∈ Rm

exists for all x ∈ I where F : I → Rm.
Then F is integrable on I and ∫

I
F =

∫
I×J

f

or
∫
I

(∫
J f(x, ·)

)
=
∫
I×J f .

Corollary 4.2 (1-D Fubini). Let f(x, y) : R1+1 → R. If
∫ b
a f(x, y) dx exists ∀y ∈ [c, d] and

∫
[a,b]×[c,d] f(x, y) exists,

then
∫
[a,b]×[c,d] f(x, y) =

∫ d
c

(∫ b
a f(x, y) dx

)
dy.

Corollary 4.3 (1-D Fubini with bounding functions). Let φ, ψ : [a, b]→ R continuous with φ(x) ≤ ψ(x) for all
x ∈ [a, b].
Let D = {(x, y) ∈ R2, x ∈ [a, b], φ(x) ≤ y ≤ ψ(x)}.
Let c ≤ d such that c ≤ φ(x) ≤ ψ(x) ≤ d for all x ∈ [a, b].
Let f : D → R be bounded such that the set D0 ∈ R2 of its points of discontinuity has size zero, and, {y ∈
[c, d], (x, y) ∈ D0} also has size zero as a subset of R1, for each x ∈ [a, b].
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Then f is integrable on D and ∫
D
f =

∫ b

a

(∫ ψ(x)

φ(x)
f(x, y) dy

)
dx

Example 4.1 (Finding volume using Fubini’s). Find the volume of the region D lying inside the “elliptic” cylinder
x2 + 4y2 = 4 above the x-y plane and below the plane z = 2 + x.
We want to find V ol(D) =

∫
D 1.

Note that the base is an ellipse since x2 + 4y2 = 4⇒
(
x
2

)2
+ y2 + 1. We then extend this ellipse along the z axis.

Note that the plane is a function of only x. It is also not parallel to the x-y plane so our cylinder has a slanted top.
From our ellipse we see that

− 2 ≤ x ≤ 2

−
√

1− x2

4
≤ y ≤

√
1− x2

4

And of course from our plane and the x-y plane we have

0 ≤ z ≤ 2 + x

Thus we have

V ol(D) =

∫ 2

−2

∫ √
1−x2

4

−
√

1−x2
4

∫ 2+x

0
1 dz dy dx

=

∫ 2

−2

∫ √
1−x2

4

−
√

1−x2
4

(2 + x) dy dx

=

∫ 2

−2
2(2 + x)

√
1− x2

4
dx

= 4

∫ 2

0
2

√
1− x2

4
dx

= 8

∫ 2

0

√
1− x2

4
dx

= 16

∫ 1

0

√
1− u2du x = 2u,dx = 2du 0 ≤ x ≤ 2, 0 ≤ u ≤ 1

= 4π

Example 4.2 (Re-ordering order of integration using Fubini’s). Suppose we wanted to find the integral∫ 1

0

∫ 1

z

∫ x

0
ex

3
dy dx dz =

∫ 1

0

∫ 1

z
ex

3
y

∣∣∣∣y=x
y=0

dx dz

=

∫ 1

0

∫ 1

z
xex

3
dx dz

Fubini’s theorem says we can change the order of integration. Note that we had 0 ≤ z ≤ 1 and z ≤ x ≤ 1 from our
integral bounds. Let us express x first then find the bounds of z in terms of x, i.e. 0 ≤ x ≤ 1 and 0 ≤ z ≤ x.

18
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Thus we have ∫ 1

0

∫ x

0
xex

3
dz dx =

∫ 1

0

(
xex

3
z

∣∣∣∣z=x
z=0

)
dx

=

∫ 1

0
x2ex

3
dx

=
1

3
ex

3

∣∣∣∣1
0

=
1

3
(e− 1)

Theorem 4.7 (Change of variables theorem). Let U ⊆ Rn be open and non-empty. Let K ⊆ U be compact,
non-empty and sizeable. Suppose ψ : U → Rn is in C1(U). Suppose ∃ a subset D ⊆ K with µ(D) = 0 such that

1. ψ
∣∣∣∣
K\D

is injective

2. det((Dψ)x) 6= 0 for all x ∈ K \D.

