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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 January 3, 2018

1.1 Euclidean space Rn

Most postulates and theorems apply to any n-dimensional real vector space with a positive-definite inner product.

Rn = {x = (x1, x2, . . . , xn);xj ∈ R, j = 1, . . . , n}

Some properties of vectors in Rn where x = (x1, . . . , xn), y = (y1, . . . , yn), and t ∈ R:

x+ y = (x1 + y1, . . . , xn + yn)

tx = (tx1, . . . , txn)

x+ y = y + x

(x+ y) + z = x+ (y + z)

s(tx) = (st)x

t~0 = ~0

~0x = ~0

(t+ s)x = tx+ sx

t(x+ y) = tx+ ty

1.2 Euclidean inner product

An important additional structure on Rn is the natural Euclidean inner product (aka the dot product).

· : Rn × Rn → R

which can be written as x · y ∈ R.
Dot products are billinear, symmetric, and positive-definite. Bilinearity means

(x+ y) · z = x · z + y · z
x · (y + z) = x · y + x · z

(tx) · y = x · (ty) = t(x · y)

symmetric denotes
x · y = y · x

and positive-definiteness means x · x ≥ 0 with equality ⇐⇒ x = ~0.

1
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Definition 1.1. The dot product is defined for x = (x1, . . . , xn) and y = (y1, . . . , yn)

x · y =
n∑
k=1

xkyk

Definition 1.2. The norm ‖x‖ of x ∈ Rn (induced by some inner product 〈x, x〉 = x · x) is defined as

‖x‖2 = x · x
‖x‖ =

√
x · x

1.3 Triangle inequality

Proposition 1.1. Triangle inequality states

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ Rn

To prove the above, we need the Cauchy-Schwarz Inequality.

Theorem 1.1. The Cauchy-Schwarz inequality states that

|x · y| ≤ ‖x‖‖y‖

with equality iff x = ty or y = tx for some t ∈ R.

Proof. For the equality case, WLOG if x = ty

x · y = ty · y = t‖y‖2

= |t|‖y‖2

= ‖x‖‖y‖

Let t ∈ R. Note for all t

0 ≤ ‖x− ty‖2 = (x− ty) · (x− ty)

= x · x− ty · x− tx · y + t2y · y
= ‖x‖2 + t2‖y‖2 − 2t(x · y)

Thus we have

at2 + bt+ c ≥ 0 ∀t ∈ R

where a = ‖y‖2, b = −2x · y and c = ‖x‖2. Note there can exist at most one root (positive parabola where all values
are non-negative). For at2 + bt + c = 0 to have at most one real root (such that t exists), we need b2 − 4ac ≤ 0
(from the quadratic formula).

4(x · y)2 ≤ 4‖x‖2‖y‖2

|x · y| ≤ ‖x‖‖y‖

If we have equality ∃t0 such that at20 + bt0 + c = 0 or ‖x− t0y‖2 = 0 so x = t0y.

2
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Corollary 1.1. The triangle inequality

‖x+ y‖2 = (x+ y) · (x+ y)

= ‖x‖2 + 2x · y + ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

where the last line follows from the Cauchy-Schwarz inequality.

Definition 1.3. The distance between two points x, y ∈ Rn is defined to be

d(x, y) = ‖x− y‖

which satisfies the properties

d(x, y) = d(y, x)

d(x, x) = 0

d(x, y) ≥ 0 with equality iff x = y

so we can restate the triangle inequality as d(x, y) ≤ d(x, z) + d(z, x) ∀x, y, z ∈ Rn.

1.4 Norms

There exists different "natural" norms on Rn

Definition 1.4. A norm ‖·‖ on Rn is a map

‖·‖ : Rn → R≥0

such that

1. ‖x‖ = 0 ⇐⇒ x = ~0

2. ‖tx‖ = |t|‖x‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

All inner products determine a norm but not all norms are from inner products. We saw that the dot product
determines a norm called the Euclidean norm.

l1 norm ‖x‖1 =
∑n

k=1|xk|

lp norm ‖x‖p = (
∑n

k=1|xk|p)
1
p

sup norm (aka l∞ norm) ‖x‖∞ = max{|x1|, . . . , |xn|}

One can see that l∞ norm is a "limit" of lp norms as p→∞.
Note the l2 norm is the Euclidean norm.

Why are norms important? A norm determines a distance. For example

d(x, y) = ‖x− y‖

(all norms determine a distance but not all distances are from norms).
Distance is important to define a limit which is crucial for differentiability/integrability.

3
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1.5 Angle between two vectors

A corollary to C-S for x, y 6= ~0

−1 ≤ x · y
‖x‖‖y‖

≤ 1

Define the angle θ ∈ [0, π] between x and y to be

cos θ =
x · y
‖x‖‖y‖

so we have another definition of the dot product

x · y = ‖x‖‖y‖ cos θ

We say x, y are orthogonal if θ = π
2 ⇐⇒ x · y = 0.

Why is this the correct definition?

‖y − x‖2 = (y − x) · (y − x)

= ‖x‖2 + ‖y‖2 − 2x · y
= ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ

This aligns with the Law of Cosines c2 = a2 + b2 − 2ab cos θ.

2 January 5, 2018

2.1 Linear maps

Definition 2.1. A map T : Rn → Rm is linear if T takes linear combinations to linear combinations i.e.

T (
N∑
k=1

tkvk) =
N∑
k=1

tkT (vk) ti ∈ R vj ∈ Rn

We will see linear maps are closely related to differentiability.
Some facts about linear maps: let e1, . . . , en be the standard basis.

x ∈ Rn = (x1, . . . , xn) =

n∑
k=1

xkek

Let f1, . . . , fm be the standard basis of Rm where fj = (0, . . . , 1, . . . , 0) ∈ Rm.

y ∈ Rm = (y1, . . . , yn) =

m∑
k=1

ykfk

4
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Let T : Rn → Rm be linear and let

y =
m∑
l=1

ylfl = T (x) = T (
n∑
k=1

xkek)

=

n∑
k=1

xkT (ek)

=

n∑
k=1

xk(

m∑
l=1

Alkfl)

=

n∑
k=1

(

m∑
l=1

Alkxk)fl

By uniqueness of the expansion of a vector in terms of a basis (fjs) we conclude that

yl =
n∑
k=1

Alkxk l = 1, . . . ,m

or in matrix form  y1
...
ym

 =

A11 . . . A1n
...

...
Am1 . . . Amn


x1

...
xn


We’ve shown that any linear map T : Rn → Rm is necessarily matrix multiplication

y = T (x) = A · x

for some unique m× n matrix A (with respect to some bases in Rn and Rm).
The rule of matrix multiplication is automatic from the composition of linear maps. Let

T : Rn → Rm

S : Rm → Rp

y = T (x) = A · x m× n
z = S(y) = B · y p×m

Therefore S ◦ T : Rn → Rp is linear.

(S ◦ T )(
∑

tkvk) = S(T (
∑
k

tkvk))

= S(
∑
k

xkT (vk))

=
∑
k

xkS(T (vk))

=
∑
k

tk(S ◦ T )(vk)

5
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So we have

zl =
m∑
j=1

Bljyj =
m∑
j=1

Blj(
n∑
i=1

Ajixi)

=

n∑
i=1

(

m∑
j=1

BljAji)xi

=

n∑
i=1

Clixi

where
z = (S ◦ T )(x) = C · x p× n

Recall the space L(Rn,Rm) of linear maps from Rn to Rm is itself a finite dimensional real vector space of dimension
nm (isomorphic to Rnm).

T ∈ L(Rn,Rm) ⇐⇒ A ∈Mm×n(R)

where Mm×n(R) is the space of real m× n matrices. There is a unique 1-1 correspondence between T and A (as
shown before).

2.2 Operator norm

Note one can define norm on matrices. The natural Euclidean norm for matrix A can be defined as

‖A‖2 =

√ ∑
i=1,...,m;j=1,...,n

(Aij)2

Definition 2.2. The operator norm is defined for a T : Rn → Rm linear map as

‖T‖op = inf{C > 0, ‖T (x)‖ ≤ C‖x‖ ∀x ∈ Rn}

We need to show this norm is

1. Well-defined

2. ‖·‖op is a norm

1. Show well-defined
T (x) = A · x A m× nA11 . . . A1n

...
...

Am1 . . . Amn


x1

...
xn

 =

A1 · x
...

Am · x

 = T (x)

So the norm is

‖T (x)‖2 = (A1 · x)2 + . . .+ (Am · x)2

≤ ‖A1‖2‖x‖2 + . . .+ ‖Am‖2‖x‖2 C-S

= (‖A1‖2 + . . .+ ‖Am‖2)‖x‖2

6
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Case 1 Assume ‖A1‖2 + . . .+ ‖Am‖2 = 0.

‖A1‖2 + . . .+ ‖Am‖2 = 0 ⇐⇒ A = 0m×n

⇐⇒ T = 0 ∈ L(Rn,Rm)

Then T (x) = 0 ∀x so ‖T (x)‖ ≤ C‖x‖ holds ∀C > 0, thus the infimum of positive real numbers (0)
implies ‖T‖op = 0.

Case 2 Assume ‖A1‖2 + . . .+ ‖Am‖2 > 0.
{C > 0, ‖T (x)‖ ≤ C‖x‖ ∀x ∈ Rn} is non-empty because

√
‖A1‖2 + . . .+ ‖Am‖2 is in there. By the

completeness of R, ‖T‖op exists and is ≥ 0.

2. We’ve shown ‖T‖op exists and is ≥ 0 for all T ∈ L(Rn,Rm). It remains to shown ‖T‖op is a norm:

(a) ‖T‖op = 0 only for the zero map

(b) ‖λT‖op = |λ|‖T‖op ∀λ ∈ R
(c) ‖T + S‖op ≤ ‖T‖op + ‖S‖op

To see this, we note that since

‖T‖op = inf{C > 0, ‖T (x)‖ ≤ C‖x‖ ∀x ∈ Rn}

∃ a decreasing sequence ck ≥ 0 such that ‖T (x)‖ ≤ ck‖x‖ ∀x ∈ Rn and limk→∞ ck = ‖T‖op.
Take limit as k →∞ of the predicate in ‖T‖op.

‖T (x)‖ ≤ ( lim
k→∞

ck)‖x‖

‖T (x)‖ ≤ ‖T‖op‖x‖

So we have

‖T‖op = 0⇒ ‖T (x)‖ ≤ 0 ∀x
⇒ T (x) = 0 ∀x
⇒ T = 0 ∈ L(Rn,Rm)

which proves (a).

‖λT‖op = |λ|‖T‖op
follows from

‖(λT )(x)‖ = ‖λ(T (x))‖
= |λ|‖T (x)‖ ∀x

If λ = 0, λT = 0⇒ ‖λT‖op = 0 = |λ|‖T‖op.

7
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If λ 6= 0

‖λT‖op = inf{C > 0, ‖(λT )(x)‖ ≤ C‖x‖}
= inf{C > 0, |λ|‖T (x)‖ ≤ C‖x‖}

= inf{C > 0, ‖T (x)‖ ≤ C

|λ|
‖x‖}

= |λ| inf{C̃ > 0, ‖T (x)‖ ≤ C̃‖x‖} C̃ =
C

λ
= |λ|‖T‖op

which proves (b). (c) is similar.

3 January 8, 2018

3.1 Topology of Rn

Topology is the study of closeness in a space.

3.2 Open and closed balls

Definition 3.1. Let x ∈ Rn and r > 0. The open ball at radius r centred at x is denoted

Br(x) = {y ∈ Rn | ‖x− y‖ < r}

It consists of all points in Rn whose distance from x is strictly less than r.

Figure 3.1: Open balls in R, R2, and R3.

In R, Br(x) = (x− r, x+ r). In R3, Br(x) is the interior of a sphere of radius r centred at x.

Definition 3.2. Let x ∈ Rn, r > 0. The closed ball of radius r > 0 centred at x is denoted

Br(x) = {y ∈ Rn | ‖x− y‖ ≤ r}

Remark 3.1. The notation will be explained in the following class/section. Note that

Br(x) = Br(x) ∪ {points exactly at distance r}

For n = 1, Br(x) = [x− r, x+ r].

3.3 Open sets

Definition 3.3. A subset U ⊆ Rn is called an open set (or open) iff ∀x ∈ U , ∃r > 0 (r depends on x) such that
Br(x) ⊆ U .

8
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(Informally: a subset U is open if for every x ∈ U , all points sufficiently close to x are also in U).

Figure 3.2: One can form an open ball for every point x in an open set U .

Example 3.1. Set that is not open

• [0, 1] ⊆ R. Note: 6 ∃r > 0 for x = 1 such that Br(x) ⊆ [0, 1].

Sets that are open

• Rn since x+ ε ∈ Rn by definition.

• ∅ (vacuous: satisfied trivially ∅ has no points).

Proposition 3.1. An open ball is an open set.

Figure 3.3: An open ball is an open set (see proof below).

Proof. Let U = Br(x) and y ∈ U = Br(x). We need to find some ε > 0 such that Bε(y) ⊆ U .
Let d = ‖x− y‖ < r since y ∈ U = Br(x).
Let ε = r − d > 0.
Suppose z ∈ Bε(y) thus ‖y − z‖ < ε.
We thus have

‖z − x‖
4
≤ ‖z − y‖+ ‖y − x‖ < ε+ d = r

So Bε(y) ⊆ U hence U is open.

We can construct more from open sets.

9



Winter 2018 MATH 247 Course Notes 3 JANUARY 8, 2018

3.4 Properties of open sets

Lemma 3.1. 1. Let Uα ⊆ Rn be open ∀α ∈ A (countably or uncountably many), then⋃
α∈A

Uα

is open.

2. Let U1, . . . , Uk be open (must be finite number of sets). Then

k⋂
j=1

Uj

is open.
Informally, arbitrary unions of open sets are open. Finite intersections of open sets are open.

Proof.

1. We want to show
⋃
α∈A Uα is open.

Let x ∈
⋃
α∈A Uα so ∃ some α0 ∈ A such that x ∈ Uα0 (holds since union of sets).

But Uα0 is open so ∃r > 0 such that Br(x) ⊆ Uα0 ⊆
⋃
α∈A Uα.

2. Show x ∈
⋂k
j=1 Uj so x ∈ Uj for all j = 1, . . . , k. Each Uj is open so ∀j,∃εj > 0 such that Bεj (x) ⊆ Uj .

Let ε = min{ε1, . . . , εk} > 0. ∀j we have Bε(x) ⊆ Bεj (x) ⊆ Uj hence Bε(x) ⊆
⋂k
j=1 Uj .

Remark 3.2. Arbitrary (e.g. nonfinite) intersections of open sets need not be open (the min. of infinite
numbers is not well defined. An infimum of positive numbers need not be > 0 i.e. it could be 0).

Even intersection of countably infinite sets may not be open. Suppose Uk = (0, 1 + 1
k ) ⊆ R ∀k ∈ N. Note

that
⋂∞
k=1 Uk = (0, 1] is not open.

3.5 Closed sets

Definition 3.4. A subset F ⊆ Rn is called closed if F c = R \ F is open (note: this definition is based on open’s
definition).

Proposition 3.2. A closed ball Br(x) = {y ∈ Rn | ‖y − x‖ ≤ r} is a closed set.

10



Winter 2018 MATH 247 Course Notes 3 JANUARY 8, 2018

Figure 3.4: A closed ball is a closed set (see proof below).

Proof. Let F = Br(x) and
F c = (Br(x))c = {y ∈ Rn | ‖y − x‖ > r}

Let y ∈ Br(x)
c
: need to find ε > 0 such that Bε(y) ⊆ F c.

Let d = ‖x− y‖ > r and let ε = d− r > 0.
If z ∈ Bε(y), then

‖x− y‖
4
≤ ‖x− z‖+ ‖z − y‖

d ≤ ‖x− z‖+ ‖z − y‖
‖x− z‖ ≥ d− ‖z − y‖

> d− ε = r

Hence z ∈ F c so Bε(y) ⊆ F c, thus F c is open and by definition F is closed.

3.6 Properties of closed sets

Lemma 3.2. Note: this lemma is the inverse of the equivalent for open sets.

1. If F1, . . . , Fk is closed, then
⋃k
j=1 Fj is closed.

2. If Fα is closed ∀α ∈ A, then
⋂
α∈A Fα is closed.

Finite unions of closed sets are closed. Arbitrary intersections of closed sets are closed.

Proof. By De Morgan’s laws

(
k⋃
j=1

Fj)
c =

k⋂
j=1

(Fj)
c

(
⋂
α∈A

Fα)c =
⋃
α∈A

(Fα)c

11
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3.7 Neither open nor closed

A subset V of Rn need not be either open or closed. It can be open, closed, neither or both!

Example 3.2. Examples of non-exclusive open or closed sets are

• (0, 1] ⊆ R - neither

• Rn,∅ are open and closed

3.8 Interior

Sometimes a set is neither open nor closed, but there are always natural open (interior) and closed (closure)
sets which can be associated to any subset of Rn.

Definition 3.5. Let A ⊆ Rn (could be ∅).

Ao = int(A) interior of A

=
⋃
V⊆A

V open in Rn

V union of all open subsets of Rn that are contained in A

Remark 3.3. 1. Ao is open (arbitrary union of open sets) and A0 ⊆ A

2. if V is any open subset of Rn that is contained in A, then V ⊆ Ao (Ao is the largest open subset of Rn that is
contained in A)

3. A is open iff Ao = A

Proof. Forwards:

A is open and A ⊆ A thus A must be a V in the union, but since all V ⊆ Ao ⊆ A (where A is a V ) then
Ao = A.

Backwards:

Ao = A. Since Ao is open, A is open.

3.9 Closure

Definition 3.6.

A = cl(A) closure of A

=
⋂
F⊇A

F closed in Rn

F intersection of all closed subsets of Rn that contains A

Remark 3.4. 1. A is closed (arbitrary intersection of closed sets) and A ⊇ A

2. if F is any closed subset of Rn that contains A, then F ⊇ A (A is the smallest closed set of Rn containing A)

3. A is closed iff A = A

12
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4.1 Closure of open ball is closed ball

Proposition 4.1. The closure of the open ball Bε(x) is the closed ball Bε(x) (hence the notation).

Proof. Remember
Bε(x) = {y ∈ Rn | ‖y − x‖ ≤ ε}

Let A = closure of Bε(x).
Let F = {y ∈ Rn | ‖x− y‖ ≤ ε}.
We want to show A = F .
We know F is closed and F ⊃ Bε(x), so F contains A: the closure of Bε(x) (any closed set containing another set is
in the intersection of the closure) or

F ⊃ A ⊃ Bε(x)

Suppose F 6= A, then ∃y ∈ F with y 6∈ A⇒ y 6∈ Bε(x) so

‖x− y‖ = ε

(it’s sandwiched between the closed ball (≤ ε) and the open ball (< ε), so it must hold with equality with ε by the
Trichotomy property).

Figure 4.1: The closure of an open ball is the corresponding closed ball.

A is closed and y 6∈ A so Ac is open and y ∈ Ac. So ∃δ > 0 such that Bδ(y) ⊆ Ac.
Let t > 0 with t < min{δ, ε}.
Let

z = y + t
(x− y)

‖x− y‖
(add t unit vectors from y to x). Note that

‖z − y‖ = t < δ

so z ∈ Bδ(y) ⊆ Ac.

13
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Also

x− z = x− y − t (x− y)

‖x− y‖

= (‖x− y‖ − t) (x− y)

‖x− y‖

where the left term is the norm of the vector and the right term is the unit vector.
Thus

‖x− z‖ = |‖x− y‖ − t| = |ε− t| = ε− t < ε

So z ∈ Bε(x) ⊆ A, but we assumed z ∈ Ac which is a contradiction.
So we must have F = A.

Remark 4.1. There is a much simpler proof of this using sequences and limit points.

4.2 Boundary

Definition 4.1. Let A ⊆ Rn. We define the boundary of A denoted ∂A = bd(A) to be

∂A = bd(A) = {x ∈ Rn | Bε(x) ∩A 6= ∅, Bε(x) ∩Ac 6= ∅ ∀ε > 0}

That is, x ∈ ∂A iff every open ball centred at x contains a point in A and a point in Ac.
Clearly

∂Bε(x) = {y ∈ Rn | ‖y − x‖ = ε}
= ∂(Bε(x))

4.3 Characterization of boundary

Proposition 4.2. Let A ⊆ Rn, then

∂A = A \Ao

= cl(A) \ int(A)

Proof. The following two claims and proofs revolve around complements of sets and how if set A intersect a set B
is the empty set, then A is a subset of Bc.

Claim 1
x ∈ A ⇐⇒ Bε(x) ∩A 6= ∅ ∀ε > 0

Proof. Forwards:

Suppose x ∈ A but ∃ε0 > 0 Bε(x) ∩A = ∅.

So Bε(x) ⊆ Ac ⇒ (Bε(x))c ⊃ A.
Since (Bε(x))c is closed, then (Bε(x))c ⊃ A (by remark (2) after closure definition).

So A ∩Bε(x) = ∅, but x ∈ Bε(x)⇒ x 6∈ A, which is a contradiction.

Backwards:

14
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We prove the contrapositive
x 6∈ A⇒ Bε(x) ∩A = ∅ ∃ε > 0

Assume x 6∈ A ⇒ x ∈ (A)c which is open, so ∃ε0 > 0 such that Bε0(x) ⊆ (A)c. Therefore Bε0(x) ∩ A = ∅
(where A ⊃ A), which proves our claim).

Claim 2
x 6∈ Ao ⇐⇒ Bε(x) ∩Ac 6= ∅ ∀ε > 0

Proof. Forwards:

Suppose x 6∈ Ao. Assume (for contradiction) ∃ε0 > 0 such that

Bε0(x) ∩Ac = ∅⇒ Bε0(x) ⊆ A

(nothing in Ac, thus all in A).

Ergo x ∈ (Ao)c and Bε0(x) ⊆ Ao (since Bε0(x) is an open set contained in A - remark (2) after interior
definition).

So Bε0(x) ∩ (Ao)c = ∅ but x ∈ Bε0(x) ∩ (Ao)c which is a contradiction.

Backwards:

(Contrapositive): suppose x ∈ Ao. Ao is open so ∃ε > 0 such that

Bε0(x) ⊆ Ao ⊆ A

so Bε0(x) ∩Ac = ∅ for some ε0 > 0.

Putting the claims together:

x ∈ A ⇐⇒ Bε(x) ∩A 6= ∅ ∀ε > 0 (1)

x ∈ (Ao)c ⇐⇒ Bε(x) ∩Ac 6= ∅ ∀ε > 0 (2)

x ∈ ∂A ⇐⇒ (1) + (2)

⇐⇒ x ∈ A ∩ (Ao)c = A \Ao

4.4 Sequential characterization of limits

Definition 4.2. Let (xk) be a sequence of points in Rn, k ∈ N. We say (xk) converges to a point x ∈ Rn iff for
any ε > 0, ∃N ∈ N (N depends on ε in general)

k ≥ N ⇒ ‖xk − x‖ < ε

(i.e. for any ε > 0, all the elements of sequence xk after some k = N are within ε of x).

15
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Figure 4.2: All points after k = N for a converging sequence is within ε.

If (xk) converges to x, we denote
lim
k→∞

xk = x

where x is the limit of xk.

4.5 Uniqueness of limits

Lemma 4.1. Suppose limk→∞ xk = x and limk→∞ xk = y. Then x = y (i.e. a sequence may not converge, but if it
does the limit is unique).

Figure 4.3: Sketch of proof with x 6= y (see below).

Proof. Suppose x 6= y, so ‖x− y‖ = ε > 0.
Since (xk) converges to x, ∃N1 ∈ N such that k ≥ N1 and

‖xk − x‖ <
ε

2

Similarly for y ∃k ≥ N2.
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Suppose k ≥ max{N1, N2}. Then

‖x− y‖
4
≤ ‖x− xk‖+ ‖xk − y‖

<
ε

2
+
ε

2
= ε

So x = y by contradiction.

4.6 Neighbourhood

Definition 4.3. Let x ∈ Rn. A subset U ∈ Rn is called a neighbourhood (n’h’d) of x if ∃ε0 > 0 such that
Bε0(x) ⊆ U .

Figure 4.4: U is a neighbourhood of x since there exists an open set B of x contained in U .

(Equivalently, U is a n’h’d of x ⇐⇒ U contains an open set containing x.)

Definition 4.4. An open n’h’d of x is any open set containing x. (A set is an open n’h’d of x if it contains x and
all points sufficiently close to x).

Lemma 4.2. Let (xk) be a sequence in Rn. Suppose limk→∞ xk exists and equal x ∈ Rn. Then any n’h’d of x
contains all xk’s for k sufficiently large, i.e. if U is a n’h’d of x, ∃N ∈ N (N depends on U) such that

k ≥ N ⇒ xk ∈ U

Proof. U is a n’h’d of x so ∃ε0 > 0 such that Bε(x) ⊆ U .
Since limk→∞ xk = x, ∃N ∈ N such that k ≥ N ⇒ ‖xk − x‖ < ε0 so xk ∈ Bε(x) ⊆ U ∀k ≥ N .

5 January 12, 2018

5.1 Relationship between convergent sequences and open/closed sets

Recall: x ∈ A ⇐⇒ Bε(x) ∩A 6= ∅ ∀ε > 0.

Proposition 5.1. Suppose x ∈ A. Take 1
k > 0. From above: ∃xk ∈ A such that ‖xk−x‖ < 1

k , then limk→∞ xk = x.

Proof. Let ε > 0 so ∃N ∈ N such that 1
N < ε (Archimedean Principle). ∀k ≥ N , 1

k ≤
1
N < ε so ‖xk−x‖ < 1

k < ε.

To summarize, if x ∈ A, then ∃ a sequence (xk) such that limk→∞ xk = x and xk ∈ A ∀ ∈ N.

17
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What about the converse?

Proposition 5.2. Suppose xk ∈ A, limk→∞ xk = x and xk ∈ A ∀k ∈ N. Then x ∈ A.

Proof. If not, x ∈ (A)c so ∃ε > 0 such that Bε(x) ⊆ (A)c. But ∃N ∈ N such that

k ≥ N ⇒ xk ∈ Bε(x)

and so xk ∈ (A)c. But from our hypothesis we have xk ∈ A ⊆ A which is a contradiction. Thus x ∈ A.

(i.e. whenever (xk) is a convergent sequence of points all of whose elements are in A, then the limit is in A).
Special case: If A is closed (A = A) then if (xk)→ x and xk ∈ A ∀k then x ∈ A; this is not true for open sets A.