Then ψ(K) is sizeable and for any f : ψ(K)→ Rp which is continuous, then f is integrable on ψ(K) and∫
ψ(K)

f =

∫
K

(f ◦ ψ)|det(Dψ)|

where f ◦ ψ : K → Rp and |det(Dψ)| is the “scaling factor”.

Example 4.3 (Cylindrical coordinates). We have three axes r, θ, z for cylindrical coordinates where 0 ≤ r <∞ is
the distance from the centre on the x-y plane (r2 = x2 + y2), 0 ≤ θ ≤ 2π is the angle from the positive x-axis, and
−∞ < z <∞ is the distance along the z-axis.

Figure 4.1: Cylindrical coordinates in the xyz R3 space.

19



Winter 2018 MATH 247 Final Exam Guide 4 INTEGRATION

We thus have (x, y, z) = ψ(r, θ, z) = (r cos θ, r sin θ, z) and

|det(Dψ)| = r

Find the volume of the region above the paraboloid z = x2 + y2 = r2. and inside the sphere x2 + y2 + z2 = 12.
These two surfaces intersect when z = x2 + y2 ≥ 0 and x2 + y2 + z2 = 12. So

z2 + z − 12 = 0

(z − 3)(z + 4) = 0

z = 3 z ≥ 0

Intersect is the circle of radius
√

3 in the plane z = 3 (we only want to integrate r up to this maximum radius).
We want the volume above the paraboloid so when the z-axis is larger, thus we have the min bound for z ≥ x2+y2 = r2.
We want the volume inside the sphere so we want x2 + y2 + z2 ≤ 12 or r2 + z2 ≤ 12 ⇒ z ≤

√
12− r2 (note the

other inequality z ≥ −
√

12− r2 is already accounted for by our min bound above).
Thus the region D has bounds

0 ≤ θ ≤ 2π

0 ≤ r ≤
√

3

r2 ≤ z ≤
√

12− r2

So the volume of D is

V ol(D) =

∫ 2π

0

∫ √3
0

∫ √12−r2
r2

1r dz dr dθ

=

∫ 2π

0

∫ √3
0

r(
√

12− r2 − r2) dr dθ

= 2π

∫ √3
0

r(
√

12− r2)− r3 dr

= 2π

(
−1

3
(12− r2)

3
2 − r4

4

) ∣∣∣∣
√
3

0

= 2π

(
(12)

3
2

3
− 9− 9

4

)

Example 4.4 (Spherical coordinates). We have three axes ρ, θ, φ in spherical coordinates where 0 ≤ ρ <∞ is the
distance from the origin, 0 ≤ θ ≤ 2π is the distance from the postiive x-axis, and 0 ≤ φ ≤ π is the angle from the
positive z-axis.
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Figure 4.2: Spherical coordinates with ρ, θ, φ against the xyz axes.

If we look at z against ρ and r from spherical coordinates
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Figure 4.3: The z-axis with respect to ρ and r from cylindrical coordinates.

So (x, y, z) = ψ(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) and

|det(Dψ)| = ρ2 sinφ

Find
∫
D g where g(x, y, z) = 1−

√
x2 + y2 + z2 = 1− ρ and D is the region above the cone z = 1√

3

√
x2 + y2 and

inside the sphere x2 + y2 + z2 = 1.
Note that z = 1√

3
r so cosφ0 = 1

2 thus φ0 = π
3 (the angle from the z-axis of the cone).

Thus we have for the bounds of D

0 ≤ θ ≤ 2π

0 ≤ φ ≤ π

3
0 ≤ ρ ≤ 1

22



Winter 2018 MATH 247 Final Exam Guide 4 INTEGRATION

Thus we have ∫
D
g =

∫ 2π

0

∫ π
3

0

∫ 1

0
(1− ρ)ρ2 sinφ dρ dφ dθ

= 2π

∫ π
3

0

∫ 1

0
(ρ2 − ρ3) sinφ dρ dφ

= 2

(
1

3
− 1

4

)∫ π
3

0
sinφ dφ

=
π

6
(− cosφ)

∣∣∣∣π3
0

=
π

6

(
1− 1

2

)
=

π

12
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