5.2 Bounded and Cauchy sequences

Definition 5.1. A sequence (xk) in Rn is called bounded if ∃M > 0 such that

‖xk‖ ≤M ∀k ∈ N

(that is: all the xk’s lie in some closed ball BM (x) centred at 0).

Definition 5.2. A sequence (xk) is called Cauchy if for any ε > 0 there exists an N ∈ N such that

k, l ≥ N ⇒ ‖xk − xl‖ < ε

(eventually all points in the sequence are close to each other).

5.3 Convergent ⇐⇒ Cauchy

Proposition 5.3. Let (xk) be a convergent sequence. Then (xk) is Cauchy.

Proof. Let x = limk→∞ xk. Let ε > 0, then ∃N such that

‖xk − x‖ <
ε

2

If k, l ≥ N then

‖xk − xl‖
4
≤ ‖xk − x‖+ ‖x− xl‖ <

ε

2
+
ε

2
= ε

Recall from MATH 147: In R every Cauchy sequence converges (equivalent to completeness of R or the real
line). We show Cauchy converges in Rn in assignment 2 by showing that each j-th component x(j) converges then
by the completeness of R this follows for Rn.

5.4 Convergence implies bounded

Lemma 5.1. Every convergent sequence is bounded.

Proof. Let x = limk→∞ xk. Let M0 = ‖x‖+ ε for ε > 0. Then ∃N such that

k ≥ N ⇒ ‖xk − x‖ < ε

18
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Figure 5.1: Convergent sequences can be bounded by the limit and ε and finite points in the sequence.

Note that

k ≥ N ⇒ ‖xk‖
4
≤ ‖xk − x‖+ ‖x‖ < ε+ ‖x‖ = M0

Thus we let M = max{‖x1‖, . . . , ‖xN−1‖,M0} then ‖xk‖ ≤M ∀k ∈ N.

Note: not every bounded sequence is Cauchy. Consider xk = (−1)k+1 is R, which is bounded but not convergent.
Can we find a weaker statement that’s true i.e. given a bounded sequence, can we somehow obtain from it a
convergent sequence?

5.5 Subsequences

Definition 5.3. Let (xk) be a sequence in Rn. Let 1 ≤ k1 < k2 < . . . < ke < ke+1 < . . . be a sequence of
1, 2, 3, 4, . . .. Then the corresponding sequence (yl) (or (xkl)) in Rn given by yl = xkl is called a subsequence of
(xk).

Example 5.1. The subsequence given by kl = 2l − 1 (odd numbers) is

(x2l−1) = x1, x3, x5, . . .

Proposition 5.4. Suppose (xk)→ x. Then any subsequence (xkl) of (xk) also converges to the same limit x.

Proof. Let ε > 0. ∃N ∈ N such that l ≥ N then ‖xl − x‖ < ε, but kl ≥ l (since each ke must be strictly larger
> ke−1), so ‖xkl − x‖ < ε ∀l ≥ N hence limkl→∞ xkl = x.

Note: A sequence (xk) that does not converge can have

1. Subsequences that don’t converge (e.g. kl = l so xkl = xl).

2. Distinct subsequences with different limits.

For example, xk = (−1)k+1 which is 1,−1, 1,−1, . . ., we can have two subsequences

x2l−1 = (−1)2l = 1, 1, 1, . . . (x2l−1)→ 1

x2l = (−1)2l−1 = −1,−1,−1, . . . (x2l)→ −1

5.6 Bolzano-Weierstrass (B-W) Theorem

Theorem 5.1. In Rn, every bounded sequence has a convergent subsequence.

Remark 5.1. This convergent subsequence is not unique. We’ll see in the proof that we make many arbitrary
choices.
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Proof. By induction on n.
Case n = 1: Let (xk) be a sequence in R that is bounded. So ∃M > 0 such that |xk| ≤M ∀k ∈ N ⇐⇒ xk ∈
[−M,M ].

Figure 5.2: I1 is the interval of our bounded sequence in R.

Define
I1 = [−M,M ] = [−M, 0] ∪ [0,M ]

At least one (maybe both) of [−M, 0] and [0,M ] contains xk for infinite many values of k (the xk’s could initially be
all in one side then infinitely many in the other, or the xk’s could jump back and forth so both would have infinitely
many).
Let I2 denote the one with infinitely many. That is xk ∈ I2 for infinitely many xk’s. Note that

I2 ⊆ I1

I2 = [a, b] = [a,
a+ b

2
] ∪ [

a+ b

2
, b]

Again, at least one of these halves contains infinitely many xk’s. Let I3 be that one.
Keep subdividing in this way and choosing a half which contains xk for infinitely many k’s. We have

length I1 = 2M

length I2 = M

length I3 =
M

2
...
...

length Il =
2M

2l−1

moreover,
I1 ⊇ I2 ⊇ . . . ⊇ Ie ⊇ Ie+1 ⊇ . . .

and each Il contains xk for infinitely many values of k.
We can thus choose some xk1 ∈ I1, xk2 ∈ I2, . . . , xkl ∈ Il ∀l ∈ N where 1 ≤ k1 < k2 < . . . < ke < ke+1 < . . .. This
is possible since there are infinitely many xk’s in each interval.
We claim:

1.
∞⋂
l=1

Il 6= ∅

and in fact contains exactly one point x.

Note that
Il = [al, bl] for some al < bl
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and also
Il ⊃ Il+1 ⇒ a1 ≤ al ≤ al+1 < bl+1 ≤ bl ≤ b1 ∀l

(i.e. either endpoints move inwards for each successive interval).

So (al) is an increasing sequence bounded by b1, therefore ∃a such that liml→∞ al = a and al ≤ a ≤ b1 ∀l.
Similarly (bl) is a decreasing sequence bounded by a1, so ∃b such that liml→∞ bl = b and a1 ≤ b ≤ bl ∀l.
We have al < bl ∀l. Taking the limit we have a ≤ b (limit can only be guaranteed with potential for equality).

a1 ≤ al ≤ al+1 ≤ a ≤ b ≤ bl+1 ≤ bl ≤ b1

Note that

0 ≤ b− a ≤ bl − al = length(Il)

=
2M

2l−1
→ 0 as l→∞

hence a = b (call this x).

By construction x = a = b ∈ [al, bl] = Il ∀l so

x ∈
∞⋂
l=1

Il

so there exists an element. Suppose y ∈
⋂∞
l=1 Ii then x, y ∈ Il ∀l and

|x− y| ≤ 2M

2l−1
∀l⇒ x = y (as l→∞)

2.
lim
l→∞

xkl = x

Assume xkl ∈ Il and x ∈ Il ∀l (from claim 1). So

|xkl − x| ≤
2M

2l−1
→ 0 as l→∞

thus liml→∞ xkl = x.

The above two claims prove the theorem for n = 1.
Now suppose the thoerem is true for n, we show it is true for n+ 1.
Let (xk) be a bounded sequence in Rn+1, so ∃M such that ‖xk‖ ≤M ∀k.
We write xk = (x1

k, x
2
k, . . . , x

n+1
k ) where xjk is the j-th component of vector xk ∈ Rn+1.

So
‖xk‖2 = |x1

k|2 + |x2
k|2 + . . .+ |xnk |2 + |xn+1

k |2 ≤M2 (5.1)

Define a sequence (yk) in Rn as the first n components of xk

yk = (x1
k, . . . , x

n
k)

therefore ‖yk‖ ≤M ∀k by equation 5.1.
By the inductive hypothesis, ∃ a subsequence (ykl) of (yk) that converges to some point x = (x1, . . . , xn) ∈ Rn.
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Consider the sequence (xn+1
kl

) in R1 (TODO(richardwu): why can’t we just use (xn+1
k ) here instead?). By

equation 5.1, |xn+1
kl
| ≤ M ∀l, so (xn+1

kl
) is a bounded sequence in R. By B-W for n = 1, ∃ subsequence (xn+1

klj
)

that converges to some xn+1 ∈ R.
Consider the subsequence (yklj ) of (ykl), which also converges to (x1, . . . , xn) ∈ Rn.
So xaklj → xa as j →∞ for a = 1, . . . , n and a = n+ 1.
Thus the sequence xklj → x as j →∞.

Remark 5.2. We used the IH/B-W on the first n components and then the n+ 1 component to find corresponding
convergent subsequences. In order to “meld” them together, we needed to take the subsequence of either subsequence
(to have a 2-level subsequence) to ensure it converges for the same klj ’s as the other 1-level subsequence.
TODO(richardwu): see the above TODO for why we don’t just take kl’s instead of klj ’s.

6 Janaury 15, 2017

6.1 Connectedness

Definition 6.1. Let E be a non-empty subset of Rn.
We say E is disconnected if there exists a separation for E. A separation of E is a pair U, V open sets in Rn
such that

1. E ∩ U 6= ∅

2. E ∩ V 6= ∅

3. E ∩ U ∩ V = ∅

4. E ⊆ U ∪ V

Figure 6.1: E is disconnected since there are open sets U, V that form a separation.

Note that U ∩ V need not be empty, but it must be disjoint from E.
(intuitively a set is disconnected if it is more than one piece).

Definition 6.2. E is connected if 6 ∃ any separation of E.

Remark 6.1. Connectedness and disconnectedness do not apply to ∅.
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6.2 Is Rn connected?

(Yes it is).
Suppose ∃ a separation of Rn of open sets U, V such that

1.

∅ 6= U ∩ Rn = U

∅ 6= V ∩ Rn = V

which implies U, V both non-empty. Furthermore

2.
U ∩ V ∩ Rn = U ∩ V = ∅

which implies U, V are disjoint.

3.
Rn ⊆ U ∪ V ⊆ Rn

so Rn = U ∪ V . Since U ∩ V = ∅, then U c = V and V c = U .

Figure 6.2: Sketch of what disconnected Rn would look like.

This would mean U, V are both non-empty subsets that are both open and closed and U, V 6= Rn (since they
are non-empty disjoint).
In other words, if ∃U such that U 6= 0, U 6= Rn and U is both open and closed, then U, V = U c gives a separation
of Rn.
We’ll see (next class) that 6 ∃ a separation of Rn for any n, so the only subsets of Rn that are both open and closed
are ∅,Rn.

6.3 [0, 1] is connected

This is an example of a connected subset in R and will be used next time to prove Rn is connected and more.

Theorem 6.1. Let E = [0, 1] ⊆ R. Then E is connected.
(Aside: in fact: any interval [a, b], [a, b), (a, b], (a, b) in R is connected and these are the only connected subsets in
R i.e. connectedness ⇒ interval).
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Proof. By contradiction.
Suppose [0, 1] is not connected. ∃ a separation U, V open subsets of [0, 1] where

1. U ∩ [0, 1] 6= ∅

2. V ∩ [0, 1] 6= ∅

3. U ∩ V ∩ [0, 1] = ∅

4. [0, 1] ⊆ U ∪ V

Figure 6.3: Sketch of U, V open sets as (potential) separation for [0, 1].

WLOG 0 ∈ U . Since U is open and 0 ∈ U , ∃ε0 > 0 such that Bε0(0) = (−ε0, ε0) ⊆ U .
WLOG, ε0 < 1 so [0, ε0) ⊆ U ∩ [0, 1].
Define t0 as

sup{ε ∈ (0, 1) | [0, ε) ⊆ U ∩ [0, 1]}

note: the above is a non-empty subset of R since ε0 is in the set. It’s bounded above by 1, so the supremum or t0
must exist.
We have 0 < ε0 ≤ t0 ≤ 1 so t0 ∈ (0, 1], thus t0 ∈ U or t0 ∈ V .

Case 1: t0 ∈ U Since U is open (all open sets have some open ball around every point) ∃δ > 0 such that

(t0 − δ, t0 + δ) ⊆ U (6.1)

WLOG δ < t0 but 0 < t0 − δ < t0 so by definition of t0 (as supremum), ∃ε̂ > 0 with t0 − δ < ε̂ < t0 such that

[0, ε̂) ⊆ U ∩ [0, 1] (6.2)

Combining equation 6.1 and 6.2 (joining the two intervals together since we do not know if either separately
are in U), we have

[0, t0 + δ) ⊆ U ∩ [0, 1] (6.3)

We have two subcases:

t0 < 1 Then we can shrink δ > 0 further to ensure t0 + δ < 1 (δ < 1− t0).
Then 0 < t0 + δ < 1 and [0, t0 + δ) ⊆ U ∩ [0, 1] which contradicts t0 as the supremum.

t0 = 1 This implies U ∩ [0, 1] = [0, 1] by equation 6.3 but then V ∩ [0, 1] = ∅ (since U ∩ V ∩ [0, 1] = ∅), which
is a contradiction since V must be non-empty.

Case 2: t0 ∈ V Since V is open ∃ζ > 0 such that

(t0 − ζ, t0 + ζ) ⊆ V (6.4)
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WLOG ζ < t0 but 0 < t0 − ζ < t0 so by definition of t0 (as supremum) ∃ε̃ > 0 with t0 − ζ < ε̃ ≤ t0 such that

[0, ε̃) ⊆ U ∩ [0, 1] (6.5)

(it’s U since that was the set t0 was defined with).

Pick s ∈ (t0 − ζ, ε̃). Then s ∈ U ∩ [0, 1] by equation 6.5 but also s ∈ V ∩ [0, 1] by equation 6.4, which is a
contradiction.

By the contradiction of the two cases above, [0, 1] is connected.

7 January 17, 2017

7.1 Convex sets

Definition 7.1. A non-empty subset E of Rn is called convex if whenever x, y ∈ E then

tx+ (1− t)y ∈ E ∀t ∈ [0, 1]

i.e. the line segment between any 2 points in E is contained in E.

Figure 7.1: Convex and non-convex sets in R2.

7.2 Convex ⇒ connected

Corollary 7.1. Any convex subset E of Rn is connected. This implies two corollaries:

Corollary 7.2. Rn is connected ∀n since Rn is trivially convex.

Corollary 7.3. The only subsets of Rn that are both open and closed are ∅,Rn (see the remark about Rn
connectedness from above).

Proof. Let E be convex and suppose E is not connected. ∃ open subsets U, V such that

1. U ∩ E 6= ∅

2. V ∩ E 6= ∅

3. U ∩ V ∩ E = ∅

4. E ⊆ U ∪ V
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Figure 7.2: Suppose convex E is not connected and there exists a separation U, V .

Let x ∈ U ∩ E and y ∈ V ∩ E (therefore x 6= y since U ∩ V ∩ E = ∅). Since E is convex,

tx+ (1− t)y ∈ E ∀t ∈ [0, 1]

Define U ′, V ′ subsets of Rn by

U ′ = {t ∈ R : tx+ (1− t)y ∈ U} V ′ = {t ∈ R : tx+ (1− t)y ∈ V }

(note: U ′, V ′ is not restricted to elements [0, 1]: t could extend arbitrarily into Ec).
Claim: U ′, V ′ are open subsets of R. Let t0 ∈ U ′ so x0 = t0 + (1− t0)y ∈ U . Since U is open in Rn ∃ε0 > 0 such
that Bε0(x0) ∈ U . We pick t ∈ R such that

|t− t0| <
ε0

‖x‖+ ‖y‖

then

Bε0(x0)⇒ ‖(tx+ (1− t)y)− x0‖ = ‖tx+ (1− t)y − t0x− (1− t0)y‖
= ‖(t− t0)x+ (t0 − t)y‖
4
≤ |t− t0|(‖x‖+ ‖y‖)
< ε0

But Bε0(x0) ⊆ U so if |t− t0| < ε0
‖x‖+‖y‖ then t ∈ U ′ (we want our choice of t to imply t ∈ U ′).

So Bε0 (t0)

‖x‖+‖y‖ ⊆ U
′ so U ′ is open.

Similarly, V ′ is open.
Thus here are the properties of U ′, V ′. They are both open in R and

1. U ′ ∩ [0, 1] 6= ∅ (since 1 ∈ U ′)

2. V ′ ∩ [0, 1] 6= ∅ (since 0 ∈ V ′)

3. U ′ ∩ V ′ ∩ [0, 1] = ∅
Given some t ∈ [0, 1] (since tx ∈ (1− t)y ∈ E from convexity), note that either t ∈ U ′ from tx+ (1− t)y ∈ U
or t ∈ V ′ from tx+ (1− t)y ∈ V (we know from before that U ∩V ∩E = ∅ thus this must hold for the subsets
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U ′, V ′).

4. [0, 1] ⊆ U ′ ∪ V ′

If t ∈ [0, 1], then z = tx+ (1− t)y ∈ E so z ∈ U ∪ V from before, so z ∈ U or z ∈ V , thus by their definitions
t ∈ U ′ or t ∈ V ′.

Then U ′, V ′ is a separation for [0, 1], which is a contradiction. Thus E is connected.

Remark 7.1. In general, to prove a set E is connected it is generally easier to assume it is not connected and
there exists a separation, then derive a contradiction.

7.3 Open cover and compactedness

Definition 7.2. Let E be a subset of Rn. An open cover of E is a collection of open subsets Uα α ∈ A of Rn
such that

E ⊆
⋃
α∈A

Uα

(finite or infinite union of open subsets).

Definition 7.3. The subset E is called compact iff every open cover of E admits a finite subcover.
That is: if

⋃
Uα α ∈ A is an open cover of E, then ∃ a finite subset A0 of A such that

E ⊆
⋃
α∈A0

Uα

Informally, whenever a compact E is covered by a collection of open sets, it is actually covered by just finitely many
of those open sets.

Remark 7.2. This definition is not very useful for checking if a subset is compact (because you would have to
check every open cover of E).

7.4 Bounded sets

Definition 7.4. A subset E ⊆ Rn is called bounded if ∃M > 0 such that E ⊆ BM (0). That is ‖x‖ ≤M ∀x ∈ E.

8 January 19, 2018

8.1 Heine-Borel theorem

Theorem 8.1. Let E be a subset of Rn. E is compact iff E is both closed and bounded.
The following proof uses the density of rationals.

Proof. Step 1: Suppose E is compact. We want to show that E is bounded.
Let Uk = Bk(0) = {x ∈ Rn | ‖x‖ < k}. Uk is open ∀k, thus Uk ⊆ Uk+1 ∀k ∈ N. Therefore

E ⊆
∞⋃
k=1

Uk = Rn
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{Uk, k ∈ N} is an open cover of E. Since E is compact, ∃ a finite subcover so ∃ k1 < k2 < . . . < kN ∈ N such that

E ⊆
N⋃
j=1

Ukj = UkN = BkN (0)

since they’re nested so E is bounded.

Corollary 8.1. Rn is not compact because it is not bounded.

Step 2: Let E be compact, we show it is closed.
To do this: we show Ec is open (aside if Ec = ∅ then we are done. This never happens since E is not Rn).
Let x ∈ Ec. We need to find an open ball centred at x lying completely in Ec. Note E ⊆ Rn \ {x} since x 6∈ E.
Let (different Uk from before)

Uk = (B 1
k
(x))c = {x ∈ Rn | ‖x− y‖ > 1

k
}

which is open (complement of closed ball). We can use this as covers.

Figure 8.1: Uk is the complement of the closed ball centred at x ∈ Ec with radius 1
k for some k ∈ N.

If l > k, then 1
l <

1
k . Thus if y ∈ Uk, then ‖y − x‖ >

1
k >

1
l so y ∈ Ul. That is

Uk ⊆ Ul k < l (8.1)

Note that we have

E ⊆ Rn \ {x} =
∞⋃
k=1

Uk

where the infinite union of Uk is an open cover of E. Since E is compact, we have a finite subcover Uk1 , . . . , UkN
such that

E ⊆
N⋃
j=1

Ukj

= UkN equation 8.1

= (B 1
kN

(0))c
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Take complements (from A ⊆ B ⇒ Bc ⊆ Ac)

x ∈ B 1
kN

(x) ⊆ B 1
kN

(x) ⊆ E
c

So ∃ an open ball for x thus Ec is open and E is closed.
Before we prove the converse:

Lemma 8.1. Let E be any subset of Rn. Let {Uα | α ∈ A} be an open cover of E (so Uα open ∀α ∈ A). That is

E ⊆
⋃
α∈A

Uα

Thus ∃ a countable subset Ã of A
Ã = {α1, α2, . . .} = {αk | k ∈ N}

such that E ⊆
⋃∞
k=1 Uαk .

That is: every open cover admits a countable subcover. (Note: an infinite set is countable iff ∃ bijective
correspondence with N. Rational numbers are countable whereas R is not).

Proof. Assume E ⊆
⋃
α∈A Uα.

Let x ∈ E. Then ∃α(x) ∈ A such that x ∈ Uα(x).
Since Uα(x) is open ∃ε(x) > 0 such that

Bε(x)(x) ⊆ Uα(x) (8.2)

Figure 8.2: We can construct an open ball Bε(x)(x) within some Uα(x) for every x ∈ E.

Then E ⊆
⋃
x∈E Bε(x)(x) (all x). Since the rational numbers Q are dense in R, ∃q(x) ∈ Qn and ζ(x) ∈ Q such that

‖x− q(x)‖ < ε(x)

4
ε(x)

4
< ζ(x) <

ε(x)

2

Therefore
‖x− q(x)‖ < ε(x)

4
< ζ(x)
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So x ∈ Bζ(x)(q(x)).

Figure 8.3: We find some open ball centred at q(x) ∈ Qn with radius ζ(x) ∈ Q that contains x.

Suppose y ∈ Bζ(x)(q(x)), then we have

‖x− y‖
4
≤ ‖x− q(x)‖+ ‖q(x)− y‖

<
ε(x)

4
+ ζ(x)

<
ε(x)

4
+
ε(x)

2
< ε(x)

So y ∈ Bε(x)(x) therefore Bζ(x)(q(x)) ⊆ Bε(x)(x).
We have shown for every x ∈ E, ∃q(x) ∈ Qn and ζ(x) ∈ Q such that

x ∈ Bζ(x)(q(x)) ⊆ Bε(x)(x)

So E ⊆x∈E Bζ(x)(q(x)) but Q and Qn are countable so ∃qj ∈ Qn and ζj ∈ Q where j ∈ N such that

E ⊆
∞⋃
j=1

Bζj (qj)

⊆
∞⋃
j=1

Bε(xj)(xj)

⊆
∞⋃
j=1

Uα(xj) by equation 8.2

so we have a countable subcover.

Back to proving the converse: Step 3: Let E be closed and bounded. We want to show E is compact.
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Let {Uα | α ∈ A} be an open cover of E. We showed in the above lemma that ∃qj ∈ Qn, ζj ∈ Q where j ∈ N such
that

E ⊆
∞⋃
j=1

Bζj (qj)

Claim: ∃N ∈ N such that E =⊆
⋃N
j=1Bζj (qj). (i.e. we need only need finitely many of these balls).

If the claim is true, then

E ⊆
N⋃
j=1

Bζj (qj)

⊆
N⋃
j=1

Bε(xj)(xj)

⊆
N⋃
j=1

Uα(xj)

so we would have a finite subcover.
It remains to prove the claim. Suppose the claim is false (proof by contradiction). Then for every k ∈ N, we have
E \

⋃k
j=1Bζj (qj) 6= ∅.

We choose xk ∈ E \
⋃k
j=1Bζj (qj). Note that (xk) is a sequence in E and E is bounded, so (xk) is a bounded

sequence.
By Bolzano-Weierstrass, there exists a subsequence (xkl) that converges.
(xkl) ∈ E ∀l ∈ N and E is closed so x = liml→∞ xkl ∈ E as well.
x ∈ E, so ∃ some J ∈ N such that

x ∈ BζJ (qJ) (8.3)

from our lemma.
But since liml→∞ xkl = x then ∃N ∈ N such that ∀l ≥ N

xkl ∈ Bζj (qj)

(definition of convergent sequence).
But by construction of our sequence

xkl 6∈
N⋃
j=1

Bζj (qj)

for any kl ≥ N .
So if kl > J , then

xkl 6∈ BζJ (qJ) (8.4)

for l ≥ max(N, J)⇒ kl ≥ max(N, J).
From equation 8.3 and equation 8.4, we have a contradiction.
(The idea of this proof revolves around showing that all x ∈ E must be in some open ball with rational parameters.
By assuming the contrary of the claim that there is a finite subcover, we choose some sequence outside of all finite
subcovers (made of the rational parameters) and show that it is not in an open ball with rational parameters. Thus
we have a contradiction so there must be some finite subcover with the open balls of rational parameters).
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9.1 Limits of functions

Definition 9.1. Let V ⊆ Rn be an open set with x0 ∈ V . Let f : V \ {x0} → Rm for some m (i.e. f is defined at
all points of V except possibly at x0).
We say limx→x0 f(x) exists and equals L ∈ Rm iff ∀ε > 0, ∃δ > 0 such that

0 < ‖x− x0‖ < δ ⇒ ‖f(x)− L‖ < ε

(note that Bδ(x0) ⊆ V must hold). In general, δ depends on both ε and x0 (and on f as well if suppose it has a
different domain).

Remark 9.1. When n > 1, things get more complicated since in n = 1, there exists only 2 ways to approach x0:
from left or right (i.e. limx→∞ f(x) exists iff both left and right limits exist and are equal in n = 1).
In n > 1, ∃ infinitely many ways to approach x0. This is what makes establishment of the existence of limits harder
for n > 1.

Example 9.1. Example where different linear paths result in a different limit:
Let n = 2,m = 1 (f : R2 → R) where we denote (x, y) ∈ R2.
Suppose we wish to find

lim
(x,y)→(2,3)

(x− 2)2

(x− 2)2 + (y − 3)2

where f(x, y) defined everywhere except (2, 3).

Figure 9.1: There exists many paths to approach x0 = (2, 3) in f , m1 6= m2.

Suppose we have paths/lines with slope m where (y − 3) = m(x− 2). Along this line we have

f(x, y) =
(x− 2)2

(x− 2)2 + (y − 3)2

=
1

1 +m2

So f is a constant function which depends on the slope of the line/path (it depends on m). Since we found at least
2 paths towards (2, 3) along which f approaches different limiting values, then the limit DNE.

Example 9.2. Example where linear paths converge but quadratic paths do not:
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We wish to find

lim
(x,y)→(0,0)

xy2

x2 + y4

where the domain is R2 \ {0, 0}.

Figure 9.2: There are linear and non-linear paths that approaches x0 = (0, 0).

Note that unlike previously, linear paths y = mx do converge

f(x, y) =
x(mx)2

x2 + (mx)4

=
m2x3

x2 +m4x4

=
m2x

1 +m4x2

So as x→ 0, then m2x
1+m4x2

→ 0 for any m.
Along x = 0 we still have

f(x, y) =
0 · y2

02 + y4
= 0 ∀y 6= 0

(this is important since a vertical line is not explicit). So f approaches 0 as (x, y)→ (0, 0) for linear paths.
We must consider other non-linear paths as well e.g. along x = ky2 we have

f(x, y) =
(ky2)y2

(ky2)2 + y4
=

k

k2 + 1

which is a constant that depends on k, thus the limit DNE.

Example 9.3. Example where the limit does exist in n > 1 space:
We wish to find

lim
(x,y)→(0,0)

x4

x2 + y2

We expect the limit to converge since the degree of the numerator is > degree of denominator, thus numerator → 0
“much faster” than the denominator so the quotient should go to zero.
Let ε > 0. We want to find δ > 0 (depends on ε) such that if

‖(x, y)− (0, 0)‖ < δ ⇒ ‖f(x, y)− 0‖ < ε
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where L = 0.
Rewriting the above: we have if x2 + y2 < δ2, then

| x4

x2 + y2
| < ε

Observe that x2 ≤ x2 + y2 so
x2

x2 + y2
≤ 1 (x, y) 6= (0, 0)

Furthermore note

| x4

x2 + y2
| = x4

x2 + y2
= x2

(
x2

x2 + y2

)
≤ x2 x2

x2 + y2
≤ 1

≤ x2 + y2

< δ2 = ε

Thus we can take δ =
√
ε such that

x2 + y2 < δ2 = ε⇒ |f(x, y)− 0| < ε

9.2 Uniqueness of limits

Remark 9.2. A given limit may not exist, but if it does it’s unique (same proof as uniqueness of limits of
sequences).

9.3 Sequential characterization of limits of functions

Proposition 9.1. For f : V \ {x0} ⊆ Rn → Rm, limx→x0 f(x) = L iff the sequence f(xk) converges to L for every
sequence (xk) in V \ {x0} converging to x0.
i.e. this states the path heuristic from before works formally with sequences too.

Figure 9.3: Any given sequence (xk) in V that converges to x0 must have f(xk) converge to l in Rm.

Proof. Forwards: Suppose limx→x0 f(x) = L.
Let (xk) be a sequence in Rn with xk ∈ V \ {x0} ∀k and limk→∞ xk = x0.
We need to show limk→∞ f(xk) = L.
Let ε > 0. From our premise ∃δ > 0 such that

‖x− x0‖ < δ ⇒ ‖f(x)− L‖ < ε
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Since xk → x0 as k →∞, ∃N ∈ N such that

k ≥ N ⇒ 0 < ‖xk − x0‖ < δ

(definition of convergence).
So k ≥ N ⇒ ‖f(xk)− L‖ < ε so the forwards direction holds.
Backwards: Conversely, suppose the sequence f(xk) converges to L for every (xk) in V \ {x0} converging to x0.
We want to show limx→x0 f(x0) = L.
Suppose the limit does not converge to L (contradiction). Negation of the statement is: ∃ε0 > 0 such that ∀δ > 0,
∃xδ such that

0 < ‖xδ − x0‖ < δ but ‖f(xδ)− L‖ ≥ ε0
(this is the negation of 1) ∀ε > 0, 2) ∃δ > 0, and 3) ∀x ‖x− x0‖ < δ ⇒ ‖f(x)− L‖ < ε).
Choose δ = 1

k , k ∈ N. ∃xk with

0 < ‖xk − x0‖ < δ =
1

k
(9.1)

but ‖f(xk)− L‖ ≥ ε0 (4).
The sequence (xk) in V \ {x0} converges to x0 by the premise but f(xk) 6→ L by equation 9.1. This contradicts the
premise.

9.4 Properties of limits of functions

Let f, g : V \ {x0} ⊆ Rn → Rm and suppose

lim
x→x0

f(x) = L lim
x→x0

g(x) = M

Then (the above limits must exist)

lim
x→x0

(f(x) + g(x)) = L+M (additive)

lim
x→x0

cf(x) = cL (scalar multiplicative)

lim
x→x0

f(x)

g(x)
=

L

M
if m = 1,M 6= 0

lim
x→x0

(f(x)g(x)) = LM if m = 1 (same proof as for n = 1)

Proofs are left as exercises.

10 January 24, 2018

10.1 Component functions

Definition 10.1. Let f : U ⊆ Rn → Rm, U is open. Then for x ∈ U

f(x) = (f1(x), . . . , fm(x)) ∈ Rm

fi : U → R, 1 ≤ i ≤ m are the component functions of f (real-valued).

Lemma 10.1. x0 ∈ V open in Rn. Let f : V \ {x0} → Rm. Then limx→x0 f(x) = L = (L1, . . . , Lm) iff
limx→x0 fi(x) = Li ∀i = 1, 2, . . . ,m.
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Proof. By property of convergence of limits of sequences in assignment 3 and sequence characterization of limits of
functions. That is

lim
x→x0

f(x) = L
seq.char.⇐⇒ lim

k→∞
(xk) = L

a3#2⇐⇒ lim
k→∞

fi(xk) = Li
seq.char.⇐⇒ lim

x→x0
fi(x) = Li

We can also prove this using ε− δ.

10.2 Squeeze theorem

Theorem 10.1. Suppose f, g, h : V \ {x0} → R (m = 1!). If f(x) ≤ g(x) ≤ h(x) ∀x ∈ V \ {x0} (this only really
needs to hold in a n’h’d of x0) and limx→x0 f(x) = limx→x0 h(x) = L ∈ R, then

lim
x→x0

g(x) = L

Proof. Same as proof in n = 1 case.

10.3 Norm properties of limits

Proposition 10.1. Suppose f : V \ {x0} → Rm and limx→x0 f(x) = L then

lim
x→x0

‖f(x)‖ = ‖ lim
x→x0

f(x)‖ = ‖L‖

Proof. Let ε > 0, ∃δ > 0 such that

0 < ‖x− x0‖ < δ ⇒ ‖f(x)− L‖ < ε

Note that

‖f(x)‖
4
≤ ‖f(x)− L‖+ ‖L‖

‖L‖
4
≤ ‖L− f(x)‖+ ‖f(x)‖

So rearranging each of the inequalities above and using the premise we see that

|‖f(x)‖ − ‖L‖| < ε

if 0 < ‖x− x0‖ < δ so limx→x0‖f(x)‖ = ‖L‖.

10.4 Continuity

Definition 10.2. Let U ⊆ Rn be open and f : U → Rm.
Let x0 ∈ U . We say f is continuous at x0 if

1. limx→x0 f(x) exists

2. The limit equals f(x0)

Explicitly, f is continuous at x0 iff ∀ε > 0 ∃δ > 0 such that

‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ε
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Equivalently, by the sequential characterization of limits, f is continuous at x0 iff whenever (xk) is a sequence in U
converging to x0, then f(xk) is a sequence in Rm converging to f(x0).

10.5 Continuity on a set

Definition 10.3. f is continuous on U (an open set) if it is continuous at every x ∈ U .

Example 10.1. n = m and U = Rn and f(x) = x (identity map). Then ∀ε > 0, let δ = ε > 0 such that

‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ = ‖x− x0‖ < δ = ε

Example 10.2. Let c ∈ Rm be fixed, U = Rn. Then f(x) = c is a constant function and is continuous on Rn since
∀ε > 0, take any δ > 0 we have

‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ = ‖c− c‖ = 0 < ε

Example 10.3. Let m = 1, U = Rn, and f(x, y) = xy for x = (x1, x2) = (x, y) ∈ R2.
We claim f(x) is continuous on Rn.
Before we prove this example, for the component functions:

Remark 10.1. If f : U ⊆ Rn → Rm, f is continuous at x0 ∈ U iff fi : U ⊆ Rn → R is continuous at x0 for all
i = 1, . . . , n.

Proof. Let h(x, y) = (x, y) (identity map, continuous. on R2 by example 10.1).
So h1(x, y) = x and h2(x, y) = y are continuous on R2.
f(x, y) = xy = h1(x, y)h2(x, y) is continuous on R2 because limits of product equals products of limits.

10.6 Composition of continuous functions is continuous

Proposition 10.2. Let f : U ⊆ Rn → Rm be continuous on U . Let g : V ⊆ Rm → Rp be continuous on V .
Suppose f(U) = {f(x) | x ∈ U} ⊆ V so the composition

h = g ◦ f : U ⊆ Rn → Rp

is defined g(f(x)). Then h = g ◦ f is continuous on U .

Proof. Assignment 4.

More generally, if f is continuous at x0 ∈ U , f(x0) ∈ V and g is continuous at f(x0) then h = g ◦ f is continuous at
x0.

10.7 Dot product of continuous functions is continuous

Proposition 10.3. Suppose f, g : U ⊆ Rn → Rm. Define f · g : U ⊆ Rn → R by

(f · g)(x) = f(x) · g(x) = f1(x)g1(x) + f2(x)g2(x) + . . .+ fm(x)gm(x)

If f, g continuous at x0, then f · g is continuous at x0 (by addition and product of continuous functions on R).
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10.8 Inverse image

Definition 10.4. Let f : U ⊆ Rn → Rm, U is open. Let A ⊆ Rm.
The inverse image of A under f is denoted f−1(A) and is defined to be

f−1(A) = {x ∈ U | f(x) ∈ A}

(i.e. the domain of f which maps to the image A).

Remark 10.2. The notation is a bit ambiguous. Suppose we restrict f to be a proper subset V ⊂ U that is still
open.
Call this f|V : V ⊆ Rn → Rm. So f|V (x) = f(x) ∀x ∈ V then if A ⊆ Rm

f−1
|V (A) = {x ∈ V | f(x) ∈ A} = f−1(A) ∩ V

Remark 10.3. Note: f−1(A) could be empty.

Figure 10.1: Inverse images of f(x) = 1
x for A = (0, 1) correspond to f−1(A) = (1,∞). It may be empty however

(e.g. for A = {0}).

Let f : R \ {0} → R, f(x) = 1
x . Note that

f−1((0, 1)) = (1,∞)

f−1({0}) = ∅

11 January 26, 2018

11.1 Continuity and open/closed sets

Proposition 11.1. f : U ⊆ Rn → Rm, U is open. Then f is continuous on U iff f−1(V ) is open in Rn whenever
V is open in Rm.
(that is: continuous iff the inverse image of any open set is open).
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Proof. Forwards: Suppose f is continuous on U . Let V ⊆ Rm be open. WLOG f−1(V ) 6= ∅. Let x0 ∈ f−1(V ) ⊆
U ⇒ f(x0) ∈ V .
Since V is open, ∃ε > 0 such that Bε(f(x0)) ⊆ V . But f is continuous at x0 so ∃δ > 0 such that

‖x− x0‖ < δ ⇒ ‖f(x)− f(x0‖ < ε

(we take δ small enough such that Bδ(x0) ⊆ U).
Thus f(Bδ(x0)) ⊆ Bε(f(x0)) ⊆ V . So Bδ(x0) ⊆ f−1(V ) hence ∀x0 ∈ f−1(V ) ∃δ > 0 such that Bδ(x0) ⊆ f−1(V ) so
f−1(V ) is open.

Figure 11.1: f : U ⊆ Rn → Rm is continuous iff the inverse image of any open set V ∈ Rm is open.

Backwards: Suppose f−1(V ) is open in Rn for all V open in Rm. We need to show that f is continuous on U .
Let x0 ∈ U . Let ε > 0, Bε(f(x0)) is open in Rm so by our assumption

f−1(V ) = f−1(Bε(f(x0)))

is open in Rn.
Also x0 ∈ f−1(V ) since f(x0) ∈ V = Bε(f(x0)) so ∃δ > 0 such that

Bδ(x0) ⊆ f−1(V )

(since f−1(V ) is open).
Hence f(Bδ(x0)) ⊆ V = Bε(f(x0)) so f is continuous at x0.

Remark 11.1. One can also show that f−1(closed) = closed is also equivalent to continuity (on assignment 4).

Remark 11.2. Question: Is the reverse the open set property true? That is, suppose f : U ⊆ Rn → Rm U open,
f continuous on U . Let V ⊆ U defined f(V ) = {f(x) | x ∈ V } the image of V under f . If V is open in Rn, is f(V )
necessarily open in Rm?
No: here’s a counter-example.

Example 11.1. n = m = 1, U = R. Let f : R→ R where f(x) = x2 (continuous on R).
Take V = (−1, 1) open in R. Then f(V ) = [0, 1) which is not open in R.
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Figure 11.2: An open domain on a continuous f(x) = x2 may not admit an open image.

Similarly, if V is closed in Rn, f(V ) need not be closed in Rm.

Example 11.2. n = m = 1, U = R \ {0}, and f(x) = 1
x .

Let V = [1,∞) which is closed on R (although this is unbounded there is a closed boundary so this is still closed).
Then f(V ) = (0, 1] is not closed.

Figure 11.3: A closed domain on a continuous f(x) = 1
x may not admit a closed image.

Two other types of subsets were compact and connected.

11.2 Continuity and compact sets

Suppose f : U ⊆ Rn → Rm continuous on U , U open.
Does the same property hold for compact/connected sets as it did for open/closed sets?
That is, if V ⊆ Rm is compact, is f−1(V ) compact on Rn? If V ⊆ Rm is connected, is f−1(V ) connected on
Rn?
No to both!

Example 11.3. Counter-example for compact set:
n = m = 1, U = R, and f(x) = 1

1+x2
. Let V = [0, 1] which is compact. Then f−1(V ) = {x ∈ R | 1

1+x2
∈ [0, 1]} = R

is not compact.
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Figure 11.4: A compact image on a continuous f(x) = 1
1+x2

may not admit a compact inverse image.

Example 11.4. Counter-example for connected set:
n = m = 1, U = R, and f(x) = x2. Let V = (1, 9) which is connected. Then f−1(V ) = (−3,−1) ∪ (1, 3) is not
connected.

Figure 11.5: A connected image on a continuous f(x) = x2 may not admit a connected inverse image.

Proposition 11.2. Let f : U ⊆ Rn → Rm continuous on U which is open. Let K ⊆ U be compact. Then
f(K) = {f(x) | x ∈ K} is compact in Rm.

Proof. Let {Uα | α ∈ A} be an open cover of f(K) i.e. Uα ⊆ Rm is open ∀α ∈ A and

f(K) ⊆
⋃
α∈A

Uα

Claim: K ⊆
⋃
α∈A f

−1(Uα).
If x ∈ K, then f(x) ∈ f(K) so f(x) ∈ Uα for some α⇒ x ∈ f−1(Uα).
Since f is continuous, Uα open ⇒ f−1(Uα) open in Rn ∀α (by previous propositions).
So {f−1(Uα) | α ∈ A} is an open cover of K which is compact.
So ∃α1, . . . , αn ∈ A such that

K ⊆
N⋃
j=1

f−1(Uαj )
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Then f(K) ⊆
⋃N
j=1 Uαj because if y ∈ f(K) where y = f(x) for some x ∈ K where x ∈ f−1(Uαj ) for some

j ∈ {1, . . . , N} so f(x) ∈ Uαj .
So f(K) is compact.

Remark 11.3. By Heine-Borel, compact ⇐⇒ closed and bounded. But we’ve seen that if f is continuous
f(closed) 6= closed in general. This implies the additional bounded property makes it valid.
What about f(bounded) = bounded for a continuous f? No: see this counter-example:

Example 11.5. U = (0,∞) ⊆ R for n = m = 1 and f(x) = log x.
Let V = (0, 1) which is bounded. Then f(V ) = (−∞, 0) which is not bounded.

Figure 11.6: A bounded domain on a continuous f(x) = log x may not admit a bounded image.

But as we proved before, f(closed+ bound) = closed+ bounded so both conditions are sufficient.

11.3 Extreme value theorem (EVT)

Corollary 11.1. Let f : U ⊆ Rn → R, U is open (m = 1!) and f is continuous on U .
Let K ⊆ U be compact. Then ∃x1, x2 in K

f(x1) ≤ f(x) ≤ f(x2) ∀x ∈ K
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Figure 11.7: x1, x2 may not be unique in the Extreme Value Theorem.

This means a continuous. real-valued function on a compact set attains a global maximum value and global minimum
value.
Clearly this wouldn’t work in Rm,m > 1 since there is no notion of min/max of vectors).

Proof. Assume K compact, f is continuous on U so f(K) is a compact subset of R (by previous proposition).
By Heine-Borel f(K) is closed and bounded in R, so

M = sup
x∈K

f(x)

m = inf
x∈K

f(x)

both exists and is finite (bounded intervals has an infima and suprema).
Let k ∈ N such that M − 1

k < M so ∃xk ∈ K such that

M − 1

k
< f(xk) ≤M

K is bounded so (xk) is a bounded sequence in R, so by Bolzano-Weierstrass ∃ convergent subsequence (xkl)→ x
as l→∞.
But K is closed so liml→∞ xkl = x ∈ K.
Since f is continuous, so

lim
l→∞

f(xkl) = f( lim
l→∞

(xkl)) = f(x) ∈ f(K)

since x ∈ K. Thus
M − 1

kl
< f(xkl) ≤M

then as l→∞, we have M ≤ f(x) ≤M .
So x ∈ K and f(x) = supy∈K f(y) (some y) so global max is attained.
For global min, similarly m ≤ f(xk) < m+ 1

k .
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Remark 11.4. The non-uniqueness of extreme values come from choosing an arbitrary convergent subsequence
from (xk).

This generalizes EVT from 147: if f is continuous on [a, b] then f attains a global max/min.

Remark 11.5. Note that f must be continuous for this to hold. Otherwise we could have

Figure 11.8: There is a global min on [1, 2] but no global max.

12 January 29, 2018

12.1 Continuity and connected sets

(See above for connected image does not imply connected inverse image example.)

Proposition 12.1. Let f : U ⊆ Rn → Rm continuous on U which is open.
Let E ⊆ U be connected on Rn. Then f(E) is connected in Rm (i.e. continuous image of connected set is
connected).

Proof. Suppose f(E) is not connected. Let V1, V2 ∈ Rm open sets be a separation of f(E)

1. f(E) ⊆ V1 ∪ V2

2. f(E) ∩ V1 6= ∅

3. f(E) ∩ V2 6= ∅

4. f(E) ∩ V1 ∩ V2 = ∅

Since f is continuous, f−1(V1), f−1(V2) are open in Rn. If x ∈ E, f(x) ∈ f(E) ⊆ V1∪V2. So f(x) ∈ V1 or f(x) ∈ V2

which implies x ∈ f−1(V1) ∪ f−1(V2), that is

E ⊆ f−1(V1) ∪ f−1(V2)

Let y ∈ f(E) ∩ V1 6= ∅. So ∃x ∈ E such that y = f(x) ∈ V , that is

x ∈ f−1(V ) ∩ E 6= ∅

Similarly f−1(V2) ∩ E 6= ∅.
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If x ∈ E ∩ f−1(V1) ∩ f−1(V2) then f(x) ∈ f(E) ∩ V1 ∩ V2 6= ∅ which is a contradiction of our initial assumptions
that V1, V2 is a separation.
So f−1(V1) ∩ f−1(V2) ∩E = ∅, which means {f−1(V1), f−1(V2)} is a separation of R which is a contradiction since
E is connected.
Thus f(E) must be connected.

12.2 Intermediate value theorem (IVT)

Corollary 12.1. Let f : U ⊆ Rn → R, where U open (m = 1!).
Suppose f is continuous on U and let E ⊆ U be connected. Let x, y ∈ E such that f(x) < f(y). Then for each
w ∈ (f(x), f(y)), ∃z ∈ E such that f(z) = w.
(i.e. a continuous real-valued fn on a connected set admits all values between any two of its values).

Proof. Assume the contrary: that is ∃w0 ∈ (f(x), f(y)) such that w0 6∈ f(E).
Let

V1 = {w ∈ R | w < w0} = (−∞, w0)

V2 = {w ∈ R | w > w0} = (w0,∞)

then V1, V2 is a spearation of f(E) but f(E) is connected by previous proposition, which is a contradiction.

Aside: If f : U ⊆ Rn → Rm for U open is continuous on U then

‖f‖ : U → R

where ‖f‖(x) = ‖f(x)‖ is continuous. real-valued so we can apply EVT or IVT to ‖f‖.

12.3 Uniform continuity

Definition 12.1. Let f : U ⊆ Rn → Rm, U is open, and let D ⊆ U .
We say that f is uniformly continuous on D iff ∀ε > 0 ∃δ > 0 such that

x, y ∈ D ‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε

Remark 12.1. 1. Uniformly continuous only makes sense with respect to a particular subset D of U . f may be
unif. continuous on D1 ⊆ U but not unif. continuous on D2 ⊆ U .

2. If f is unif continuous on D, this means given any ε > 0, we can find a single δ > 0 depending only on ε that
works to establish continuity of f|D at x ∈ D for all x ∈ D.

3. If f is unif continuous on D, then f|D is continuous at x ∈ D ∀x ∈ D (but the converse is not necessarily
true).

Example 12.1. Let f : R \ {0} → R and f(x) = 1
x (f is continuous).

Let D = (0, 1].
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Figure 12.1: For the subdomain D = (0, 1], f(x) = 1
x is not uniformly continuous on D. We can find x, y arbitrary

close to 0 such that for a given ε > 0, there is not single δ > 0.

Claim: f is NOT unif continuous on D (so we find an ε where no single δ works).
Let ε = 1

2 . Let δ > 0 be arbitrary. Let n ∈ N be large enough so that

1

n(n+ 1)
< δ

Let x = 1
n and y = 1

n+1 ∈ D. So we have

|x− y| = | 1
n
− 1

n+ 1
| = 1

n(n+ 1)
< δ

but we have
|f(x)− f(y)| = |n− (n+ 1)| = 1 > ε

Example 12.2. Let f : R→ R and f(x) = x2 (f is continuous).
Let D = [0,∞).
Claim: f is not unif continuous on D.
Let ε = 1, let δ > 0 be arbitrary. Let x = 2

δ and y = 2
δ + δ

2 ∈ D (close to each other).
Note

|x− y| = |2
δ
− (

2

δ
+
δ

2
)| = δ

2
< δ

and

|f(x)− f(y)| = |(x− y)(x+ y)| = δ

2
(
4

δ
+
δ

2
) = 2 +

δ2

4
> 2 > ε

12.4 Uniform continuity and compact sets

Theorem 12.1. Let f : U ⊆ Rn → Rm be continuous on U open. Let K ⊆ U be compact.
Then f is unif continuous on K.
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Remark 12.2. Aside: In example 12.1, we chose D = (0, 1] and a proof with a counter n when x, y gets arbitrarily
close to 0.
If D = [ζ, 1] such that is compact, our counter argument with n would fail because we can’t get arbitrarily close to
0.

Proof. Let ε > 0 and let x ∈ K. Since f is continuous at x, ∃δ(x) > 0 such that

‖y − x‖ < δ(x)⇒ ‖f(y)− f(x)‖ < ε

2

i.e. f(Bδ(x)(x)) ⊆ B ε
2
(f(x)).

Also K ⊆
⋃
x∈K B δ(x)

2

(x) (this is an arbitrary union for every point in K).
By compactness of K, ∃ finite set x1, . . . , xN ∈ K such that

K ⊆
N⋃
j=1

B δ(xj)

2

(xj) (12.1)

Let δ = min{ δ(x1)
2 , . . . , δ(xN )

2 } > 0.
Suppose x, y ∈ K and ‖x− y‖ < δ, and x ∈ B δ(xj)

2

(xj) for some j ∈ [1, . . . , N ] by equation 12.1.

Then we have

‖y − xj‖
4
≤ ‖y − x‖+ ‖x− xj‖

< δ +
δ(xj)

2

<
δ(xj)

2
+
δ(xj)

2
= δ(xj)

That is ‖y − xj‖ < δ(xj) so y ∈ Bδ(xj)(xj), thus we have

‖f(x)− f(y)‖
4
≤ ‖f(x)− f(xj)‖+ ‖f(xj)− f(y)‖

<
ε

2
+
ε

2
= ε

so we found a δ > 0 (single δ) such that x, y ∈ K where ‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε.

12.5 Differentiability

Let f : U ⊆ Rn → Rm, U open and let a ∈ U . We want to define what it means for f to be differentiable at a and
what is the derivative of f at a (denoted (Df)a OR (Df)(a)).
We’ll see soon that if f is differentiable at a, then (Df)a is a linear map from Rn to Rm (m× n matrix).

Remark 12.3. Let T : Rn → Rm be a linear map. Choose basis β of Rn, basis γ of Rm. Then T is represented
wrt these two bases by an m× n basis [T ]γ,β .
If β̃ is another basis of Rn and γ̃ is another basis of Rm, then let P (invertible n× n) and Q (invertible m×m) be
the change of bases matrices from basis β to β̃ and from basis γ to γ̃, respectively. Thus

[T ]γ̃,β̃ = Q−1[T ]γ,βP
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If n = m and we choose β = γ and β̃ = γ̃ then

[T ]β̃ = P−1[T ]βP

If n = m = 1 such that β = γ, β̃ = γ̃ we have

[T ]β̃ = [T ]β since the 1× 1 matrices commute

i.e. the matrices representing a linear map R→ R is unique (doesn’t depend on β).

13 January 31, 2018

13.1 Single variable differentiability

Definition 13.1. Let f : U ⊆ R→ R, U open, and a ∈ U . We say f is differentiable at a iff

lim
h→0

f(a+ h)− f(a)

h

exists. If so, we call the limit the derivative of f at a and we denote it

f ′(a) =
df(a)

dx
= (Df)a

Remark 13.1. Claim: If f is differentiable at a then f is continuous at a.
We have

f(a+ h)− f(a) =
f(a+ h)− f(a)

h
· h

Taking the limit of both sides we get

lim
h→0

f(a+ h)− f(a) = 0 = lim
h→0

f(a+ h)− f(a)

h
· h

So we get (from the right equality)

lim
h→0

f(a+ h) = f(a)

⇒ lim
x→a

f(x) = f(a)

so f is continuous at a (limit exists and = f(a)).
The converse is false: e.g. f(x) = |x|.

When we choose our definition of differentiable in general, we’ll want the property that “differentiable at a” ⇒
“continuous at a”.

13.2 Partial derivatives

Definition 13.2. Let i ∈ {1, . . . , n}. The partial derivative of f in the xi-direction at the point a is defined to
be

lim
h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a1, . . . , an)

h

if it exists.
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This is the ordinary derivative at xi = ai of f thought of as only a function of xi with all other xj = aj constant.

Notation: when the partial derivative exists, it is denoted

∂f

∂xi
(a) = fxi(a)

The shorthand definition: let e1, . . . , en be the standard basis of Rn. Then

∂f

∂xi
(a) = lim

h→0

f(a+ hei)− f(a)

h

e.g. in R1, e1 = (1)⇒ a+ he1 = a+ h ∈ R1.

Example 13.1. 1. f(x, y) = sin(xy)

2. g(x, y, z) = ex
2z log(y + z)

3. h(x, y, z) = y3 sin(xz) + e13z+x3 log(z5+1)

4. λ(x, y, z) = x2 sin(y)− yz
x

Then we have

∂f

∂x
= y cos(xy)

∂f

∂y
= x cos(xy)

∂g

∂x
= 2xzex

2z log(y + z)
∂g

∂y
=

ex
2z

y + z

∂g

∂z
=

ex
2z

y + z
+ x2ex

2z log(y + z)

∂h

∂y
= 3y2 sin(xz)

∂λ

∂x
= 2x sin(y) +

yz

x2

13.3 Wrong definitions of differentiability

Remark 13.2. A reasonable guess for the definition of differentiability of f at a is to say all the partial derivatives
∂f
∂x1

, . . . , ∂f∂xn all exist at a (but not continuous).
This is WRONG! because there exists examples where ∂f

∂xi
all exist at a but f is not continuous at a (see assignment

5)!
From intuition: f may not be continuous in between xi-directions.

Definition 13.3. You can also consider the rate of change of f at a in the direction of any unit vector u (i.e. in
between the standard vectors ei).
This is called the directional derivative of f at a in the u-direction and is denoted

(Duf)a

(On assignment 5: show (Deif)(a) = ∂f
∂xi

(a).)

Remark 13.3. Another reasonable guess; f is differentiable at a if all the directional derivatives (Duf)(a) exists
at a for all unit vectors u.
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This is also WRONG!, since there exists examples where all (Duf)(a) exists at a but f is not continuous at a!
From intuition: one can take more complicated paths to a where contunity may not hold, e.g. as before with x2 or
x3 paths.

13.4 Second partial derivatives

Suppose f : U ⊆ Rn → R, U open, and suppose ∂f
∂xi

exists everywhere on U .
So ∂f

∂xi
: U ⊆ Rn → R (it’s a function on U).

So we can ask about the existence of ∂
∂xj

( ∂f∂xi ) or

∂2f

∂xj∂xi
= fxixj

(remark the order of the notation).
For example if n = 2, there are 4 (n2) second partial derivatives

fxx =
∂2f

∂x∂x
=
∂2f

∂x2

fyy =
∂2f

∂y2

fxy =
∂2f

∂y∂x

fyx =
∂2f

∂x∂y

Example 13.2. For f(x, y) = sin(xy), we have

fx = y cos(xy) fy = x cos(xy)

thus we have

fxx = −y2 sin(xy) fxy = cos(xy)− xy sin(xy)

fyy = −x2 sin(xy) fyx = cos(xy)− xy sin(xy)

Notice that fxy = fyx everywhere!
For λ(x, y, z) = x2 sin(y)− yz

x .

λx = 2x sin(y) +
yz

x2
λy = x2 cos(y)− z

x
λz =

−y
x

Thus we have

λxy = 2x cos(y) +
z

x2
λyx = 2x cos(y) +

z

x2

λxz =
y

x2
λzx =

y

x2

λyz =
−1

x
λzy =

−1

x
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So again
∂2λ

∂xi∂xj
=

∂2λ

∂xj∂xi
∀i, j

Question: is this always true? NO! There exists examples where f : U ⊆ Rn → R (n > 1) such that

∂2λ

∂xi∂xj
(a) 6= ∂2λ

∂xj∂xi
(a)

for certain i, j and a (for a certain point a usually).

13.5 Ck(U) (class of continuous functions)

Definition 13.4. Let f : U ⊆ Rn → R, U open. We say f is in C0(U) if f is continuous on U .
We say f is in C1(U) if f is in C0(U) and all ∂f

∂xi
’s exist and are continuous on U .

We say f is in C2(U) if f is in C1(U) and all ∂2f
∂xi∂xj

’s exist and are continuous on U .

In general, for k ∈ N, f is in Ck(U) if f is in Ck−1(U) and all ∂kf
∂xik ...∂xi1

exist and are continuous on U .

Definition 13.5. f is in C∞(U) if f ∈
⋂∞
k=0C

k(U) i.e. if f ∈ Ck(U) ∀k ∈ N.

Remark 13.4.
C0(U) ⊃ C1(U) ⊃ . . . ⊃ Ck(U) ⊃ Ck+1(U) ⊃ . . . ⊃ C∞(U)

14 February 2, 2018

14.1 Mean Value Theorem (MVT)

Theorem 14.1. Let f : U ⊆ R → R, U open, be continuous on [a, b] ∈ U and differentiable on (a, b). There
∃c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a)

Figure 14.1: There may be multiple c ∈ (a, b) that satisfy the MVT property.

14.2 “Commutativity” of mixed partial derivatives

Theorem 14.2. Let f : U ⊆ Rn → R, U open. Let a ∈ U . Suppose ∂f
∂xj

, ∂f
∂xk

exist and are continuous
(j 6= k, j, k ∈ {1, . . . , n}) on a neighbourhood of a.
Furthermore, suppose that ∂2f

∂xj∂xk
exists in a neighbourhood of a and is continuous on a.
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Then ∂2f
∂xk∂xj

exists at a and
∂2f

∂xk∂xj
(a) =

∂2f

∂xj∂xk
(a)

Remark 14.1. In the examples above: all the first and second partial derivatives existed and were continuous
everywhere on the domain of f . So we have much more than we need (we only require they exist and continuous at
a) to apply the above theorem and conclude that the mixed partials are equal.

Remark 14.2. The partial derivatives need only be continuous on a neighbourhood of a: nothing needs said about
the space away from a.

Proof. We will require 3 applications of the single variable Mean Value Theorem (MVT).
First we’ll show we can reduce the problem to n = 2 (xj = x, xk = y) and a = (0, 0).
Let s, t ∈ R be small enough such that

h(s, t) = f(a+ sej + tek)

is defined (this is possible since a ∈ U and U is open so open ball).
Let’s compute ∂h

∂s (s0, t0)

∂h

∂s
(s0, t0) = lim

ε→0

h(s0 + ε, t0)− h(s0, t0)

ε

= lim
ε→0

f(a+ (s0 + ε)ej + t0ek)− f(a+ s0ej + t0ek)

ε

=
∂f

∂xj
(a+ s0ej + t0ek) definition of

∂f

∂xj

Similarly,
∂h

∂t
(s0, t0) =

∂f

∂xk
(a+ s0ej + t0ek)

Note that these hold for any f : U ⊆ Rn → R, U open therefore (recall the partial derivatives are themselves
functions on U → R, so we can apply the above recursively on itself)

∂2f

∂s∂t
(s0, t0) =

∂2f

∂xjxk
(a+ s0ej + t0ek)

∂2f

∂t∂s
(s0, t0) =

∂2f

∂xkxj
(a+ s0ej + t0ek)

So

∂2f

∂s∂t
(0, 0) =

∂2f

∂xjxk
(a)

∂2f

∂t∂s
(0, 0) =

∂2f

∂xkxj
(a)

(assuming these all exist). Therefore it is enough to consider the case when n = 2, a = (0, 0) (we reduced our
problem into a R2 → R problem using arbitrary s, t).
Let’s prove our thoerem with h : U ⊆ R2 → R, U open, and 0 ∈ U .
Note that ∂h

∂s ,
∂h
∂t exists and are continuous on a neighbourhood of 0 (these are from our initial premise after

converting to our reduced problem). Also, ∂2h
∂t∂s exists on a n’h’d of 0 and is continuous. at 0.

We want to show ∂2h
∂s∂t exists at 0 and equals ∂2h

∂t∂s(0) at 0.
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Let us define
H(s, t) = (h(s, t)− h(s, 0))− (h(0, t)− h(0, 0))

Figure 14.2: Sketch of how we set up H(s, t).

Fix t sufficiently close to 0. Define k(s) = h(s, t)− h(s, 0). So we have

H(s, t) = k(s)− k(0)

Also k′(s) = ∂h
∂s (s, t)− ∂h

∂s (s, 0) exists and continuous on n’h’d of 0 (by hypothesis). So we can apply the MVT to k
on [0, s], then

∃δ ∈ (0, 1)⇒ δs ∈ (0, s)

such that
k(s)− k(0) = k′(δs)(s− 0)

So we have
H(s, t) = s[

∂h

∂s
(δs, t)− ∂h

∂s
(δs, 0)]

Fix s (and hence δ). We define

λ(t) =
∂h

∂s
(δs, t)

λ′(t) =
∂2h

∂t∂s
(δs, t)

exists near t = 0 (by hypothesis) so λ(t) is continuous. and differentiable on [0, t] for t small enough.
Applying the MVT to λ on [0, t]

∃ε ∈ (0, 1)⇒ εt ∈ (0, t)

such that
λ(t)− λ(0) = λ′(εt)(t− 0)

So we have (from definition of λ)

∂h

∂s
(δs, t)− ∂h

∂s
(δs, 0) =

∂2h

∂t∂s
(δs, εt)(t)

Substituting this into H(s, t), we get

H(s, t) = st
∂2

∂t∂s
(δs, εt)
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for some δ, ε ∈ (0, 1). Therefore when we take the limit

lim
(s,t)→(0,0)

1

st
H(s, t) =

∂2h

∂t∂s
(0, 0)

since ∂2h
∂t∂s is assumed to be continuous. at (0, 0). If we can show the LHS is equivalent to ∂2h

∂s∂t(0, 0), then we are
done.
Recall that

H(s, t) = h(s, t)− h(s, 0)− h(0, t) + h(0, 0)

We can also write
H(s, t) = (h(s, t)− h(0, t))− (h(s, 0)− h(0, 0))

(notice the regrouping: in the graph, we are now subtracting in the other direction).
We define µ(t) = h(s, t)− h(0, t) so H(s, t) = µ(t)− µ(0). Therefore

µ′(t) =
∂h

∂t
(s, t)− ∂h

∂t
(0, t)

exists ∀t sufficiently close to 0 (from hypothesis where a = 0). So µ(t) is continuous on [0, t] and is differentiable on
(0, t) for t small.
Applying the MVT to µ on [0, t], then

∃θ ∈ (0, 1)⇒ θt ∈ (0, t)

such that
µ(t)− µ(0) = µ′(θt)(t− 0)

Thus we have
H(s, t) = t[

∂h

∂t
(s, θt)− ∂h

∂t
(0, θt)]

We can rewrite this as
H(s, t)

st
=

1

s
[
∂h

∂t
(s, θt)− ∂h

∂t
(0, θt)]

Since ∂h
∂t is continuous. on a n’h’d of (0, 0) (hypothesis), then we let t→ 0 first so that we get

∂h

∂t
(s, θt)→ ∂h

∂t
(s, 0)

∂h

∂t
(0, θt)→ ∂h

∂t
(0, 0)

Thus we have
lim

(s,t)→(0,0)
= lim

s→0
[
1

s
(
∂h

∂t
(s, 0)− ∂h

∂t
(0, 0))]

This is precisely the definition of the partial derivative with respect to s, thus we have

lim
(s,t)→(0,0)

H(s, t)

st
=

∂2h

∂s∂t
(0, 0) =

∂2h

∂t∂s
(0, 0)
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14.3 Defining multivariable differentiability

Let f : U ⊆ Rn → Rm (general m), U open. Let a ∈ U . We want to define what it means for f to be differentiable
at a.
We expect that if f is differentiable at a, then

1. f should be continuous on a

2. all the partial derivatives of f (if m = 1) should exist at a

Example 14.1. Example of where partial derivatives exist but is not continuous at given a = (0, 0):
Let n = 2 where U = R2 and

f(x, y) =

{
x+ y if x = 0 or y = 0

1 otherwise

Figure 14.3: A function where the partial derivatives exist but are not continuous at a given point (0, 0).

Note that

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h

= lim
h→0

h− 0

h
= 1

and similarly, ∂f∂y (0, 0) = 1.
Both partials exist at (0, 0) but clearly f is not continuous at (0, 0) (limx→0 f(x) 6= f(x)).

Remark 14.3. This shows that our previous bad definition that if partials exist, then differentiable is wrong.

14.4 Differentiability with linear maps

Going back to the n = m = 1 simple case, where f : U ⊆ R→ R for U open and x0 ∈ U . Then f is differentiable
at x0 ⇐⇒ limh→0

f(x0+h)−f(x0)
h exists (previously defined).

Note that f ′(x0) ∈ R are 1× 1 matrices i.e. a linear map from R to R.
Assuming f is differentiable at x0, we define the linear map T : R→ R by

T (h) = f ′(x0)h
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such that

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0)

= lim
h→0

f ′(x0)h

h

= lim
h→0

T (h)

h

So (rewriting the above)

lim
h→0

f(x0 + h)− f(x0)− T (h)

h
= 0

Note that for any limits on an arbitrary g(x) that approach to 0

lim
h→0

g(x) = 0 ⇐⇒ lim
h→0
|g(x)| = 0

so we have
lim
h→0

|f(x0 + h)− f(x0)− T (h)|
|h|

= 0

We’ve shown that if f is differentiable at x0, ∃ a linear map T : R→ R such that the above holds.
We’ve thus motivated the general definition of differentiability:

Definition 14.1. For f : U ⊆ Rn → Rm, U open, let x0 ∈ U .
We say f is differentiable at x0 if ∃ a linear map T : Rn → Rm such that

lim
h→0

‖f(x0 + h)− f(x0)− T (h)‖
‖h‖

= 0 (14.1)

where we take the norm of an Rm vector in the numerator and the norm of an Rn vector in the denominator (this is
also the reason why we needed to take the norm to be able to divide the two).

15 February 5, 2018

15.1 Differential (Jacobian matrix) (Df)a

Remark 15.1. We’ll show soon that if such a T linear map exists, it is necessarily unique and it’s called the
derivative of f at a and is denoted (Df)a OR (Df)(a) (i.e. (Df)a is an m× n matrix of real numbers).
(Df)a is also called the differential of f at a, or the linearization of f at a, or the Jacobian matrix.

Notice: If (Df)a = T exists satisfying equation 14.1 then

1. T : Rn → Rm is linear

2. T is a very good approximation to the map h 7→ f(a + h) − f(a) near h = 0 in the following sense (recall
T (h) = f ′(a)h = limh→0

f(a+h)−f(a)
h · h).

h 7→ f(a+ h)− f(a)

h 7→ T (h)

Both agree at h = ~0 (i.e. both send ~0→ ~0) and moreover the difference

‖f(a+ h)− f(a)− T (h)‖ → 0 as h→ 0
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so fast that the quotient in equation 14.1 still goes to 0 as h→ ~0 (sends numerator to 0 faster than h→ ~0).

15.2 Differentiability implies continuity with T (h)

Proposition 15.1. Let f : U ⊆ Rn → Rm, U open, and a ∈ U . Suppose f is differentiable at a. Then f is
continuous at a (we show this is true for the linear map definition now).

Proof. We need to show that limx→a f(x) = f(a) or limh→0 f(a+ h) = f(a) (where x = a+ h).
Note that

lim
h→0
‖f(a+ h)− f(a)− T (h)‖ = lim

h→0

‖f(a+ h)− f(a)− T (h)‖
‖h‖

· ‖h‖

= 0 · 0
= 0

where the second equality holds from products of existing limits. So we have

‖f(a+ h)− f(a)‖
4
≤ ‖f(a+ h)− f(a)− T (h)‖+ ‖T (h)‖

Since T is linear, we have ‖T (h)‖ ≤ ‖T‖op‖h‖ which → 0 as h→ ~0. Thus combining the above we have

‖f(a+ h)− f(a)‖ ≤ ‖f(a+ h)− f(a)− T (h)‖+ ‖T‖op‖h‖

which by the squeeze theorem we have
lim
h→0

f(a+ h) = f(a)

and thus f is continuous at a.

15.3 Differential is matrix of partial derivatives

Theorem 15.1. Let f : U ⊆ Rn → Rm and a ∈ U . Suppose f is differentiable at a.
We have

f(x) ∈ Rm = (f1(x), . . . , fm(x))

where fj : U ⊆ Rn → R are the component functions of f , 1 ≤ j ≤ m.
Then all the partial derivatives ∂fi

∂xj
exists at a for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Moreover,

T = (Df)a

is the m× n matrix whose (i, j)-entry is ∂fi
∂xj

(a). This shows (Df)a is unique if it exists.

Proof. By assumption, ∃ m× n matrix T such that

lim
h→0

‖f(x0 + h)− f(x0)− T (h)‖
‖h‖

= 0

Recall from linear algebra we have [
T (e1) T (e2)

... T (en)

]
which is an m× n matrix (each column is the image of ei, the standard basis vector).
Since the above limit exists and is zero, we get 0 if h→ ~0 along any path.
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Choose the path
h = tej j ∈ {1, . . . , n}

as t ∈ R goes to 0, then h→ ~0.
We have

lim
t→0

‖f(a+ tej)− f(a)− T (tej)‖
‖tej‖

= 0

⇐⇒ lim
t→0
‖f(a+ tej)− f(a)− T (tej)

t
‖ = 0 ∴ ‖ej‖ = 1

T is linear so T (tej) = tT (ej) thus

lim
t→0
‖f(a+ tej)− f(a)

t
− T (ej)‖ = 0

Recall that limx→x0‖g(x)− L‖ = 0 ⇐⇒ limx→x0 g(x) = L (trivial by epsilon-delta, true for all ε > 0). Thus

lim
t→0

f(a+ tej)− f(a)

t
= T (ej)

so the i-th component of the quotient above is ∂fi
∂xj

(a). Therefore we’ve shown

Tij =
∂fi
∂xj

(a)

exists and holds.

Remark 15.2. If f is differentiable at a, then all ∂fi
∂xj

exist at a (as above). So if even one ∂fi
∂xj

does not exist at a,
then f is not differentiable at a.
Warning: Just because all ∂fi

∂xj
(a) exist DOES NOT necessarily imply that f is differentiable at a, because with

T : Rn → Rm defined by

Tij =
∂fi
∂xj

(a)

it may not be true that

lim
h→0

‖f(x0 + h)− f(x0)− T (h)‖
‖h‖

= 0

15.4 Gradient notation

For f : U ⊆ Rn → R (note m = 1!), a ∈ U , and f differentiable at a, then (Df)a is a 1× n matrix

(Df)a =
[
∂f
∂x1

(a) . . . ∂f
∂xn

(a)
]

This is called the gradient of f at a and is also denoted

(∇f)(a) = (∇f)a = (Df)a =
[
∂f
∂x1

(a) . . . ∂f
∂xn

(a)
]
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Now for general m, if f : U ⊆ Rn → Rm is differentiable at a ∈ U then

(Df)a =


∂f1
∂x1

(a) . . . ∂f1
∂xn

(a)
... . . .

...
∂fm
∂x1

(a) . . . ∂fm
∂xn

(a)



=


(∇f1)(a)
(∇f2)(a)

...
(∇fm)(a)


15.5 Differentiable ⇐⇒ all components are differentiable

Lemma 15.1. Let f : U : Rn → Rm, a ∈ U . Then f is differentiable at a iff each component function
f : U ⊆ Rn → R is differentiable at a ∀i = 1, . . . ,m.

Proof. f is differentiable at a iff

lim
h→0

‖f(a+ h)− f(a)− T (h)‖
‖h‖

= 0

⇐⇒ lim
h→0
‖f(a+ h)− f(a)− T (h)

‖h‖
‖ = 0

⇐⇒ lim
h→0
‖fi(a+ h)− fi(a)− Ti(h)

‖h‖
‖ = 0 ∀i = 1, . . . ,m

where the last ⇐⇒ follows from the fact that the vector inside the outer ‖·‖ is an Rm vector, and any vector
converges ⇐⇒ its components converges (shown before).

15.6 Linear combination is differentiable

Proposition 15.2. Let f, g : U ⊆ Rn → Rm. Suppose f, g both differentiable at a ∈ U . Let λ, µ ∈ R. Then
λf + µg : U ⊆ Rn → Rm or

(λf + µg)(x) = λf(x) + µg(x)

is differentiable at a and
(D(λf + µg))a = λ(Df)a + µ(Dg)a

Proof. Assignment 6 (use triangle inequality and the fact that (Dh)a is linear, then squeeze theorem).

16 February 7, 2018

16.1 Partial derivatives exist and continuous implies differentiability

Theorem 16.1 (Partials exist and continuous implies differentiability). (Sufficient but NOT NECESSARY condition
for differentiability).
Let f : U ⊆ Rn → Rm, a ∈ U . Suppose all ∂fi

∂xj
exists on a n’h’d of a and are continuous at a.

Then f is differentiable at a.

Proof. From last time f is differentiable ⇐⇒ every fi is also differentiable at a.
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Hence it’s enough to prove the theorem for m = 1. Let

a = (a1, . . . , an)

h = (h1, . . . , hn)

Define for j = 1, . . . , n

vj =

j∑
k=1

hkek = (h1, h2, . . . , hj , 0, . . . , 0)

Therefore vn = h. We set v0 = ~0 = (0, . . . , 0).
Note that

f(a+ h)− f(a) = f(a+ vn)− f(a+ v0) (16.1)

=
n∑
k=1

[f(a+ vk)− f(a+ vk−1)] (16.2)

Note vk = vk−1 + hkek. By hypothesis, ∂f
∂xk

exists in a n’h’d of a so for h sufficient close to 0 the function

µk(t) = f(a+ vk−1 + tek)

= f(a+ h1, . . . , ak−1 + hk−1, ak + t, . . . , ak+1, . . . , an)

is a differentiable function of t on [0, hk) for hk sufficient small. Thus

µk(t) =
∂f

∂xk
(a+ vk−1 + tek)

We apply MVT to µk, ∃εk ∈ (0, 1) so ekhk = (0, hk) such that

µ′k(εkhk)(hk − 0) = µk(hk)− µk(0)

⇒hk[
∂f

∂xk
(a+ vk−1 + εkhkek)] = f(a+ vk)− f(a+ vk−1)

Hence equation 16.1 becomes

f(a+ h)− f(a) =

n∑
k=1

hk ·
∂f

∂xk
(a+ vk−1 + εkhkek) (16.3)

For
(Df)a =

[
∂f
∂x1

(a) . . . ∂f
∂xn

(a)
]

this exists (by hypothesis). We need to show

‖f(a+ h)− f(a)− (Df)a(h)‖
‖h‖

→ 0

as h→ 0.
Recall that

(Df)a(h) =

n∑
k=1

∂f

∂xk
(a)hk
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(where LHS is a 1× n matrix multiplied by an n× 1 vector). So from equation 16.3

f(a+ h)− f(a)− (Df)a(h) =

n∑
k=1

[
∂f

∂xk
(a+ vk−1 + εkhkek)−

∂f

∂xk
(a)]hk

= L · h

where Lk is the stuff inside the summation and L = (L1, . . . , Ln).
Therefore we have

|f(a+ h)− f(a)− (Df)a(h)|
‖h‖

=
‖L · h‖
‖h‖

≤ ‖L‖‖h‖
‖h‖

Cauchy-Schwarz

= ‖L‖

so enough to show that
lim
h→0

L = 0

(where we then apply squeeze theorem).
So we’ve reduced the problem to show

lim
h→~0

Lk = 0 ∀k = 1, . . . , n

or
lim
h→~0

∂f

∂xk
(a+ vk−1 + εkhkek)−

∂f

∂xk
(a) = 0

Note that vk−1 =
∑k−1

j=1 hjej → 0 as h→ ~0. Furthermore for 0 < εk < 1 we have εkhkek → 0 as h→ ~0 thus

a+ vk−1 + εkhkek → a

as h→ ~0. Note that ∂f
∂xk

is assumed to be continuous at a, so limh→Lk → 0 as desired.

16.2 Summary about differentiability

To check if f : U ⊆ Rn → Rm is differentiable at a ∈ U

1. If f is not continuous at a, then f is not differentiable at a

2. If any of ∂fi
∂xj

do not exist at a, f is not differentiable at a

3. Let (Df)a be the m× n matrix whose i, j entry is ∂fi
∂xj

(a). Then f is differentiable at a ⇐⇒

lim
h→0

‖f(x0 + h)− f(x0)− T (h)‖
‖h‖

= 0

4. We can avoid step 3 if we know all ∂fi
∂xj

exist on a n’h’d of a and are continuous at a (this implies f is
differentiable at a by theorem 16.1).

61



Winter 2018 MATH 247 Course Notes 16 FEBRUARY 7, 2018

16.3 Differentiability and C1

Let U ⊆ Rn open. We say f is in C1(U) if all ∂fi
∂xj

exist and are continuous everywhere on U . by the previous
theorem, if f ∈ C1(U) then f is differentiable at any point in U .
Also C0(U) implies continuous function on U . Note from before

C1(U) ⊆ C0(U)

So we have the desired property that C1 ⇒ differentiable ⇒ continuous . Functions in C1 are sometimes called
continuously differentiable.

Example 16.1. To show conditions of theorem 16.1 are sufficient but not necessary, let n = 2, U ⊆ R2

f(x, y) = (x2 + y2) sin(
1√

x2 + y2
)

for (x, y) 6= (0, 0) and f(0, 0) = 0.

Step 1 f is continuous on at (0, 0) (by squeeze).

Step 2 Compute fx(0, 0) and fy(0, 0)

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h

= lim
h→0

h2

h
sin(

1√
h2

)

= 0

by squeeze. Similarly fy(0, 0) = 0. Thus we have (Df)(0,0) = [0, 0].

Step 3 Need to check

lim
(h1,h2)→(0,0)

|f((0, 0) + (h1, h2))− f(0, 0)− (Df)(0,0)((h1, h2))|√
h2

1 + h2
2

= 0

Thus we have

lim
(h1,h2)→(0,0)

(h2
1 + h2

2) sin( 1√
h21+h22

)√
h2

1 + h2
2

= lim
(h1,h2)→(0,0)

√
h2

1 + h2
2 sin(

1√
h2

1 + h2
2

)

=0

by squeeze.

So f is differentiable at (0, 0).

Follow-up: we show that ∂f
∂x and ∂f

∂y (which exists everywhere) are not necessarily continuous at (0, 0) (to show
that our previous conditions are sufficient but not necessary)

f(x, y) = (x2 + y2) sin(
1√

x2 + y2
)
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Recall that fx(0, 0) = fy(0, 0) = 0. So at a point (x, y) 6= (0, 0)

fx = 2x sin(
1√

x2 + y2
) + (x2 + y2) cos(

1√
x2 + y2

) · (−1

2
)(x2 + y2)

−3
2 · 2x

= 2x sin(
1√

x2 + y2
)− x√

x2 + y2
cos(

1√
x2 + y2

)

We want to check if
lim

(x,y)→(0,0)
fx(x, y) = fx(0, 0) = 0

and similarly for fy. Note the first term → 0 by squeeze. We thus want to show (to show it’s not continuous)

lim
(x,y)→(0,0)

x√
x2 + y2

cos(
1√

x2 + y2
) DNE

Remark 16.1. One can imagine approaching 0 from the y-axis (fix x = 0) which obviously goes to 0, but one can
also approach from the x-axis (where we have x

|x| cos( 1
|x|)). Although cos( 1

|x|) is bounded we do not know what
happens when the two terms are put together so we can’t say it obviously exists.

By sequential characterization of limits

lim
(x,y)→(0,0)

h(x, y) = 0 ⇐⇒ lim
k→∞

h(xk, yk) = 0

for all sequences (xk, yk) ∈ R2 converging to (0, 0).
Thus consider (xk, yk) = ( (−1)k

kπ , 0), so we have

h(xk, yk) =
(−1)k 1

kπ√
1

k2π2

cos(
1√

1
k2π2

)

= (−1)k cos(kπ)

= 1 ∀k

Similarly when (xk, yk) = ( (−1)k+1

kπ , 0), we have the limit approaching to −1. Since they have different limits, then
the limit DNE so fx is not continuous at (0, 0).

Upshot: We have
continuous ⊃ differentiable ⊃ C1

where the rightmost inequality highlights the condition that ∂fi
∂xj

exists and continuous is not necessary for
differentiability.

17 February 9, 2018

17.1 Product rule for differentiability

Proposition 17.1. Let U ⊆ Rn, f, g : U → Rm, a ∈ U .
Suppose f, g are both differentiable at a. Then we claim f · g : U → R, where (f · g)(x) = f(x) · g(x) is differentiable
at a and

D(f · g)a = f(a)T (Dg)a + g(a)T (Df)a (17.1)
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where we have 1× n matrix on the LHS and 1×m, m× n, 1×m, and m× n matrices on the right.

Remark 17.1. Let h = f · g so h =
∑m

k=1 fkgk. If h is differentiable at a, its derivative (Dh)g would be

(Dh)a =
[
∂h
∂x1

(a) . . . ∂h
∂xn

(a)
]

But
∂h

∂xi
=

∂

∂xi
(
∑
k

fkgk) =
∑
k

∂fk
∂xi

gk + fk
∂gk
∂xi

So the above two equations are just equation 17.1 in components.

Proof. We need to prove that

lim
t→0

‖f(x0 + t)− f(x0)− T (t)‖
‖t‖

= 0 t ∈ R

Note that

h(a+ t)− h(a)− (Dh)a(t) = (f · g)(a+ t)− (f · g)(a)− f(a)T (Dy)a(t)− g(a)T (Df)a(t)

(so we assume the product rule and show it implies differentiability since our theorem is an ⇐⇒ ). Note the above
can be rewritten as

= (f(a+ t)− f(a)− (Df)a(t)) · g(a+ t) name this T1

+ f(a) · (g(a+ t)− g(a)− (Dg)a(t)) name this T2

+ (Df)a(t) · (g(a+ t)− g(a)) name this T3

By triangle inequality we have

|h(a+ t)− h(a)− (Dh)a(t)| ≤ |T1|+ |T2|+ |T3|

We thus show that as t→ 0, then |Ti|‖t‖ → 0 for i = 1, 2, 3.
f, g differentiable at a so f, g are continuous at a. Therefore we have

|T1(t)|
‖t‖

≤ ‖f(a+ t)− f(a)− (Df)a(t)‖
‖t‖

· ‖g(a+ t)‖

|T2(t)|
‖t‖

≤ ‖f(a)‖ · ‖g(a+ t)− g(a)− (Dg)a(t)‖
‖t‖

|T3(t)|
‖t‖

≤ ‖(Df)a(t)‖‖g(a+ t)− g(a)‖
‖t‖

≤ ‖(Df)a‖op‖t‖
‖t‖

· ‖g(a+ t)− g(a)‖

where the inequalities are from Cauchy-Schwarz. These all → 0 as ‖t‖ → 0 (since they are all products of existing
limits).

Special case when m = 1: We have f, g : U ⊆ Rn → R and f · g = fg. Then

D(fg)Ta = ∇(fg)(a) = f(a) · (∇g)(a) + g(a) · (∇f)(a)

Informally, ∇(fg) = f∇g + g∇f .
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17.2 Chain rule

Theorem 17.1. Let f : U ⊆ Rn → Rm be differentiable at a ∈ U . Let g : V ⊆ Rn → Rp be differentiable at
b = f(a) ∈ V . Assume f(U) ⊆ V .
Then g ◦ f : U ⊆ Rn → Rp is differentiable at a and

D(g ◦ f)a = (Dg)f(a)(Df)a

where we have matrices of size p× n on the left and p×m and m× n on the right (note that the linear map is a
composition of linear maps: that is the derivative of a composition is the composition of the derivatives).

Proof. Let Q1(h) = f(a+h)−f(a)−(Df)a(h) (defined for h small). Similarly, let Q2(k) = g(b+k)−g(b)−(Dg)b(k)
(k small). By hypothesis we have

lim
h→0

‖Q1(h)‖
‖h‖

= 0

lim
k→0

‖Q2(k)‖
‖k‖

= 0

For k small, set k = f(a+ h)− f(a) = f(a+ h)− b (small by continuity). So we have

g(f(a+ h))− g(f(a)) = g(b+ k)− g(b)

= (Dg)b(k) +Q2(k)

= (Dg)b(f(a+ h)− f(a)) +Q2(k)

= (Dg)b((Df)a(h) +Q1(h)) +Q2(k)

= (Dg)b((Df)a(h)) + (Dg)b(Q1(h)) +Q2(k) linearity

Thus we have

‖g(f(a+ h))− g(f(a))− (Dg)f(a)(Df)a(h)‖
‖h‖

=
(Dg)f(a)(Q1(h)) +Q2(k)

‖h‖

≤‖(Dg)b‖op
‖Q1(h)‖
‖h‖

+
‖Q2(k)‖
‖h‖

triangle inequality and op norm

where the left term → 0 as h→ 0 by hypothesis. We want o prove that

lim
h→0

‖Q2(k)‖
‖h‖

= 0

to finish the proof.
Let ε1 > 0 be arbitrary, since limh→0

‖Q1(h)‖
‖h‖ = 0. Then ∃δ1 > 0 such that

0 < ‖h‖ < δ1 ⇒
‖Q1(h)‖
‖h‖

< ε1

by definitions of limits. Thus ‖Q1(h)‖ ≤ ε1‖h‖ ∀h where 0 < ‖h‖ < δ1.
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Since limk→0
‖Q2(k)‖
‖k‖ = 0 for any arbitrary ε2 > 0, then ∃δ2 > 0 such that

0 < ‖k‖ < δ2 ⇒
‖Q1(k)‖
‖k‖

< ε2

We claim that
‖h‖ < δ1 ⇒ ‖Q2(k)‖ ≤ ε2‖k‖ ≤ ε2‖h‖

Note that

‖k‖ = ‖f(a+ h)− f(a)‖
= ‖(Df)a(h) +Q1(h)‖
≤ ‖(Df)a‖op‖h‖+ ‖Q1(h)‖ triangle and op norm

(‖(Df)a‖op + ε1)‖h‖

for ‖h‖ < δ1. So ∃C > 0 such that ‖k‖ ≤ C‖h‖ for ‖h‖ < δ1 thus our claim holds.
From our claim, we have

‖Q2(k)‖
‖h‖

≤ ε2C

and since ε2 > 0 is arbitrary we have

lim
h→0

‖Q2(k)‖
‖h‖

= 0

18 February 12, 2018

18.1 Explicit form of chain rule

Writing out the chain rule explicitly with components:

y = (y1, . . . , ym) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

z = (z1, . . . , zp) = (g1(y1, . . . , ym), . . . , gp(y1, . . . , ym))

where z = g(y) = g(f(x)) = (g ◦ f)(x) = h(x).
Furthermore, let a = (a1, . . . , an) and b = (b1, . . . , bm).
Recall that the chain rule is given as

(Dh)a = (Dg)f(a)(Df)a

Let 1 ≤ i ≤ p, 1 ≤ j ≤ n. Then
(i,j)-th entry of (Dh)a =

∂hi
∂xj

(a)

which corresponds to

(i,j)-th entry of (Dg)b(df)a =

m∑
k=1

[(Dg)b]ik[(Df)a]kj
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Example 18.1. For the simple, single variable case where m = n = p = 1, we have

h′(a) = g′(f(a)) · f ′(a)

⇒dh

dx
(a) =

dg

dy
(f(a)) · df

dx
(a)

Remark 18.1. We commonly abuse notation when discussing derivatives. In the m = n = p = 1 example, we write

y = f(x)

z = g(y)

where y is really y(x) (it’s a function of x, similarly z). So really we are referring to

df

dx
is “equivalent” to

dy

dx
dg

dx
is “equivalent” to

dz

dx

So we may see
dz

dx
=
dz

dy

dy

dx

(these are not fractions!). In components
∂zi
∂xi

=
m∑
k=1

∂zi
∂yk

∂yk
∂xj

Example 18.2. Let f : R2 → R, differentiable on R2 and let (x, y) = h(r, θ) = (r cos θ, r sin θ).
Let h : R2 → R2 also differentiable on R2 (in C∞ actually, but we only need C1).
f ◦ h : R2 → R should be differentiable on R2.
Again, we use the abuse of notation where we write

f(r, θ) = f(x(r, θ), y(r, θ)) = f(h(r, θ))

So from the chain rule we have

fr =
∂f

∂r
=
∂f

∂x
· ∂x
∂r

+
∂f

∂y
· ∂y
∂r

= fx cos θ + fy sin θ

similarly we have

fθ =
∂f

∂θ
=
∂f

∂x
· ∂x
∂θ

+
∂f

∂y
· ∂y
∂θ

− r sin θ · fx + r cos θ · fy

18.2 The derivative is a linearization

For the n = 1 case, suppose f : U ⊆ R→ R where x0 ∈ U , y0 = f(x0) and f differentiable at x0.
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Figure 18.1: We can express the function at x0 as a linearization expressed by the tangent line.

We can express f as a linear function

f(x)− f(x0) = f ′(x0)(x− x0) +Rx0(h)

where h = x− x0. Also f(x)− f(x0) is the change in the function, f ′(x0)(x− x0) is the change in the tangent line,
and Rx0(h) is some remainder term.
We can say that f is differentiable at x0 iff limh→0

Rx0 (h)
h = 0 (this follows from the definition of the derivative:

also, the remainder term approaches 0 faster than the horizontal distance).
Let δy = f(x)− f(x0) (change in function between x0 and x), dy = f ′(x0)(x− x0) (change in the linearization).
Then δy ≈ dy for x close to x0 then

δy − dy

h
→ 0 as h→ 0

For n > 1, let f : U ⊆ Rn → R differentiable at x0. Then

f(x)− f(x0) = (Df)x0(x− x0) +Rx0(h)

where h = x− x0 ∈ Rn ((Df)x0 and (x− x0) are 1× n (row) and n× 1 (column) matrices, respectively).
where

lim
h→~0

Rx0(h)

‖h‖
= 0

For h ≈ ~0, dy = (Df)x0(x− x0) is a good approximation of δy = f(x)− f(x0) because

δy − dy

‖h‖
→ 0 as h→ ~0

When n = 1, the graph of the linear approximation to f(x) is L(x) = f(x0) + f ′(x0)(x − x0) (this follows by
dropping the remainder term as it goes to 0). It corresponds to the tangent line

{(x, y) | y = f(x0) + f ′(x0)(x− x0)}

When n = 2, the graph of the linear approximation to f(x) is the graph

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

If we let ~x0 = (x0, y0) then we have
L(~x) = f(~x0) + (Df)~x0(~x− ~x0)

which is the tangent plane at (x0, y0), i.e. the set of points

{(x, y, z) ∈ R3 | z = L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)}
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or
{(x, y, z) ∈ R3 | z = Ax+By + C}

a plane in R3 passing through (x0, y0, f(x0, y0)).

Figure 18.2: Graph of the linear approximation of f : R2 → R (n = 2). The curve is a wavy plane in R3 and we
can create a tangent plane at (x0, y0). The set at the bottom of the graph is our domain U ⊆ R2.

More generally, let f : U ⊆ Rn → R differentiable at x0 ∈ U . Then the graph of f is

Γf = {(x1, . . . , xn, y) ∈ Rn+1 | y = f(x1, . . . , xn)}
= {(x1, . . . , xn, f(x1, . . . , xn) | (x1, . . . , xn) ∈ U}

The linear approximation of f at x0 is the function L : Rn → R where

L(x) = f(x0) + (Df)x0(x− x0)

or explicitly

L(x1, . . . , xn) ∈ R = f(x0) +
n∑
k=1

∂f

∂xk
(x0)(xk − (x0)k)

= A1x1 +A2x2 + . . .+Anxn +B

where the summation term is B.
The graph of L is

ΓL = {(x1, . . . , xn, L(x1, . . . , xn)), (x1, . . . , xn) ∈ Rn}
= {(x1, . . . , xn, y), y = A1x1 + . . .+Anxn +B}

is a hyperplane in Rn+1 i.e. it is almost exactly the same thing as an n-dimensional subspace of Rn+1 except it
need not pass through the origin.
The graph ΓL is the tangent space to the graph of f at (x0, f(x0)) ∈ Rn × R = Rn+1.

Remark 18.2. f is just an Rn plane “moves around” in Rn+1. L approximates the Rn plane at a specific point at
x0 for f(x0).
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19 February 14, 2018

19.1 Taylor’s Theorem for one variable

Theorem 19.1 (Taylor’s Theorem for one variable). Let I ⊆ R be an interval, let p be a non-negative integer.
Let h : I → R be (p+ 1)-times differentiable on I (in particular this means h(k)(t) = dkh

dtk
is continuous ∀k = 0, . . . , p

while the (p+ 1)th derivative may not be continuous).
Let t0 6= t ∈ I. Then ∃θ between t0 and t such that

h(t) =

p∑
k=0

h(k)(t0)

k!
(t− t0)k +

h(p+1)(θ)

(p+ 1)!
(t− t0)p+1

where the summation is the pth Taylor polynomial of h at t0 and the last term is Rp(t) the remainder term (Note:
θ is not unique).

Proof. Define y ∈ R by

h(t) =

p∑
k=0

h(k)(t0)

k!
(t− t0)k +

y

(p+ 1)!
(t− t0)p+1

This can be solved uniquely for y (since we know all of h, p, t0, t; that is y depends on h, t, t0).
Define H : I → R as

H(s) = h(t)− [

p∑
k=0

h(k)(s)

k!
(t− s)k +

y

(p+ 1)!
(t− s)p+1]

H is continuous (all parts of it are continuous.) on I and differentiable.
By construction, H(t0) = 0. Also H(t) = h(t)− h(t) = 0 (where all terms disappear except when k = 0).
By Rolle’s Theorem, ∃θ between t0 and t such that H ′(θ) = 0.

Figure 19.1: Rolle’s theorem states there is some θ between t0 and t where the gradient is 0.
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Taking the derivative of the function

H ′(s) = 0− h′(s) +

p∑
k=1

h(k+1)(s)

k!
(t− s)k +

p∑
k=1

h(k)(s)

k!
· k · (t− s)k−1 +

y

(p+ 1)!
(p+ 1)(t− s)p

= −h′(s)−
p∑

k=1

h(k+1)(s)

k!
(t− s)k +

p−1∑
j=0

h(j+1)(s)

j!
(t− s)j +

y

p!
(t− s)p

= −h′(s)− h(p+1)(s)

p!
(t− s)p + h′(s) +

y

p!
(t− s)p

= −h
(p+1)(s)

p!
(t− s)p +

y

p!
(t− s)p

From Rolle’s Theorem, ∃θ between t0, t such that

H ′(θ) = 0

⇐⇒ −h
(p+1)(θ)

p!
(t− θ)p +

y

p!
(t− θ)p = 0

⇐⇒ y = h(p+1)(θ)

Remark 19.1. When p = 0, the theorem is just the Mean Value Theorem (MVT). That is: if h is differentiable
on I, ∃θ between t0, t such that

h(t) = h(t0) + h′(θ)(t− t0)

Remark 19.2. Taylor’s Theorem says that if h is (p + 1)-times differentiable on I, then for any t0 ∈ I, we can
approximate h by a pth order polynomial in t− t0, namely

hp(t) =

p∑
k=0

h(k)(t0)

k!
(t− t0)k

with an error term (remainder) “of order (t− t0)p+1”

Rp(t) =
h(p+1)(θ)

(p+ 1)!
(t− t0)p+1

in particular

lim
t→t0

h(t)− hp(t)
(t− t0)p

= 0⇒ lim
t→t0

Rp(t)

(t− t0)p
= 0

if h(p+1) is continuous at t0.

19.2 Taylor’s Theorem for C∞ (not on exam)

Remark 19.3. If h ∈ C∞(U) i.e. h(k) exists on U ∀k ∈ N then h has a pth Taylor polynomial at t0 ∈ I ∀p ∈ N

hp,t0(t) =

p∑
k=0

h(k)(t0)

k!
(t− t0)k
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Question: Is limp→∞ hp,t0(t) = h(t) always true?
Answer: Not always (it always holds for t = t0 but may not hold for any other t).
Note that if ∃t 6= t0 in I such that the above holds, then it holds ∀s ∈ I with |s− t0| < |t− t0|.
A function for which this is true for some t 6= t0 is called real analytic at t0.
Such functions have a convergent power series expansion at t0 with a positive radius of convergence.

20 February 16, 2018

20.1 Taylor’s Theorem for n variables

We will use Taylor’s Theorem for one variable to prove it for n variables.

Lemma 20.1. U ⊆ Rn open and non-empty. Let f ∈ Cp(U) (all partial derivatives of order at most p exist and
are continuous on U) for p ≥ 0.
Let a ∈ U , ξ ∈ Rn such that

{a+ tξ | t ∈ [0, 1]} ⊆ U

(line segment from a to a+ ξ).

Figure 20.1: We use some vector a ∈ U , ξ ∈ Rn, and a+ ξ ∈ U .

Note that {a+ tξ} ⊆ U for t ∈ (−ε, 1 + ε) for some ε > 0 since U is open.
Define g : (−ε, 1 + ε)→ R by

g(t) = f(a+ tξ)

(restriction of f to the line).
Then g ∈ Cp(I) i.e. dkg

dtk
exists and is continuous on I ∀k = 0, . . . , p and

dkg

dtk
=

n∑
j1,...,jk=1

∂kf

∂xj1 . . . ∂xjk
(a+ tξ)ξj1 · . . . · ξjk

for 1 ≤ k ≤ p (ξ = (ξ1, . . . , ξn)) (note we use abuse of notation here: the kth derivative is really a function of the t
in a+ tξ).

72



Winter 2018 MATH 247 Course Notes 20 FEBRUARY 16, 2018

Example 20.1. For n = 2, p = 3, we have

dg

dt
=

2∑
j=1

∂f

∂xj
(a+ tξ)ξj

= ξ1
∂f

∂x
(a+ tξ) + ξ2

∂f

∂y
(a+ tξ)

and

d2g

dt2
=

2∑
i,j=1

∂2f

∂xi∂xj
(a+ tξ)ξi · ξj

= fxx(a+ tξ)ξ2
1 + 2fxy(a+ tξ)ξ1ξ2 + fyy(a+ tξ)ξ2

2

Proof. By induction on p (with k) where 0 ≤ k ≤ p.
Let h(t) = a+ tξ where h : I → Rn is differentiable and we have hi(t) = ai + tξi.
Let g(t) = (f ◦ h)(t) = f(a+ tξ) which is continuous on I, so g is continuous on U .
Suppose p ≥ 1, f ∈ C1(U) so f is differentiable on U . By chain rule, g = f ◦ h is differentiable on I and

dg

dt
(t) =

n∑
i=1

∂f

∂xi
(h(t))

dhi
dt

(t)

=

n∑
i=1

∂f

∂xi
(a+ tξ)ξi

This proves the k = 1 case.
Assume true for 0 ≤ k < p. We’ll show it’s true for k + 1 ≤ p.
By hypothesis,

dkg

dtk
(t) =

n∑
j1,...,jk=1

∂kf

∂xj1 . . . ∂xjk
(a+ tξ)ξj1 · . . . · ξjk

We’d like to the derive our k + 1 derivative

dk+1g

dtk+1
(t) =

d

dt

(
dkg

dtk
(t)

)
=

n∑
j1,...,jk=1

d

dt

(
∂kf

∂xj1 . . . ∂xjk
(a+ tξ)ξj1 · . . . · ξjk

)

We claim that ∂kf
∂xj1 ...∂xjk

(function F ) is in C1: the first partial derivatives of F are the (k + 1)th partial derivatives

of f so ∂F
∂x1

, . . . , ∂F∂xn are continuous on U since f ∈ Cp(U) and k + 1 ≤ p.
So F ∈ C1(U) ⇒ F is differentiable by the chain rule

d

dt
F (x1(t), . . . , xn(t)) =

n∑
jk+1=1

∂F

∂xjk+1

(x1(t), . . . , xn(t))
dxjk+1

dt

where x(t) = a+ tξ ⇒ dxi
dt = ξi.

So we have
dk+1

dtk+1
g(t) =

n∑
j1,jk+1=1

∂k+1f

∂xj1 . . . ∂xjk+1

(a+ tξ)ξj1 · . . . · ξjk+1
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and g(k+1)(t) is continuous on I because it’s a composition of continuous functions (k + 1 ≤ p).

We’ll use the lemma to prove the general Taylor’s Theorem (for multivariables). First some notation

Definition 20.1. We denote

(D(k)f)a(ξ) =
n∑

j1,...,jk=1

∂kf

∂xj1 . . . ∂xjk
(a)ξ1 . . . ξk

for k ≥ 1 and (D(0)f)a = f(a).

Theorem 20.1 (Taylor’s Theorem for n variables). Let U ⊆ Rn open, f : U ⊆ Rn → R be in Cp+1(U). Let a ∈ U ,
ξ ∈ Rn such that {a+ tξ | t ∈ [0, 1]} ⊆ U .
Then ∃θ ∈ (0, 1) such that

f(a+ ξ) =

p∑
k=0

(D(k)f)a(ξ)

k!
+

1

(p+ 1)!
(D(p+1)f)a+θξ(ξ)

Proof. Define g(t) = f(a+ tξ) as before on I = (−ε, 1 + ε).
By Lemma, g ∈ Cp+1(I), g(k)(t) = (D(k)f)a+tξ(ξ) ∀k = 0, . . . , p+ 1.
By 1-D Taylor’s Theorem with t0 = 0, t = 1 (and θ ∈ (t0, t) = (0, 1)) we have

f(a+ (1)ξ) = g(1) =

p∑
k=0

g(k)(0)

k!
(1− 0)k +

g(p+1)(θ)

(p+ 1)!
(1− 0)p+1

=

p∑
k=0

(Dkf)a(ξ)

k!
+

(Dp+1f)a+θξ(ξ)

(p+ 1)!

as desired.

Example 20.2. Explicitly for p = 0 where p+ 1 = 1

f(a+ ξ) = f(a) +

n∑
k=1

∂f

∂xk
(a+ θξ)ξk

= f(a) + (∇f)(a+ θξ) · ξ

Example 20.3. Explicitly for p = 1 where p+ 1 = 2

f(a+ ξ) = f(a) +

n∑
k=1

∂f

∂xk
(a)ξk +

1

2

n∑
j,k=1

∂2f

∂xj∂xk
(a+ θξ)ξjξk

where (∇f)(a) · ξ =
∑n

k=1
∂f
∂xk

(a)ξk.

Example 20.4. Explicitly for p = 2 where p+ 1 = 3

f(a+ ξ) = f(a) +

n∑
k=1

∂f

∂xk
(a)ξk +

1

2

n∑
j,k=1

∂2f

∂xj∂xk
(a)ξjξk +

1

6

n∑
i,j,k=1

∂3f

∂xi∂xj∂xk
(a+ θξ)ξiξjξk
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20.2 Hessian matrix

Definition 20.2. The Hessian of f at a ∈ U is the n× n symmetric matrix (Hess f)a whose i, j entry is

∂2f

∂xi∂xj
(a)

So
∑n

j,k=1
∂2f

∂xj∂xk
(a)ξjξk =

∑n
j,k=1[(Hess f)a]jkξjξk = (Hess f)a(ξ, ξ) = ξT (Hess f)aξ.

If A is a symmetric real n× n matrix the bilinear form associated to A is the map A : Rn × Rn → R

A(x, y) =
n∑

j,k=1

Ajkxjyk = x · (Ay) = y · (Ax) = xTAy = yTAx

where x, y are n× 1 column matrices and A is n× n. A symmetric implies that A(x, y) = A(y, x)

20.3 Example of Taylor’s Theorem

Example 20.5. For n = 2, U = R2 and f : R2 → R where f(x, y) = sin(xy) let a = (a1, a2) = (
√

π
2 ,
√

π
2 ).

With Taylor’s formula for p = 1 (p+ 1 = 2)

fx = y cos(xy) fxx = −y2 sin(xy)

fy = x cos(xy) fyy = −x2 sin(xy)

fxy = cos(xy)− xy sin(xy)

Taylor says ∃ some θ ∈ (0, 1) such that

a+ θξ = [a1 + θξ1, a2 + θξ2] = [c1, c2]

Let (x, y) = a+ ξ = (a1 + ξ1, a2 + ξ2) where ξ1 = x− a1, ξ2 = y − a2.
Then we have

f(x, y) = f(a1, a2) + fx(a1, a2)(x− a1) + fy(a1, a2)(y − a2)

+
1

2
[fxx(c1, c2)(x− a1)2 + 2fxy(c1, c2)(x− a1)(y − a2) + fyy(c1, c2)(y − a2)2]

For this example, a1 = a2 =
√

π
2 . So we have

fx(a1, a2) = fy(a1, a2) = 0

f(a1, a2) = sin(
π

2
) = 1

Thus we end up with

f(x, y) = 1+0+0+
1

2
[−c2

2 sin(c1c2)(x−
√
π

2
)2+2(cos(c1c2)−c1c2 sin(c1c2))(x−

√
π

2
)(y−

√
π

2
)−c2

1 sin(c1c2)(y−
√
π

2
)2]

20.4 Application of Taylor’s Theorem

Proposition 20.1. Let f : U ⊆ Rn → R. Suppose f ∈ C1(U).
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Let K be a compact subset of Rn with K ⊆ U . If E ⊆ K is convex, ∃ a constant M > 0 (depending on f and on
K but not on E) such that

‖f(x)− f(y)‖ ≤M‖x− y‖ ∀x, y ∈ E

Proof. f ∈ C1 so each ∂f
∂xk

is continuous on U . K ⊆ U is compact so ∂f
∂xk

are bounded on K by EVT.
So ∃M > 0 such that

‖(∇f)(a)‖2 =

n∑
k=1

(
∂f

∂xk
(a))2 ≤M2 ∀a ∈ K

So
|(∇f)(a) · v|

C−S
≤ ‖(∇f)(a)‖‖v‖ ≤M‖v‖

for all a ∈ K and all v ∈ Rn.
By Taylor’s for p+ 1 = 1, let x, y ∈ E and let x = y + ξ ⇒ x− y = ξ. Then

f(y + ξ) = f(y) + (∇f)(a) · ξ

For some a between x, y. Since E is convex then a ∈ E so then

f(x)− f(y) = (∇f)(a) · (x− y)

⇒‖f(x)− f(y)‖ ≤M‖x− y‖

as desired.

21 February 26, 2018

21.1 Lipschitz functions

From before, we showed that
‖f(x)− f(y)‖ ≤M‖x− y‖ ∀x, y ∈ E

on some E ⊆ K ⊆ U . This says the restriction of f on E is Lipschitz: in particular any Lipshitz function on a
set E is uniformly continuous on E (for any ε, choose δ = ε

M ). Note however that uniform continuity does not
imply Lipschitz.

21.2 Slightly more general version of Taylor’s theorem

Theorem 21.1 (More general 1-D Taylor’s theorem). Let I ⊆ R be an interval, p ∈ N. Let h : I ⊆ R→ R be p
times differentiable (previously we had p+ 1). Then for t 6= t0 ∈ I

h(t) =

p∑
k=0

h(k)(t0)

k!
(t− t0)k +Rt0,p(t)

where the summation is the pth Taylor polynomial of h at t0 (as before) and the Rt0,p(t) is some general remainder
term (previously we knew this was a term in terms of h(p+1)(θ) for some θ ∈ (t0, t)).
Note that

lim
t→t0

Rt0,p(t)

(t− t0)p
= 0

(prove using L’Hopital’s rule).
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Theorem 21.2 (More general multivariable Taylor’s theorem). f : U ⊆ Rn → R (U open, as always). Suppose
f ∈ Cp(U) (previously had Cp+1(U)). Let a ∈ U , ξ ∈ Rn such that

{a+ tξ, t ∈ [0, 1]} ⊆ U

Let

(D(k)f)a(ξ) =
n∑

j1,...,jk=1

∂kf

∂xj1 . . . ∂xjk
(a)ξ1 . . . ξk

(as before). Define h(t) = f(a+ tξ). Apply (more general) 1-D case to t0 = 0, t = s. One can show that

f(x) =

p∑
k=0

D(k)f)a(ξ)

k!
+Ra,p(x)

where x = a+ ξ and where

lim
x→a

Ra,p(x)

‖x− a‖p
= 0

21.3 Optimization (min/max) for real-valued functions of several variables

Let f : U ⊆ Rn → R (m = 1) be differentiable on U (e.g. this is automatic if f ∈ C1(U)).

Definition 21.1. Let a ∈ U . We say f has a local minimum at a if ∃ε > 0 such that

f(x) ≥ f(a) ∀x ∈ Bε(a)

(i.e. all points around it in some open ball of radius ε > 0 are greater than it).
We say f has a local maximum at a if ∃ε > 0 such that

f(x) ≤ f(a) ∀x ∈ Bε(a)

Claim. If f has a local max or a local min at a ∈ U , then

(∇f)(a) = ~0

Proof. Fix j ∈ {1, . . . , n}, a = (a1, . . . , an). Consider the one variable function

g(t) = f(a+ tej) = f(a1, . . . , aj−1, aj + t, aj+1, . . . , an)

g(t) has a local max or local min at t = 0.
So by single variable calculus, g′(0) = 0. So we have

∂f

∂xj
(a) = lim

t→0

f(a+ tej)− f(a)

t
= lim

t→0

g(t)− g(0)

t
= 0

So ∂f
∂xj

(a) = 0 for all j = 1, . . . , n.

21.4 Critical points and saddle points

Definition 21.2. A point a ∈ U such that (∇f)(~a) = 0 is called a critical point of f .
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We’ve shown if f has a local max or local min at a, then a is a critical point. But the converse is not true: not all
critical points correspond to local extrema.

Example 21.1.
f(x, y) = x2 − y2

We have
(∇f) = (2x,−2y) = (0, 0)

at (x, y) = (0, 0) (this is a critical point). It is however not a minimum or a maximum.

Figure 21.1: A graph of f(x, y) = x2 − y2 where (0, 0) is a saddle point.

Definition 21.3. A critical point a ∈ U of f is called a saddle point if ∃ε > 0 such that ∀ε′ ∈ (0, ε), ∃x, yBε′(a)

f(x) < f(a) < f(y)

(i.e. one side goes up and one side goes down).

21.5 Second derivative test

This was covered in class but was re-visited (with corresponding proof) later on.

22 February 28, 2018

22.1 Bilinear and quadratic forms

Definition 22.1. H is bilinear on Rn i.e. H : Rn × Rn → R such that

H(av + bw, u) = aH(v, u) + bH(w, u)

H(v, aw + bu) = aH(v, w) + bH(v, u)
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where a, b ∈ R and u, v, w ∈ Rn.

Let e1, . . . , en be standard basis of Rn. So

x =
n∑
i=1

xiei y =
n∑
j=1

yjej

where x, y ∈ Rn.

H(x, y) =
n∑

i,j=1

H(ei, ej)xiyj

by bilinearity (we can factor out each ek).
Define Hij = H(ei, ej) (entries of an n× n real matrix that represents the bilinear form H with respect to the basis
{e1, . . . , en}).

H(x, y) =
n∑

i,j=1

Hijxiyj = xTHy

H(y, x) =
n∑

i,j=1

Hijyixj =
n∑

i,j=1

Hjiyjxi

We say H is symmetric if H(x, y) = H(y, x) ∀x, y ∈ Rn. Clear: H is symmetric iff Hij = Hji.
From now on suppose H is a symmetric bilinear form. Q is a homogeneous 2nd degree polynomial (no terms
have degree < 2) on Rn.
In particular it’s continuous on Rn. Notice: if λ ∈ R

Q(λx) = λ2Q(x) (22.1)

Aside: if we know Q is the quadratic form of some symmetric bilinear form H, then H can be recovered from Q
via the “polarization” identity:

Q(x+ y) = H(x+ y, x+ y) = H(x, x) + 2H(x, y) +H(y, y)

= Q(x) +Q(y) + 2H(x, y)

Definition 22.2. Notice Q(0) = 0 always.

1. We say Q is positive definite if Q(x) > 0 ∀x 6= ~0.

2. We say Q is positive semi-definite if Q(x) ≥ 0 ∀x ∈ Rn.

3. We say Q is negative definite if Q(x) < 0 ∀x 6= ~0.

4. We say Q is negative semi-definite if Q(x) ≤ 0 ∀x ∈ Rn.

5. We say Q is indefinite if ∃x, y ∈ Rn such that Q(x) > 0, Q(y) < 0.

For indefinite, non-degenerate means no z 6= ~0⇒ Q(z) = 0. Degenerate if there is such a z.

Aside: This property of Q is connected to the signs of the eigenvalues of any matrix representing the bilinear form
H. The number of positive, negative, and 0 eigenvalues are independent of choice of basis (the quantity is the same,
but they may be different valued). So
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1. positive definite ⇐⇒ only positive eigenvalues

2. positive semi-definite ⇐⇒ only non-negative eigenvalues

3. Similarly for negative cases.

4. indefinite ⇐⇒ ∃ at least one positive and one negative eigenvalue (there may exist 0 eigenvalues too).

Lemma 22.1. Let Q be a quadratic form associated to symmetric bilinear form of H.

1. If Q is positive definite, ∃M > 0 such that Q(x) ≥M‖x‖2 ∀x ∈ Rn.

2. If Q is negative definite, ∃M > 0 such that Q(x) ≤ −M‖x‖2 ∀x ∈ Rn.

Proof. Let
Sn−1 = ∂(B1(~0)) = {x ∈ Rn | ‖~x‖ = 1}

(called unit sphere in Rn).
Sn−1 is compact (closed and bounded). Why is it closed? We have F : Rn → R and F (x) = ‖x‖2 where F is
continuous. Note that Sn−1 = F−1({1}) where {1} is closed in R. Thus the inverse image of closed is closed.
Q is continuous on compact set Sn−1. By EVT ∃ some M ∈ R such that

Q(x) ≥M ∀x ∈ Sn−1

and some x0 ∈ Sn−1 where Q(x0) = M .
But since Q is positive definite and x0 6= ~0 (it’s on unit sphere), then M = Q(x0) > 0. Let x 6= ~0 ∈ Sn−1, so we
have x

‖x‖ ∈ S
n−1 (‖x‖ = 1). By eq. (22.1) we have

M ≤ Q
(

x

‖x‖

)
=

1

‖x‖2
Q(x)⇒ Q(x) ≥M‖x‖2

for x 6= ~0 and trivial for x = ~0.
Negative definite case similar.

22.2 Second derivative test

From the above lemma, we can prove the second derivative test.

Theorem 22.1. Let f : U ⊆ Rn → R, f ∈ C2(U) (we usually only consider C2 functions for 2nd derivative tests).
Let a be a critical point for f ((∇f)(a) = ~0).
Let Hij = ∂2f

∂xi∂xj
(a) and H be the Hessian of f at a (symmetric n× n matrix represents symmetric bilinear form

with associated quadratic form Q).

1. If Q is positive definite, then f has a local min at a.

2. If Q is negative definite, then f has a local max at a.

3. If Q is indefinite, then a is a saddle point of f .

(otherwise test fails and any of the 3 can happen).
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Proof. By Taylor’s theorem, since f ∈ C2(U) we have

f(x) = f(a) + (∇f)(a) · (x− a) +
1

2

n∑
i,j

∂2f

∂xi∂xj
(a)(xi − ai)(xj − aj) +R(x)

note that (∇f)(a) = 0 since a is a critical point. We also have

lim
x→a

R(x)

‖x− a‖2
= 0

for all x in some ball Br(a) ⊆ U .
Let y = x− a. Then

f(x) = f(a) +
1

2

n∑
i,j

Hijyiyj +R(y)

for x ∈ Br(a0 and

lim
y→0

R(y)

‖y‖2
= 0 (22.2)

Rewriting with Q(y) =
∑n

i,j Hijyiyj we have

f(x) = f(a) +
1

2
Q(y) +R(y)

By eq. (22.2) ∃δ > 0 (WLOG δ < r) such that

‖y‖ < δ ⇒ |R(y)|
‖y‖2

<
M

2

So we have
−M

2
<
R(y)

‖y‖2
<
M

2
⇒ −M

2
‖y‖2 < R(y) <

M

2
‖y‖2

Case 1: Q is positive definite By lemma, ∃M > 0 such that Q(y) ≥M‖y‖2 ∀y. Thus we have

f(x) = f(a) +
1

2
Q(y) +R(y)

≥ f(a) +
M

2
‖y‖2 − M

2
‖y‖2

= f(a) ∀x ∈ Bδ(a)

so f has a local min at a.

Case 2: Q is negative definite ∃M > 0 such that Q(x) =≤ −M‖y‖2 by lemma. So

f(x) = f(a) +
1

2
Q(y) +R(y)

≤ f(a)− M

2
‖y‖2 +

M

2
‖y‖2

= f(a)

so f has a local max at a.
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Case 3: Q is indefinite ∃y, ỹ non-zero in Rn with

Q(y) = A > 0

Q(ỹ) = −Ã < 0

where A, Ã > 0.

Define for t ∈ R

yt = ty

ỹt = tỹ

By eq. (22.2) ∃δ > 0 such that for any z ∈ Rn and ‖z‖ < δ and

|R(z)|
‖z‖2

<
1

2
min{ A

‖y‖2
,
Ã

‖ỹ‖2
} = ε

(i.e. −‖z‖2ε < R(z) < ε‖z‖2).
Let |t| be sufficient small so yt, ỹt ∈ Bδ(0) i.e.

|t| < min{ δ

‖y‖
,
δ

‖ỹ‖
}

Let x = a+ y such that

f(a+ yt) = f(a) +
1

2
Q(yt) +R(yt)

= f(a) +
t2

2
A+R(yt)

similarly f(a+ ỹt) = f(a)− t2

2 A+R(ỹt).

Then we have

f(a+ yt) = f(a) +
t2

2
A+R(yt)

> f(a) +
t2

2
A− ε‖yt‖2 > f(a) +

t2

2
A− 1

2

A

‖y‖2
‖yt‖2

= f(a) +
t2

2
A− t2

2
A

= f(a)
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Similarly

f(a+ ỹt) = f(a)− t2

2
A+R(ỹt)

< f(a)− t2

2
A+

1

2

Ã

‖ỹ‖2
‖ỹt‖2

= f(a)

So a is a saddle point of f .

23 March 2, 2018

23.1 Examples where 2nd derivative test fails

Example 23.1.

f(x, y) = x4 + y2

g(x, y) = −x4 − y2

h(x, y) = x3 + y2

all have one critical point at (0, 0).
Their Hessians at (0, 0) are

(Hess f)(0,0) =

[
0 0
0 2

]
(Hess g)(0,0) =

[
0 0
0 −2

]
(Hess h)(0,0) =

[
0 0
0 2

]
they are all neither positive definite, negative definite, nor indefinite (∃x 6= ~0 such that xTHx = 0 so no definite
cases; all either positive or negative elements so not indefinite).
Test fails so we cannot apply it. The point (0, 0) for any of the three functions is either a local min, local max, or a
saddle point (unknown).

23.2 Matrix norms

Let Rn×n space of n× n real matrices, which ≈ Rn2 as a vector space.

Definition 23.1. Define the norm on Rn×n by taking the usual Euclidean norm on Rn2

‖A‖2 =

n∑
i,j=1

A2
ij

Claim. Let A ∈ Rn×n and x ∈ Rn ≈ Rn×1, so Ax ∈ Rn×1 ≈ Rn.
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We claim
‖Ax‖ ≤ ‖A‖‖x‖ ∀x ∈ Rn

(just like for op norms).

Proof. We have

A =


A1

A2
...
An

 x =


x1

x2
...
xn


Thus we have

Ax =


A1x
A2x
...

Anx

 ∈ Rn×1

So we can express

‖Ax‖2 =

n∑
i=1

(Ai · x)2

C−S
≤

n∑
i=1

‖Ai‖2‖x‖2

= ‖x‖2
n∑
i=1

‖Ai‖2

= ‖x‖2‖A‖2

as desired.

23.3 Inverse function theorem

Theorem 23.1 (Inverse function theorem). Let f : U ⊆ Rn → Rn be in Ck(U) for some k ≥ 1.
Let V = f(U), let a ∈ U such that (Df)a is invertible (note that n = m since we require square matrices for
invertibility).
Then ∃ open set Ũ ⊆ U containing a, an open set Ṽ ⊆ V contain f(a), and a map g : Ṽ → Ũ (with g(Ṽ ) = Ũ)
such that g(f(x)) = x ∀x ∈ Ũ and f(g(y)) = y ∀y ∈ Ṽ .
Moreover, g ∈ Ck(Ṽ ) for the same k and if b ∈ Ṽ then

(Dg)b = [(Df)f−1(b)]
−1

Figure 23.1: Diagram of a function that satisfies the inverse function theorem for some Ũ , Ṽ .
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Lemma 23.1. We claim that
f

∣∣∣∣
Ũ

: Ũ → Ṽ

is a bijection.

23.4 Lemma 1 for inverse function theorem

Lemma 23.2. Lemma 1 (inverse function theorem) Let f : U ⊆ Rn → Rn (U open) be in Ck(U) for k ≥ 1. Let
a ∈ U . If (Df)a is invertible, then ∃ open n’h’d Ũ of a with Ũ ⊆ U and M > 0 such that

‖f(x1)− f(x2)‖ ≥M‖x1 − x2‖ ∀x1, x2 ∈ Ũ

Consequence: The restriction of f to Ũ ⊆ U is one-to-one (set f(x1) = f(x2)⇒ x1 = x2).

Proof. Let L = (Df)a. By hypothesis L is invertible. Thus

x1 − x2 = L−1L(x1 − x2)

= L−1(Lx1 − Lx2)

‖x1 − x2‖ = ‖L−1(Lx1 − Lx2)‖
≤ ‖L−1‖‖Lx1 − Lx2‖

=
1

2M
‖Lx1 − Lx2‖ let 2M =

1

‖L−1‖

So we have
‖Lx1 − Lx2‖ ≥ 2M‖x1 − x2‖ (23.1)

Since f ∈ Ck(U), k ≥ 1, each ∂fi
∂xj

is continuous on U . (Df)x is the n× n matrix whose (i, j)th entry is ∂fi
∂xj

(x).
So the entries of the matrix (Df)x are continuous functions on U .
Recall that L = (Df)a where a ∈ U , so ∃ε > 0 such that if ‖x− a‖ < ε then

n∑
i,j=1

(
∂fi
∂xj

(x)− ∂fi
∂xj

(a))2‖(Df)x − L‖2 <
M2

n
(23.2)

(take ‖x− a‖ < δij which implies ‖ ∂fi∂xj
(x)− ∂fi

∂xj
(a)‖2 < M2

n2 , then ε = min{δij} and the result follows).
Define h(x) = f(x)− Lx, where h : U ⊆ Rn → Rn.
Note that (DL)x = L (for any linear maps as shown on midterm Q3).
So

(Dh)x = (Df)x − (DL)x

(Dh)x = (Df)x − L

Thus we have
‖(Dh)x‖ = ‖(Df)x − L‖ <

M√
n

(23.3)

if x ∈ Bε(a) by eq. (23.2).
Apply MVT to h ∈ C1(U) on Bε(a) (i.e. Taylor’s theorem for p+ 1 = 1 applied to each component of h ∈ C1):
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Given x1, x2 ∈ Bε(a), ∃ ci’s on line segment between x1 and x2 such that

hi(x2)− hi(x1) = (∇hi)(ci)(x2 − x1)

‖hi(x2)− hi(x1)‖2
C−S
≤ ‖(∇hi)(ci)‖2‖x2 − x1‖2

Summing over all components hi
n∑
i=1

‖hi(x2)− hi(x1)‖2 ≤
n∑
i=1

‖(∇hi)(ci)‖2‖x2 − x1‖2

eq. (23.3)
≤

n∑
i=1

M2

N
‖x2 − x1‖2 ‖(∇hi)(ci)‖2 ≤ ‖(Dh)ci‖2

= M2‖x2 − x1‖2

Therefore ‖h(x2)− h(x1)‖ ≤M‖x2 − x1‖ for all x1, x2 ∈ Bε(a). This can be written as

‖f(x2)− Lx2 − (f(x1)− Lx1)‖ ≤M‖x2 − x1‖
‖(f(x2)− f(x1))− (Lx2 − Lx1)‖ ≤M‖x2 − x1‖

Note that ‖A−B‖ = ‖B−A‖ ≥ ‖B‖−‖A‖ (by triangle inequality). Thus for A = f(x2)−f(x1) and B = Lx2−Lx1

M‖x2 − x1‖ ≥ ‖A−B‖ ≥ ‖B‖ − ‖A‖
= ‖L(x2 − x1)‖ − ‖f(x2)− f(x1)‖
eq. (23.1)
≥ 2M‖x2 − x1‖ − ‖f(x2)− f(x1)‖

Thus the lemma immediately follows.

24 March 5, 2018

24.1 Lemma 2 for inverse function theorem

Lemma 24.1 (Lemma 2 (inverse function theorem)). Let f : U ⊆ Rn → Rn be in Ck(U), k ≥ 1. Let V = f(U). If
f is injective (1-1) on U and (Df)a is invertible ∀x ∈ U , then V is open.
(Note: on A8 Q5 we use Lemma 1 and Lemma 2 to show that you can remove the injective hypothesis from Lemma
2 and the result still holds).

Proof. We want to show V is open.
Let b ∈ V . We want to find an open ball centred at b completely contained in V .
Since f : U → V is an injection then ∃ one a ∈ U with f(a) = b (a = f−1(b)).
Because U is open, ∃ε > 0 such that

K = Bε(a) ⊆ U

(take an open ball by openness, then take a closed ball slightly and strictly smaller).
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Figure 24.1: Diagram of proof for Lemma 2 for the inverse function theorem.

Note ∂K is compact because it’s closed and bounded. Since f is continuous, f(∂K) is a compact subseteq of Rn
contained in V .
Since a 6∈ ∂K so b 6∈ f(∂K) because f is 1-1 on U .
Since f(∂K) is compact and hence closed, and b 6∈ f(∂K) so ∃δ > 0 such that

B2δ(b) ∩ f(∂K) = ∅ (24.1)

(b ∈ (f(∂K))c which is open so open ball).

Claim. For any y ∈ Bδ(b), y = f(x) for some x ∈ K.
If the claim holds, then Bδ(b) ⊆ f(K) ⊆ f(U) = V then V is open. It remains to prove the claim.
Let y ∈ Bδ(b).
Define φ : U → R by φ(x) = ‖f(x)− y‖2. Since f ∈ Ck(U) for k ≥ 1 and x 7→ ‖x‖2 is in C∞(Rn) by the chain rule
φ ∈ Ck(U) for k ≥ 1 so φ is differentiable.
Since K ⊆ U is compact by EVT ∃ point x0 ∈ K such that φ(x0) ≤ φ(x) ∀x ∈ K (global min).
TODO(richardwu): Why is anything from below until the part where we know x0 is already a local
minimum necessary? Thus

φ(a) = ‖f(a)− y‖2 = ‖b− y‖2 < δ2

since y ∈ Bδ(b) and a ∈ K, then φ(x0) < δ2 since x0 is where our global minimum is.
Suppose x0 ∈ ∂K. Then f(x0) ∈ f(∂K) so f(x0) 6∈ B2δ(b) by eq. (24.1) so ‖f(x0)− b‖ > 2δ.
Thus we have

‖f(x0)− y‖
4
≥ ‖f(x0)− b‖ − ‖b− y‖
> 2δ − δ > δ

So φ(x0) > δ2 which is a contradiction.
Hence x0 6∈ ∂K so x0 ∈ int(K).
φ has a local minimum at x0 (since it is a global min).
Hence x0 is an optimal point of φ so (∇φ)(x0) = 0.

φ(x) = ‖f(x)− y‖2

=
n∑
k=1

(fk(x)− yk)2

∂φ

∂xj
=

n∑
k=1

2(fk(x)− yk) ·
∂fk
∂xj

Thus
(∇φ)(x0) = 2(f(x0)− y)T (Df)x0 = 0

By hypothesis, (Df)x is invertible ∀x ∈ U , x0 ∈ K ⊆ U so (Df)x0 is invertible which implies that f(x0)− y = 01×n.
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So f(x0) = y which proves the claim.

24.2 Lemma 3 for inverse function theorem

Lemma 24.2 (Lemma 3 (inverse function theorem)). (Same hypothesis as Lemma 1 and 2).
Let f : U ⊆ Rn → Rn be in Ck(U), k ≥ 1, V = f(U), f is injective (1-1) on U and (Df)a is invertible ∀x ∈ U .
Then

g = f−1 : V = f(U)→ U ⊆ Rn

is continuous.

Proof. Let W ⊆ Rn be open. We needto show g−1(W ) ⊆ V is an open subset.

g−1(W ) = {y ∈ V, g(y) ∈W}
= {y ∈ V, g(y) ∈W ∩ U}
= g−1(W ∩ U)

= f(W ∩ U)

So we need to show f(W ∩U) is open for all W open on Rn, but this follows by applying Lemma 2 with U replaced
by U ∩W .

24.3 Lemma 4 for inverse function theorem

Lemma 24.3 (Lemma 4 (inverse function theorem)). (Same hypothesis as Lemma 1, 2, and 3).
Let f : U ⊆ Rn → Rn be in Ck(U), k ≥ 1, V = f(U), f is injective (1-1) on U and (Df)a is invertible ∀x ∈ U .
Then g : f−1 : V → U is differentiable at b for all b ∈ V and

(Dg)b = [(Df)f−1(b)]
−1

Proof. Let b ∈ V . We will show g is differentiable at b and (Dg)b = (Df)−1
a where f(a) = b.

We need to show ∃ linear map T : Rn → Rn such that

lim
h→~0

g(b+ h)− g(b)− T (h)

‖h‖
= ~0

Let L = (Df)a. We’ll show T = L−1 works (which proves the theorem), that is

G(h) =
g(b+ h)− g(b)− L−1h

‖h‖
→ ~0

as h→ ~0.
Define δ(h) = g(b+ h)− g(b) for ‖h‖ small. We claim ∃ε > 0 such that ‖δ(h)‖

‖h‖ is bounded for 0 < ‖h‖ < ε.
Notice

δ(h) = ‖h‖G(h) + L−1(h)⇒ ‖δ(h)‖
‖h‖

≤ ‖L−1‖+ ‖G(h)‖

(if we knew limh→~0G(h) = ~0 then it follows it is bounded for 0 < ‖h‖ < ε for ε sufficient small, but we don’t know
this: this is exactly what we’re trying to prove!)
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By Lemma 1, ∃Ũ ⊆ U , open n’h’d of a and M > 0 such that

‖f(x1)− f(x2)‖ ≥M‖x1 − x2‖ ∀x1, x2 ∈ Ũ (24.2)

By Lemma 2 since f is 1-1 on Ũ , Ṽ = f(Ũ) is open.
Choose ε > 0 such that b+ h ∈ Ṽ = f(Ũ) when ‖h‖ < ε.
So b+ h = f(x) for some x ∈ Ũ thus g(b+ h) = x.
Applying eq. (24.2) with x1 = g(b+ h)⇒ f(x1) = b+ h and x2 = f(b)⇒ f(x2) = b we get

‖(b+ h)− b‖ ≥M‖g(b+ h)− g(b)‖

So
‖δ(h)‖
‖h‖

=
‖g(b+ h)− g(b)‖

‖h‖
≤ 1

M

if 0 < ‖h‖ < ε, thus we’ve proven the claim that it is bounded.
Thus

G(h) =
δ(h)− L−1h

‖h‖

=
−L−1(h− Lδ(h))

‖δ(h)‖
· ‖δ(h)‖
‖h‖

We know δ(h) 6= 0 if h 6= 0 because g is 1-1 on V , so

‖G(h)‖ ≤ ‖L−1‖ · ‖h− Lδ(h)

‖δ(h)‖
‖ · ‖δ(h)‖
‖h‖

So it is enough to show that the second term → 0 since the other terms are bounded.
Note that

b+ h = f(g(b+ h)) = f(g(b) + δ(h)) = f(a+ δ(h))

So h = f(a+ δ(h))− b = f(a+ δ(h))− f(a).
So we have

h− Lδ(h)

‖δ(h)‖
=
f(a+ δ(h))− f(a)− Lδ(h)

‖δ(h)‖

Note as h→ ~0 then ‖δ(h)‖ → 0 because by Lemma 3 g is continuous on V so limh→0 g(b+ h)− g(b) = δ(h) = 0, so
the above → 0 since L = (Df)a and f is differentiable at a.
Thus g is differentiable at b and (Dg)b = (Df)−1

a = [(Df)g(b)]
−1.

25 March 7, 2018

25.1 Lemma 5 for inverse function theorem

(Same hypothesis as Lemma 1, 2, 3, and 4).
Let f : U ⊆ Rn → Rn be in Ck(U), k ≥ 1, V = f(U), f is injective (1-1) on U and (Df)a is invertible ∀x ∈ U .
For g : f−1 : V → U , g ∈ Ck(V ) for the same k.

Proof. Lemma 2 says V is open.
Lemma 3 says g : f−1 : V → U is continuous.
Lemma 4 says g is differentiable on V .
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g ◦ f : U → U is the identity map. By the chain rule

(Dg)b ◦ (Df)a = I

where b = f(a), so (Dg)b = [(Df)g(b)]
−1 (we gave another proof last time) where f(a) = b and a = g(b).

Define a map Dg : V → Rn×n where

Dg :V
g→ U

Df→ W
i(inverse)→ W (25.1)

b 7→ g(b) 7→ (Df)g(b) 7→ [(Df)g(b)]
−1 (25.2)

where i = A→ A−1 is the inverse and i : W →W is in C∞(W ) (this follows since i(A) = adj(A)
det(A) where det(A) are

entries of degree n− 1 homoegenous polynomials which are in C∞). (W ⊆ Rn×n in fact open subset of invertible
matrices).
We want to show f ∈ Ck → g ∈ Ck for k ≥ 1.
Base case (k = 1): Since f ∈ C1 ⇒ Df ∈ C0. g ∈ C0 by Lemma 3, so Dg ∈ C0 by eq. (25.1) so g ∈ C1.
We’ve shown this for k = 1.
Inductive case: suppose f ∈ Cr−1(U), r − 1 ≥ 1 implies g ∈ Cr−1(V ).
We want to show this is true for r.
Let f ∈ Cr ⇒ f ∈ Cr−1 ⇒ g ∈ Cr−1 by inductive hypothesis.
Also Df ∈ Cr−1 so Dg = i ◦ (Df) ◦ g ∈ Cr−1 (they’re all in Cr−1).
Thus g ∈ Cr.

25.2 Proof of inverse function theorem

Recall the theorem:

Theorem 25.1 (Inverse function theorem). Let f : U ⊆ Rn → Rn be in Ck(U) for some k ≥ 1.
Let V = f(U), let a ∈ U such that (Df)a is invertible (note that n = m since we require square matrices for
invertibility).
Then ∃ open set Ũ ⊆ U containing a, an open set Ṽ ⊆ V contain f(a), and a map g : Ṽ → Ũ (with g(Ṽ ) = Ũ)
such that g(f(x)) = x ∀x ∈ Ũ and f(g(y)) = y ∀y ∈ Ṽ .
Moreover, g ∈ Ck(Ṽ ) for the same k and if b ∈ Ṽ then

(Dg)b = [(Df)f−1(b)]
−1

Proof. Since f ∈ C1 and det((Df)a) 6= 0, ∃ open n’h’d of W of a, W ⊆ U such that (Df)x is invertible ∀x ∈ W
(this follows since det((Df)a) is some function of a and is not 0. Since det((Df)a) is continuous there is an open
n’h’d where it is also not 0 and thus making Df invertible on this W ).

Lemma 1 says ∃Ũ ⊆W , Ũ open n’h’d of a such that f
∣∣∣∣
Ũ

is one-to-one.

Lemma 2 says Ṽ = f(Ũ) is open.
Lemma 3 says f−1 : Ṽ → Ũ is continuous.
Lemma 4 says f−1 is differentiable.
Lemma 5 says f−1 ∈ Ck(Ṽ ) for the same k.

25.3 Example of inverse function theorem

Example 25.1. Let (x, y) = f(u, v) = (uv, u2 + v2) where f : R2 → R2. Note that f ∈ C∞(R2) since fi are
polynomials.
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We want to prove f−1 exists and is C∞ in some nonempty open set containing (2, 5).
For f(a, b) = (2, 5), find all points (u, v) ∈ R2 such that f(u, v) = (2, 5).

uv = 2⇒ v =
2

u

u2 + v2 = 5⇒ u2 +
4

u2
= 5

⇒ u4 − 5u2 + 4 = 0

⇒ (u2 − 1)(u2 − 4) = 0

So (u, v) = {(1, 2), (−1,−2), (2, 1), (−2,−1)} (4 points).
Note that

(Df)(u,v) =

[∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

]
=

[
v u
2u 2v

]
Thus det((Df)(u,v) = 2v2 − 2u2 = 2(v2 − u2) 6= 0 for any of our points.
So by the Inverse Function Theorem (IFT), for any of these 4 points (a, b) there is an open n’h’d Ũ of (a, b) and an
open n’h’d of Ṽ of (2, 5) such that f : Ũ → Ṽ is invertible and f−1 ∈ C∞(Ṽ ).
Aside: Let’s see this explicitly. For x = uv and y = u2 + v2, we solve for u, v as functions of x, y.

v =
x

u

y = u2 +
x2

u2
⇒ u4 − u2y + x2 = 0

So

u2 =
y ±

√
y2 − 4x2

2
⇒ u = ±

√
y ±

√
y2 − 4x2

2

v = ±x
√

2

y ±
√
y2 − 4x2

Note we have 4 solutions for u and v (4 combinations of ±).
Each are defined on a n’h’d of exactly one of 4 points (a, b) we found before: note when x = 2 and y = 5 so
u2 = 5±3

2 = 4 or 1 which means u = 2,−2, 1,−1.

25.4 Informal motivation for implicit function theorem

Informal motivation: Let f : W ⊆ Rn+m → Rq (where Rn × Rm = Rn+m).
We write z ∈ Rq = f(y, x) where y ∈ Rn and x ∈ Rm.
Question: Can we solve the equation f(y, x) = 0 for y as a function of x? (we want to find y = h(x) such that
f(h(x), x) = 0 for all x).
This would say that f(y, x) = 0 implicitly defines y as a function of x.
Simplest case: suppose f is linear where Rn+m → Rq. f is multiplication by a q × (n+m) matrix.

f(y, x) = A

[
y
x

]
=
[
An Am

] [y
x

]
= 0
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where
[
y
x

]
is an (n+m)× 1 matrix (y and x is n× 1 and m× 1, respectively, and An and Am are q × n and q ×m

matrices, respectively).
From linear algebra: this system of linear equations will have each y1, . . . , yn uniquely determined by each (arbitrary)
choice of x1, . . . , xm if the q × n matrix An is square (i.e. q = n) and invertible (full rank) i.e. det(An) 6= 0.
Idea for general case: if f ∈ Ck(W ), k ≥ 1, we approximate near (y0, x0) ∈W by its linearization at (y0, x0) where
f(y0, x0) = 0:

L(y, x) = f(y0, x0) + (Df)(y0,x0)

[
y − y0

x− x0

]
= A

[
y − y0

x− x0

]
We’ll see that locally (near (y0, x0)) the solvability of f(y, x) = 0 for y as a function of y = h(x) of x is equivalent
to the solvability of the linear system L(y, x) = 0.
That is if ∂fi

∂yj
(y0, x0) is invertible (q = n) then we expect ∃W̃ ⊆W open n’h’d of (y0, x0) such that f(y, x) = 0 can

be solved for y = h(x) for all (y, x) ∈ W̃ .

26 March 9, 2018

26.1 Implicit function theorem

Theorem 26.1 (Implicit function theorem). Let f : W ⊆ Rn+m → Rn (note q = n!) be in Ck(W ) for k ≥ 1.
Suppose f(y0, x0) = 0 for some (y0, x0) ∈W .
Let A be the n× n matrix where Aij = ∂fi

∂yj
(y0, x0) (An from before).

If det(A) 6= 0 (i.e. A invertible) then ∃W ′ ⊆ W open n’h’d of (y0, x0) and an open n’h’d U of x0 in Rm and a
function h : U ⊆ Rm → Rn, h ∈ Ck(U) for the same k such that

{(y, x) ∈W ′ | f(y, x) = 0} = {(h(x), x), x ∈ U}

i.e. on W ′, the points where f = 0 can be expressed as y as a function of x.

Proof. Define F : W ⊆ Rn+m → Rn+m by

F (y, x) = (f(y, x), x)

where F ∈ Ck(W ) (components are Ck since f(y, x) ∈ Ck and x ∈ C∞).
Note that

(DF )(y0,x0) =

[
∂fi
∂yj

(y0, x0) ∂fi
∂xj

(y0, x0)
∂xi
∂yj

(y0, x0) ∂xi
∂xj

(y0, x0)

]
=

[
A ∗
0 Im×m

]
wher DF is an n+m× n+m matrix, the top quadrant has n rows and the left quadrant has n columns (bottom
and right quadrants have m rows and columns respectively).
Note that det((DF )(y0,x0)) = det(A)det(I) 6= 0 (determinant of triangular matrix is the product of the diagonals).
We can apply the inverse function theorem on F . By InvFT, ∃W ′ ⊆W open n’h’d of (y0, x0) and V ′ ⊆ Rn+m open
n’h’d of F (y0, x0) = (0, x0) such that V ′ = F (W ′) and F : W ′ → V ′ is invertible with F−1 ∈ Ck(V ′).
Define U ⊆ Rm by U = {x ∈ Rm | (0, x) ∈ V ′}.
Note x0 ∈ U .
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Claim. U is open.
Let x̄ ∈ U ⇐⇒ (0, x̄) ∈ V ′, but V ′ is open so ∃ε > 0 such that Bε(0, x̄) ⊆ V . Note that

(y, x) ∈ Bε(0, x̄) ⇐⇒ ‖y − 0‖2 + ‖x− x̄‖2 < ε2

So
(0, x) ∈ Bε(x̄) ⇐⇒ ‖x− x̄‖2 < ε2 ⇐⇒ x ∈ Bε(x̄)

where the second ⇐⇒ follows from before since ‖y − 0‖2 ≥ 0.
Since Bε(x̄) ⊆ U so U is open.

Let G = F−1 ∈ Ck(V ′) such that

G(v, u) = F−1(v, u) = (y, x) = (G1(v, u), G2(v, u)) (26.1)

where F (y, x) = (f(y, x), x) = (v, u).
Since the second component of F just takes x 7→ x (identity), G2(v, u) = u⇒ G2(v, u) = x.
So F−1(0, u) = (G(0, u), u). Let h : U ⊆ Rm → Rn be h(u) = G(0, u), h ∈ Ck(U).
So F−1(0, x) = (h(x), x) for all x ∈ U . Note that

{(y, x) ∈W ′ | f(y, x) = 0}
=(F−1 ◦ F ){(y, x) ∈W ′ | f(y, x) = 0}
=F−1{F (y, x) | (y, x) ∈W ′ and f(y, x) = 0}
=F−1{(0, x) | (0, x) ∈ V ′}
={F−1(0, x) | x ∈ U}
={(h(x), x) | x ∈ U}

26.2 Example of implicit function theorem

Example 26.1. Given x0, y0, u0, v0, s0, t0 nonzero real numbers that satisfy the simultaneous equations

u2 + sx+ ty = 0

v2 + tx+ sy = 0

2s2x+ 2t2y − 1 = 0

s2x− t2y = 0

(this is almost impossible to solve explicitly: we may only want to know it exists).
Show that ∃ smooth (C∞) functions u(x, y), v(x, y), s(x, y), t(x, y) defined on an open n’h’d of (x0, y0) such that
u, v, s, t satisfy the equations and

u(x0, y0) = u0

v(x0, y0) = v0

s(x0, y0) = s0

t(x0, y0) = t0
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We’ll apply the implicit function theorem. Define f : R6 = R4+2 → R4 where

f(u, v, s, t, x, y) =


u2 + sx+ ty
v2 + txsy

2s2x+ 2t2y − 1
s2x− t2y

 ∈ R4

By hypothesis, f(u0, v0, s0, t0, x0, y0) = 0. Also

Df =


2u 0 x y . . .
0 2v y x . . .
0 0 4sx 4ty . . .
0 0 2sx −2ty . . .


So we have

A =


2u0 0 x0 y0

0 2v0 y0 x0

0 0 4s0x0 4t0y0

0 0 2s0x0 −2t0y0


where det(A) = (2u0)(2v0)(−8s0x0t0y0 − 8s0x0t0y0) = 64u0v0s0t0x0y0 6= 0 since they’re all non-zero.
So u, v, s, t exist by be the implicit function theorem in a n’h’d of (x0, y0) and are in C∞ (since f is in C∞,
polynomials).

26.3 Constraint optimization (methods of Lagrange multiplier)

Suppose we want to optimize (maximize or minimize) a real-valued function f(x1, . . . , xn) subject to k constraints

g1(x1, . . . , xn) = 0

...
gk(x1, . . . , xn) = 0

where 1 ≤ k ≤ n, f, g1, . . . , gk : U ⊆ Rn → R.

Example 26.2. Optimize f(x1, . . . , xn) =
∑n

i=1 x
2
i subject to the constraint x1 · . . . · xn = 1 and x1 + . . .+ xn = 0.

Idea: Suppose a ∈ U was a local max or local min of f subject to the constraints gi(x) = 0, i = 1, . . . , k.
It’s no longer true that (∇f)(a) = ~0. This time, we do not permit moving in arbitrary directions at a because of
the constraints.

Figure 26.1: Example of a given level set (a given gi) as a “wavy plane” and the intersection of all constraints i.e.
x ∈ U restricted to all constraints as the line.

(on assignment 7, we showed that (∇gi)(a) is ⊥ to any tangent vector to the level set {x | gi(x) = 0} at a).
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So we only consider direction u such that u is tangent to all level sets gi(x) = 0, i = 1, . . . , k, that is

(∇gi)(a) · u = 0 ∀i = 1, . . . , k

In these directions we’ve assumed f has a local extrema at a i.e.

(∇f)(a) · u = 0

for all such u’s.
So we must have

(∇f)(a) = λ1(∇g1)(a) + . . .+ λk(∇gk)(a)

for some λ1, . . . , λk. These are called Lagrange multipliers (there are actually n equations here, one for each
xi/ai).
Along with our k constraints gi = 0, we have k + n equations for k + n unknowns (a1, . . . , an, λ1, . . . , λk).

Example 26.3. Find extrema of f(x, y) = 4x2 − 3xy subject to constraint g(x, y) = x2 + y2 − 1 = 0 (g(x, y) is the
constraint that (x, y) has to be on the unit circle).
(in EVT, ∃ a global maximm of f on this set).
We have

∇f + λ∇g = ~0

⇒(8x− 3y,−3x) + λ(2x, 2y) = 0

So

8x− 3y + 2xλ = 0

− 3x+ 2yλ = 0⇒ x =
2

3
λy

x2 + y2 = 1

So we get (pluggin the 2nd result into the 1st equation)

16

3
λy − 3y +

4λ2y

3
= 0

⇒(4λ2 + 16λ− 9)y = 0

So either y = 0→ x = 0 which is a contradiction of our constraint, or

4λ2 + 16λ− 9 = 0⇒ (2λ− 1)(2λ+ 9) = 0

so λ = 1
2 or λ = −9

2 .
When λ = 1

2 , then (x, y) ∈ {( 1√
10
, 3√

10
), ( −1√

10
, −3√

10
)}, which both have values f(x, y) = −1

2 .
When λ = −9

2 , then (x, y) ∈ {( −3√
10
, 1√

10
), ( 3√

10
, −1√

10
)}, which both have values f(x, y) = 9

2 .
Thus we have our two global mins and two global maxes, respectively (by EVT).
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27.1 Lagrange multipliers

Theorem 27.1 (Lagrange multipliers). Let 1 ≤ k ≤ n. Let W ⊆ Rn (open). Let f : W ⊆ Rn → R and
g : W ⊆ Rn → Rk (component functions g1, . . . , gk are the constraint functions).
Let S = {w ∈W | g(x) = 0} (the “constraint” set). Let a ∈ S.
Suppose

1. f has a local extrema at a subject to the constraints g(x) = 0 (i.e. f restricted to S has a local extrema at a).

2. rank((Dg)a) = k (where (Dg)a is k × n thus maximal rank).

Then ∃λ ∈ Rk such that
(Df)a + λ(Dg)a = ~0

where (Df)a, λ and (Dg)a are 1× n, 1× k and k × n matrices.
Equivalently,

∂fi
∂xj

(a) +

k∑
i=1

λi
∂gi
∂xj

(a) = 0 ∀j = 1, . . . , n

or

(∇f)(a) +

k∑
i=1

λi(∇gi)(a) = 0

Proof. Note that k × n matrix (Dg)a has rank k by hypothesis

(Dg)a =
[
∂gi
∂xj

(a)
]

=

(∇g1)(a)
...

(∇gk)(a)


where (∇gi)(a) row vectors are linearly independent. From linear algebra, ∃ k × k minor (matrix) of (Dg)a with
non-zero determinant.
WLOG by re-ordering the coordinates we can assume

(Dg)a =
[
A B

]
where A and B is k × k and k × (n− k), respectively, and det(A) 6= 0.
By the implicit function theorem, ∃U ⊆ Rn−k open containing (ak+1, . . . , an) = ā and h : U ⊆ Rn−k → Rk with
h ∈ C1(U) such that

h(xk+1, . . . , xn) = (x1, . . . , xk)

and

g(x1, . . . , xk, xk+1, . . . , xn) = 0 ∀x ∈ S
⇐⇒ g(h(xk+1, . . . , xn), xk+1, . . . , xn) = 0 x̄ = (xk+1, . . . , xn) ∈ S

and (a1, . . . , ak) = h(ak+1, . . . , an) = h(ā). (i.e. on some n’h’d of a, the points x ∈ S can be written with respect to
x1, . . . , xk as C1 functions of xk+1, . . . , xn).
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Define H : U ⊆ Rn−k → Rn (where H ∈ C1(U))

H(xk+1, . . . , xn) = (h(xk+1, . . . , xn), xk+1, . . . , xn)

H(x̄) = (h(x̄), x̄) ∀x̄ ∈ U
H(ā) = a

Define f̃ , g̃ ∈ C1(U) as

f̃ = f ◦H : U ⊆ Rn−k → R
g̃ = g ◦H : U ⊆ Rn−k → Rk

(they are restrictions of f, g to the constraint set S).
By construction, g̃ = 0 on U since g(x) = 0 ∀x ∈ S. Also, f̃ has a local extrema at ā ∈ U (this is now unconstrained).
So we have (Dg̃)ā = 0 (because g̃ = 0 on U and ā ∈ U), and (Df̃)ā = 0 (because ā local extrema of f̃ at ā).
Note that H(x̄) = (h(x̄), x̄), so

(DH)a =

[
(Dh)ā
In−k

]
where (Dh)ā is k × (n− k) and I is (n− k)× (n− k).
By chain rule, we have

(Dg̃)a = (Dg)H(ā)(Dh)ā where H(ā) = a

= (Dg)a

[
(Dh)ā
I

]
=
[
A B

] [(Dh)ā
I

]
= A(Dh)ā +B = 0

where A ∈ Rk×k, B ∈ Rk×(n−k), (Dh)ā ∈ Rk×(n−k) and I ∈ R(n−k)×(n−k).
So we have (Dh)ā = −A−1B.
Let (Df)ā =

[
C D

]
(where C ∈ R1×k and D ∈ R1×(n−k)). Thus we have

(Df̃)a = (Df)H(ā)(Dh)ā where H(ā) = a

=
[
C D

] [(Dh)ā
I

]
= C(Dh)ā +D = 0

Thus D = −C(Dh)ā = −CA−1B from before.
We want to show that

(Df)a + λ(Dg)a = 0

Note that [
0 0

]
=
[
C D

]
−
[
CA−1A CA−1B

]
=
[
C D

]
− CA−1

[
A B

]
⇒(Df)a + λ(Dg)a = 0
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where λ = −CA−1.

27.2 Examples of Lagrange multipliers

Example 27.1. Find all extrema of f(x, y, z) = x2 + y2 + z2 (square of distance from origin) subject to the 2
constraints: x− y = 1 and y2 − z2 = 1.

Figure 27.1: Diagram of R3 with constraints x− y = 1 (plane) and y2 − z2 = 1 (hyperbola). Actual values in the
constraint set must be in the intersection of the two graphs.

There exists points on constraint set with arbitrary large distance from origin (no global max).
We know there will exist a global min (which will also be a local min). We expect 2 local minima since y2− z2 = 1
cuts twice into the other constraint plane.
We have

g1(x, y, z) = x− y − 1 = 0

g2(x, y, z) = y2 − z2 − 1 = 0

and from Lagrange multipliers we know ∇f + λ∇g1 + µ∇g2 = 0, thus

(2x, 2y, 2z) + λ(1,−1, 0) + µ(0, 2y,−2z) = 0

or

2x+ λ = 0

2y − λ+ 2µy = 0

2z − 2µz = 0⇒ z(1− µ) = 0

From the last constraint, either µ = 1 or z = 0:

µ = 1 Then the second equation becomes 4y = λ and the first equation becomes 2x+ 4y = 0 so x = −2y.

From our original constraint equations, we have from g1 −3y = 1⇒ y = −1
3 and from g2

1
9−z

2 = 1⇒ z2 = −8
9

which is a contradiction since squares are always positive.
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z = 0 From g2 we have y = ±1 and from g1 we have x = y + 1.

Thus we have two solutions (2, 1, 0) and (0,−1, 0) (which satisfy all the other equations too).

Thus we have f(2, 1, 0) = 5 (some local min) and f(0,−1, 0 = 1 (global min).

Example 27.2. Extremize volume subject to constant surface area. Let V (x, y, z) = xyz and S(x, y, z) =
2xy + 2xz + 2yz = c for some constant c > 0.
Note that xy, xz, yz are bounded. Also it is easy to see that as x→∞, then y → 0 and z → 0 (for xy and xz, as
x→∞, y and z must go to 0 since they are constant). Thus V → 0.
So there’s no minimum (V can go towards 0 as we move to infinity in any direction). But there will be a global max
(think of constricting the space to a ball where everything outside has f(x, y, z) < k for some constant k. Then by
EVT local max inside ball is global max).
From Lagrange multipliers, we have

∇V + λ∇S = 0

Thus we have
(yz, xz, xy) + λ(2(y + z), 2(x+ z), 2(x+ y)) = 0

or

yz + 2λ(y + z) = 0

xz + 2λ(x+ z) = 0

xy + 2λ(x+ y) = 0

where λ 6= 0 since x, y, z > 0.
Taking x times the first equation subtracting y times the second equation we get 2λxz = 2λyz thus x = y = z.
Therefore the maximum volume occurs for a cube.

Example 27.3. Opposite problem as above: extremize surface area subject to constant volume.

Claim. No global max, but there will be a global min.
Note that V (x, y, z) = xyz = C and S(x, y, z) = 2xy + 2xz + 2yz. We let y = z (arbitrary) (also y2 = C

x ). As
x→∞, then y = z → 0. So we get S(x, y, z) = 4xy + 2C

x = 4
√
Cx1/2 + 2C

x →∞ as x→∞.
Then by Lagrange multipliers we have ∇S + λ∇V = 0. After solving, we see that x = y = z which means a cube
has minimal surface area given constant volume.
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28.1 Boxes and size of boxes in Rn

Definition 28.1. Let I = [a1, b1] × [a2, b2] × . . . × [an, bn] ⊆ Rn. I is the Cartesian product of closed bounded
intervals, i.e. x ∈ I ⇐⇒ ai ≤ x ≤ bi for all i = 1, . . . , n.
We’ll call I a box in Rn (interval in R, rectangle in R2, box in R3).
It is clear I is compact because it’s closed and bounded.

Definition 28.2. Define the size of a box I µ(I) ∈ R (scalar) to be

µ(I) = (b1 − a1)(b2 − a2) . . . (bn − an) =

n∏
k=1

(bk − ak)

(length in R, area in R2, volume in R3).
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Figure 28.1: Boxes and their size interpretation in R,R2,R3.

Remark 28.1. This should be thought of as an n-dimensional “volume”. This is also called the Jordan content,
sometimes “Jordan-measurable” (bad terminology since even if it has a Jordan content it may not be “measurable”).

28.2 Zero size

Definition 28.3. Let E ⊆ Rn. We say E has zero size (and write µ(E) = 0) iff ∀ε > 0, ∃ boxes I1, . . . , IN with
E ⊆

⋃N
k=1 Ik and

∑N
k=1 µ(Ik) < ε (i.e. we can cover E by finitely many boxes whose sizes sum to as small as we

want). Note I1, . . . , Ik need not be disjoint.
Clearly: If E has size zero then any U ⊆ E has size zero.
The empty set clearly has size zero (any box will vacuously cover it). We will see other sets also have size zero.

Example 28.1. Let E = {x} (singleton). Let Iδ = [x1 − δ, x1 + δ]× . . .× [xn − δ, xN + δ]. Note that {x} ⊆ Iδ and
µ(Iδ) = (2δ)n.
For any ε > 0, choose δ > 0 such that (2δ)n < ε therefore E = {x} has size zero.

Example 28.2. Let E1, . . . , Em be subsets of Rn with size zero. Then
⋃m
k=1Ek has size zero.

Proof. For each k = {1, . . . ,m} ∃Nk boxes Ik,1, Ik,2, . . . , Ik,Nk such that Ek ⊆
⋃Nk
j=1 Ik,j and

∑Nk
j=1 µ(Ik,j) <

ε
m .

Then {Ik,j | 1 ≤ k ≤ m, 1 ≤ j ≤ Nk} covers E =
⋃m
j=1Ej and

∑
1≤k≤m

∑Nk
j=1 µ(Ik,j) < ε.

28.3 Continuous graphs of compact sets have zero size

Proposition 28.1. Let K ⊆ Rn be compact. Let f : U ⊆ Rn → R be continuous on U with K ⊆ U . Define

Γf,K = {(x, f(x)) ∈ Rn+1 | x ∈ Rn}

or the “graph of f over the set K”. Then Γf,k has size zero.
Intuition: note that there is a bijective correspondence between Γf,K and K (we can project each point in Γf,K back
to its point in K). Since K is finite size (compact) then K has finite size. Note Γf,K is in one higher dimension so
it’s actually a very “thin” plane that corresponds to K in Rn+1, so it should have size zero.

Proof. Let ε > 0 be arbitrary. Since K is compact, it’s bounded so ∃M > 0 such that K ⊆ [−M,M ]× [−M,M ]×
. . .× [−M,M ] where there are n intervals. That is x ∈ K ⇒ |xk| ≤M for all k = 1, . . . , n.
Since f is continuous on K and K is compact we know f is uniformly continuous on K so ∃δ > 0 (WLOG
δ < 1)) such that if x, y ∈ K and ‖x− y‖ < δ, then |f(x)− f(y)| < ε

2(2M+1)n

Let δ̃ = δ√
n
so δ̃ < 1. Also choose N ∈ N such that Nδ̃ < 2M and (N + 1)δ̃ ≥ 2M (by Archimedean Principle).

For k1, . . . , kn ∈ {0, 1, . . . , N} define Ik1,...,kn = [−M + k1δ̃,−M + (k1 + 1)δ̃]× . . .× [−M + knδ̃,−M + (kn + 1)δ̃].
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Figure 28.2: Each set of k1, . . . , kn corresponds to a δ̃ grid square in the diagram.

x ∈ Ik1,...,kn ⇐⇒ −µ+ kj δ̃ ≤ xj ≤ −µ+ (kj + 1)δ̃

Each Ik1,...,kn is a box in Rn, so µ(Ik1,...,kn) = (δ̃)n.
Given k1, . . . , kn, choose yk1,...,kn ∈ Ik1,...,kn such that yk1,...,kn ∈ K. If no such point exists, we won’t need that
index k1, . . . , kn (i.e. in the diagram, we choose a yk1,...,kn in each box of the grid inside the red K compact set; red
dots in diagram).
For those k1, . . . , kn such that a yk1,...,kn exists, define

Jk1,...,kn = Ik1,...,kn × [f(yk1,...,kn)− ε

2(2M + 1)n
, f(yk1,...,kn) +

ε

2(2M + 1)n
]

in Rn+1, so (x, t) ∈ Jk1,...,kn ⇐⇒ x ∈ Ik1,...,xn and |f(yk1,...,kn)−t| < ε
2(2M+1)n .

Jk1,...,kn is a box in Rn+1 and

µ(Jk1,...,kn) = µ(Ik1,...,kn) · ε

(2M + 1)n

=
(δ̃)nε

(2M + 1)n

=

(
δ̃

2M + 1

)n
ε

Let x ∈ K then x ∈ Ik1,...,kn for at least one k1, . . . , kn so ‖x− yk1,...,kn‖2 ≤ n(δ̃)2 < δ2.
So ‖x− yk1,...,kn‖ < δ ⇒ |f(x)− f(yk1,...,kn)| < ε

2(2M+1)n so (x, f(x)) ∈ Jk1,...,kn .
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Hence Γf,K ⊆
⋃
k1,...,kn

Jk1,...,kn . Note that the size of Γf,K is

∑
k1,...,kn

µ(Jk1,...,kn) =
∑

k1,...,kn

(
δ̃

2M + 1

)
ε

≤ (N + 1)n

(
δ̃

2M + 1

)
ε kj = {0, . . . , N} ⇒ (N + 1)n combinations of them

=

(
(N + 1)

δ̃

2M + 1

)
ε

< ε

where the last line follows since Nδ̃ < 2M and δ̃ < 1, so (N + 1)δ̃ < 2M + 1 thus (N+1)δ̃
2M+1 < 1.

28.4 Boundary of boxes have zero size

Corollary 28.1. (corollary to proposition): Let I be a box in Rn then ∂I has zero size.

Proof. ∂I is a finite union of graphs of continuous functions over compact sets. E.g. for a interval in R we have two
points. For a rectangle in R2 we have line segments (similarly for a box in R3).
It is thus the union of 2n sets, each of which is a graph of a continuous function over a box (compact) in Rn−1

which is zero size, thus ∂I is of zero size.

29 March 16, 2018

29.1 Non-zero size

We’ll need a technical lemma that gives us an equivalent characterization for what it means for a set to have zero
size.
Recall: E ⊆ Rn has zero size if ∀ε > 0 if ∃ I1, . . . , IN boxes (N depends on E, ε) such that E ⊆

⋃N
j=1 Ij and∑N

j=1 µ(Ij) < ε.

Definition 29.1. A E ⊆ Rn does not have zero size iff ∃ε0 > 0 such that ∀ finite collections of boxes I1, . . . , In
with E ⊆

⋃N
j=1 Ij , we have

∑n
j=1 µ(Ij) ≥ ε0 (this is the definition of non-zero size).

We first show a weaker technical lemma that is similar to the definition.

Lemma 29.1 (Technical lemma for zero size). A subset E ⊆ Rn does not have size zero iff ∃ε̃0 > 0 such that ∀
finite collections of boxes I1, . . . , In with E ⊆

⋃N
j=1 Ij where int(Ij) ∩ E 6= ∅, we have

∑n
j=1 µ(Ij) ≥ ε̃0 (we only

include the Ij ’s that matter unlike the definition).

Proof. Backwards: Clear: take ε̃0 = ε0 so
∑
µ(Ii) ≥

∑
µ(Ij) ≥ ε0 (since int(Ij)∩E 6= ∅ so Ij must be contained

within all Ii’s, all possible collection of boxes that cover E).
Forwards:
Suppose E does not have size zero. ∃ε0 > 0 such that the statement from the definition holds.
Let ε̃0 = ε0

2 > 0. Suppose I1, . . . , IN boxes in Rn where E ⊆
⋃N
j=1 Ij .

By reordering, WLOG

int(Ij) ∩ E 6= 0 j = 1, . . . ,m

int(Ij) ∩ E = 0 j = m+ 1, . . . , N
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This implies that Ij ∩ E ⊆ ∂Ij for j = m+ 1, . . . , N .
From last time, ∂Ij has size zero so

N⋃
j=m+1

Ij ∩ E ⊆
N⋃

j=m+1

∂Ij

so this has size zero. So ∃ boxes J1, . . . , Jm in Rn such that

N⋃
j=m+1

Ij ∩ E ⊆
M⋃
l=1

Jl

and
M∑
l=1

µ(Jl) <
ε0
2

Also note that

E ⊆

 m⋃
j=1

Ij

 ∪(M⋃
l=1

Jl

)
This is a cover of E by finitely many boxes. By our stronger definition of non-zero size we have

m∑
j=1

µ(Ij) +
M∑
l=1

µ(Il) ≥ ε0

thus
m∑
j=1

µ(Ij) ≥
ε0
2

= ε̃0

since
∑M

l=1 µ(Il) <
ε0
2 .

Remark 29.1. Not having size zero does not mean it has positive size. It may not have any well-defined size!

29.2 Partitions of boxes

Definition 29.2. Let I = [a1, b1]× [a2, b2]× . . .× [an, bn] be a box in Rn.
For j ∈ {1, . . . , n}, choose tj,0, tj,1, . . . , tj,Nj Nj ≥ 1 such that aj = tj,0 < tj,1 < tj,2 < . . . < tj,Nj−1 < tj,Nj = bj .

Figure 29.1: Each interval can be partitioned by tj,0, . . . , tj,Nj into Nj subintervals.
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Let Pj = {tj,l | l = 0, 1, . . . , Nj} and P = P1 × P2 × . . .× Pn.
Then x ∈ P ⇐⇒ xj ∈ Pj for all j = 1, . . . , n.
Such a P is a called a partition of the box.
P has N1 ×N2 × . . .×Nn elements.
A partition P of I determines a subdivision of I into N1 × . . .×Nn boxes of the form

Ik1,...,kn = [t1,k1 , t1,k1+1]× . . .× [tn,kn , tn,kn+1]

where kj ∈ {0, 1, . . . , Nj − 1}.

Figure 29.2: A 2D box I ∈ R2 is partitioned where N1 = 4 and N2 = 5 (for 20 boxes). The shaded in box is
I1,2 = [t1,1, t1,2]× [t2,2, t2,3] where k1 = 1 and k2 = 2 (not 3).

The boxes in the subdivision of I corresponding to the partition P only only intersect at most along their
boundaries.

Figure 29.3: A 3D box I ∈ R3 where we have subdivisions that only intersect at corners, edges and faces.

29.3 Riemann sum (in terms of partitions and boxes)

Definition 29.3. Let f : I → Rm, I ⊆ Rn be a box and P be a partition of I. Let Iα where α ∈ P be the
corresponding subdivision of I. Then

I =
⋃
α∈P

Iα

For each Iα choose xα ∈ Iα. Then
S(f, P ) =

∑
α∈P

f(xα)µ(Iα)

is called aRiemann sum for f with respect to the partition P (note that µ(Iα) ∈ R are scalars hence S(f, P ) ∈ Rm).
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Remark 29.2. Given f and P , ∃ infinitely many Riemann sums S(f, P ) corresponding to different choices of
xα ∈ Iα.

29.4 Refinement of partitions

Definition 29.4. Let P and Q be two partitions of the same box I. We say that Q is a refinement of P if
Pj ⊆ Qj for all j = 1, . . . , n (Pj and Qj are the partition points tj,l: so Qj contains all partition points of Pj and
more!).
That is, all the subboxes JB of I corresponding to Q are themselves subboxes of one of the subboxes Iα of I
corresponding to P .
Note that

I =
⋃
α

Iα =
⋃
β

Jβ

each Iα is a union of some Jβ ’s.

Remark 29.3. Let P and Q be any two partitions of I. There always exists a partition R of I that is a common
refinement (i.e. it is a refinement of both P and Q). Just take Rj = Pj ∪Qj for all j.

29.5 Riemann integral of box

(not in the textbook, see notes by V. Runde linked in syllabus). The other integration theory is the Lebesgue
integration theory.

Definition 29.5. Let I ⊆ Rn be a box. Let f : I → Rm. f is integrable on I iff ∃y ∈ Rm with the following
property: ∀ε > 0, there exists a partition Pε of I such that, for any refinement P of Pε and any Riemann sum
S(f, P ) corresponding to P , we have

‖S(f, P )− y‖ < ε

(i.e. Riemann sums converge).
If this holds, we say f is Riemann integrable on I and y ∈ Rm is called the Riemann integral of f over I and
we write

y =

∫
I
f

Remark 29.4. On assignment 10, we prove that such a y is unique if it exists.

29.6 Cauchy criterion for Riemann integrable

Theorem 29.1 (Cauchy criterion). Let I ⊆ Rn be a box, f : I → Rm. The following are equivalent (TFAE):

1. f is Riemann integrable on I

2. ∀ε > 0, ∃ partition Pε of I such that for any refinements P,Q of Pε and any Riemann sums S(f, P ), S(f,Q)
we have

‖S(f, P )− S(f,Q)‖ < ε

Proof. (1) ⇒ (2):

Let y =
∫
I f . Given ε > 0 there exists Pε such that ‖S(f, P )− y‖ < ε

2 for all refinements P of Pε.
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So

‖S(f, P )− S(f,Q)‖
4
≤ ‖S(f, P )− y‖+ ‖y − S(f,Q)‖

<
ε

2
+
ε

2
= ε

Conversely, suppose (2) holds.

For all k ∈ N, there exists Pk of I such that

‖S(f, P )− S(f,Q)‖ < 1

2k

for all refinements P,Q of Pk.

By taking their common refinement WLOG Pk+1 is a refinement of Pk for all k.

For all k ∈ N, fix a particular Riemann sum S(f, Pk) = sk ∈ Rm.
If l > k then

‖sl − sk‖
4
≤

l−1∑
j=k

‖sj+1 − sj‖

<

l−1∑
j=k

1

2j
because Pj+1 is a refinement of Pj

which → 0 as k →∞.

So sj is a Cauchy sequence in Rm so it converges to some y ∈ Rm. Need to show y =
∫
I f . Let ε > 0, choose

K large enough so 1
2K

< ε
2 and ‖sK − y‖ < ε

2 .

30 March 19, 2018

30.1 Refined/simplified Cauchy criterion lemma

Lemma 30.1 (Refined/simplified Cauchy criterion). f : I → Rm is integrable on I iff ∀ε > 0, ∃ partition Pε of I
such that if S1(f, Pε), S2(f, Pε) are any two Riemann sums for f with respect to Pε, then

‖S1(f, Pε)− S2(f, Pε)‖ < ε

(this is equivalent to the previous two statements mentioned in section 29.6). i.e. we just need to know that the
Riemann sums corresponding to a single partition Pε are within ε.

Remark 30.1. We’ll use this lemma many times to prove results.

Proof. Forwards: Since f is integrable, we use (2) of the Cauchy criterion and take P = Q = Pε.
Backwards: Suppose second part of lemma holds. We need to show (2) of the Cauchy criterion holds.
For P and Q refinements of Pε, P has subcover I =

⋃
α Iα and Q has subcover I =

⋃
β Jβ .

Observe f(x) = (f1(x), . . . , fm(x)). So we have

S(f, P ) =
∑
α

f(xα)µ(Iα) = v = (v1, . . . , vm)
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where vj =
∑

α fj(xα)µ(Iα) = S(fj , P ). Similarly S(f,Q) =
∑

β f(yβ)µ(Iβ) = w = (W1, . . . , wm) where wj =
S(fj , Q).
Thus we have

‖S(f, P )− S(f,Q)‖2 = ‖v − w‖2

=
m∑
j=1

|vj − wj |2

=

m∑
j=1

|S(fj , P )− S(fj , Q)|2

If we can show each of |S(fj , P )− S(fj , Q)|2 are < ε
m , then we are done.

This means WLOG we can assume m = 1 (if our lemma implies (2) of Cauchy criterion holds for m = 1, let ε > 0.
Apply our lemma for ε̃ = ε

m > 0. Our lemma implies (2) for m = 1 with ε̃ yields our lemma implies (2) for a general
m from the summation).
Assume m = 1. Let Pε be given by our lemma where I =

⋃
α Iα.

Let P,Q be refinements of Pε. P has decomposition I =
⋃
β Jβ and Q has decomposition I =

⋃
γ Kγ . Each Iα is a

union of finitely many Jβ ’s and also a union of finitely many Kγ ’s. Thus

Iα =
⋃

β,Jβ⊆Iα

Jβ =
⋃

γ,Kγ⊆Iα

Kγ

So we have

S(f, P )− S(f,Q) =
∑
β

f(xβ)µ(Jβ)−
∑
γ

f(yγ)µ(Kγ)

=
∑
α

(
∑

β,Jβ⊆Iα

f(xβ)µ(Jβ))−
∑
α

(
∑

γ,Kγ⊆Iα

f(yγ)µ(Kγ))

for some xβ ∈ Jβ and yγ ∈ Kγ (just one of each since we are in m = 1).
For each α, choose zα, wα ∈ Iα such that

f(zα) = max{f(xβ), f(yγ), ∀β, γ such that Jβ ⊆ Iα and Kγ ⊆ Iα}
f(wα) = min{f(xβ), f(yγ),∀β, γ such that Jβ ⊆ Iα and Kγ ⊆ Iα}

(we have finitely many β, γ as above). By construction f(wα) ≤ f(xβ) ≤ f(zα) for all β such that Jβ ⊆ Iα. Also
−f(zα) ≤ −f(yγ) ≤ −f(wα) for all γ such that Kα ⊆ Iα. Then

[f(wα)− f(zα)]µ(Iα) = f(wα)

 ∑
β,Jβ⊆Iα

µ(Jβ)

− f(zα)

 ∑
γ,Kγ⊆Iα

µ(Kγ)


≤

∑
β,Jβ⊆Iα

f(xβ)µ(Jβ))−
∑

γ,Kγ⊆Iα

f(yγ)µ(Kγ)

≤ f(zα)

 ∑
β,Jβ⊆Iα

µ(Jβ)

− f(wα)

 ∑
γ,Kγ⊆Iα

µ(Kγ)


= [f(zα)− f(wα)]µ(Iα)
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Thus we have established an inequality that sandwiches our S(f, P )− S(f,Q) for a given α (second line). Summing
over all α we have

−

(∑
α

(f(zα)µ(Iα))−
∑
α

(f(wα)µ(Iα))

)
≤ S(f, P )− S(f,Q) ≤

∑
α

f(zα)µ(Iα)−
∑
α

f(wα)µ(Iα)

Thus going back to our initial equation

|S(f, P )− S(f,Q)| ≤
∑
α

f(zα)µ(Iα)−
∑
α

f(wα)µ(Iα)

= |
∑
α

f(zα)µ(Iα)−
∑
α

f(wα)µ(Iα)|

= |S1(f, Pε)− S2(f, Pε)|
< ε

where the last line follows from our initial assumption of the second part of the lemma.

30.2 Bounded and continuous “almost everywhere” ⇒ integrable

Theorem 30.1 (Integrable with size zero discontinuity). Let I ⊆ Rn be a box. Let f : I → Rm be bounded. Let
S ⊆ I be the points in I where f fails to be continuous. If S has size zero, then f is Riemann integrable on I.
(informally, a function which is bounded and continuous “almost everywhere” (except S size zero) is integrable.
Note “almost everywhere” means something similar but different in measure theory).

Remark 30.2. If S = ∅ then boundedness is automatic for f by EVT (since I is compact and there are no gaps).

Remark 30.3. If f is integrable on I, then f must be bounded (assignment 11 question 2; hint: integrable f means
all components are integrable).

Remark 30.4. We usually define integrability on interior points, but note that ∂I has size zero so we can always
include it into our set S, thus we can say all of I is integrable.

Proof. Since f is bounded, ∃C > 0 such that

‖f(x)‖ < C ∀x ∈ I

Claim. Because S has size zero, ∃ a partition P of I such that∑
α,Iα∩S 6=∅

µ(Iα) <
ε

4C

Proof of claim: Start with a cover of S by boxes with sum of sizes < ε
4C . Note that S is a subset of I. Take any

partition P of I. Refine P using the boxes from our cover for S (we take the endpoints of every box in the cover
of S and use that in our refinement). The subdivisions in the partition that actually overlap S has equal or smaller
size.

Let K =
⋃
α,Iα∩S 6=∅ Iα. This is compact.

Since K is compact and f |K is continuous, then f |K is uniformly continuous on K.
∃δ > 0 such that x, y ∈ K such that

‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε

2µ(I)
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Choose a refinement Q of P such that for each subbox Jβ of Q where Jβ = [a
(β)
1 , b

(β)
1 ] × . . . × [a

(β)
n , b

(β)
n ] with

maxj=1,...,n|b(β)
j − a

(β)
j | <

δ√
n
.

Let S1(f,Q), S2(f,Q) be any two Riemann sums for f wrt Q. Then

S1(f,Q)− S2(f,Q) =
∑
β

f(xβ)µ(Jβ)−
∑
β

f(yβ)µ(Jβ)

‖S1(f,Q)− S2(f,Q)‖
4
≤
∑
β

‖f(xβ)− f(yβ)‖µ(Jβ)

=
∑

β,Jβ 6⊆K
‖f(xβ)− f(yβ)‖µ(Jβ) +

∑
β,Jβ⊆K

‖f(xβ)− f(yβ)‖µ(Jβ)

‖f(xβ)− f(yβ)‖ < 2C since f is bounded so we have

<
∑

β,Jβ 6⊆K
(2C)µ(Jβ) +

∑
β,Jβ⊆K

ε

2µ(I)
µ(Jβ)

< 2C(
ε

4C
) +

ε

2µ(I)
µ(I)

=
ε

2
+
ε

2
= ε

Thus f is integrable by Refined/simplified Cauchy criterion.

31 March 21, 2018

31.1 Riemann integral on general set D ⊆ I

Definition 31.1. Let D ⊆ Rn be bounded. Let f : D → Rm. Choose any box I in Rn such that D ⊆ I (possible
since D is bounded).
Define f̃ : I → Rm by f̃(x) = f(x) if x ∈ D and f̃(x) = 0 if x 6∈ D (i.e. f̃ is the extension by zero of f from D to I).
We say f is Riemann integrable on D iff f̃ is Riemann integrable on I and we write∫

D
f =

∫
I
f̃

Claim. This is well-defined (independent of choice of I).

Proof. Exercise (key point: f̃ is identically zero outside of D).
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Figure 31.1: We can show that any box I1 or I2 works for the above definition.

31.2 Bounded arbitrary set with size zero boundary implies integrability

Theorem 31.1. Let D 6= ∅ and bounded subset of Rn with µ(∂D) = 0 (i.e. the boundary ∂D has size zero).
Suppose f : D → Rm is bounded and continuous, then f is (Riemann) integrable on D.

Remark 31.1. Boundedness of f is automatic if D is closed since f is continuous.

Proof. Let I be a box such that I ⊇ D. Let f̃ be extension by zero of f from D to I.
f̃ is continuous at each point in int(D) by assumption. f̃ is continuous at each point in int(I \D) because it’s
identically zero.
So S = {x ∈ I such that f̃ is not continuous} ⊆ ∂D ∪ ∂I has size zero.
So by previous theorem f̃ is integrable on I, so f is integrable on D.

31.3 Indicator function

Definition 31.2. Let D ⊆ Rn be any subset. We define the indicator function XD : Rn → R of D to be

XD(x)

{
1 , if x ∈ D
0 , if x 6∈ D

31.4 Size of general sets

Now we can define the size of more general sets.

Definition 31.3. Let D ⊆ Rn be bounded. We say that D is sizeable iff XD is integrable on D (equivalently if
f : D → R, f(x) = 1 ∀x ∈ D is integrable on D).
If D is sizeable, then the size of D is

µ(D) =

∫
D

1 =

∫
D
XD =

∫
I
XD |I

for any I ⊇ D.
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Remark 31.2. In books where µ (size) is called “Jordan content”, then to say a set D is sizeable means D has a
well-define Jordan content aka “contentable”.

Remark 31.3. A set D may or may not be sizeable. If it is sizeable, the size may be zero or positive (i.e. integral
is non-negative for non-negative functions; we’ll see this later).

31.5 Characterization of sizeability

Theorem 31.2. Let D 6= ∅ and bounded. Then D is sizeable iff ∂D has size zero.

Proof. Backwards:
Suppose µ(∂D) = 0. Then XD is continuous except on a set of size zero, so XD is integrable on D, so D is sizeable.
Forwards:
Suppose D is sizeable. We must show ∂D has size zero. By contradiction, suppose ∂D does not have size zero.
So by Technical lemma for zero size from last week, ∃ε0 > 0 such that if I1, . . . , IN are boxes in Rn with

⋃IN
j=1 ⊇ ∂D

then
N∑

j=1,int(Ij)∩∂D 6=∅

µ(Ij) ≥ ε0

By hypothesis, D is sizeable so XD is integrable on D. Let I ⊇ D (box). ∃ a partition P of I such that

|S(XD, P )−
∫
I
XD| <

ε0
2

(where
∫
I XD = µ(D)).

Let’s consider two different Riemann sums for XD with respect to the partition P (i.e. choose xα ∈ Iα for all α for
Riemann sum 1; yα ∈ Iα for all α for Riemann sum 2).
For Riemann sum 1, if int(Iα) ∩ ∂D 6= ∅, choose any xα ∈ D (by property of ∂D, where ∂D ∩ D 6= ∅). If
int(Iα) ∩ ∂D = ∅, choose xα ∈ Iα arbitrary.
For Riemann sum 2, If int(Iα) ∩ ∂D 6= ∅, choose yα ∈ Dc (by property of ∂D). If int(Iα) ∩ ∂D = ∅, let yα = xα.
So we have

S1(XD, P ) =
∑
α

XD(xα)µ(Iα)

S2(XD, P ) =
∑
α

XD(yα)µ(Iα)

Thus

S1(XD, P )− S2(XD, P ) =
∑

α,int(Iα)∩D 6=∅

µ(Iα) ≥ ε0

from before (note that for int(Iα ∩D = ∅), yα = xα so they cancel out; for the above case, XD(yα) = 0).
But

|S1(XD, P )− S2(XD, P )| ≤ |S1(XD, P )−
∫
I
XD|+ |

∫
I
XD − S2(XD, P )|

<
ε0
2

+
ε0
2

= ε0
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Contradiction: so ∂D has size zero.

31.6 Properties of Riemann integrals

Let D ⊆ Rn be bounded.

1. Let f, g : D → Rm be integrable on D. Let λ, µ ∈ R. Then λf + µg is integrable on D and∫
D

(λf + µg) = λ

∫
D
f + µ

∫
D
g

Proof. Assignment 10 question 3.

Let V be the space of all functions from D to Rm (inf. dimensional real vector space).

Let W be the set of all integrable functions from D to Rm.
The property says W is a subspace of V and

∫
: W → Rm i.e. f 7→

∫
f is linear.

2. Let f : D → R (m = 1!) be integrable on D and non-negative. Then
∫
D f ≥ 0.

Proof. Suppose
∫
D f < 0. Let ε = −

∫
D f > 0. Choose a partition P of I ⊇ D such that

|S(f, P )−
∫
D
f | < ε

2

⇒|S(f, P ) + ε| < ε

2

⇒S(f, P ) + ε <
ε

2

⇒S(f, P ) <
−ε
2
< 0

But f is non-negative so S(f, P ) ≥ 0 for any Riemann sum, a contradiction.

Corollary 31.1. If D is sizeable, µ(D) ≥ 0.

3. Let D be sizeable and f : D → R (m = 1!) be integrable on D and ∃M1,M2 ∈ R such that M1 ≤ f(x) ≤M2

∀x ∈ D. Then M1µ(D) ≤
∫
D f ≤M2µ(D).

Proof. Let h : D → R where h(x) = M2 − f(x) ≥ 0 on D.

Also M2 = M2 ·XD is integrable on D by property (1).

So
0 ≤

∫
D
h =

∫
D
M2XD −

∫
D
f = M2µ(D)−

∫
D
f

so h is integrable by property (1) (the case for M1 is similar).

4. Let D1, D2 ⊆ Rn be bounded with µ(D1 ∩D2) = 0.

Let f : D1 ∪D2 → Rm. Suppose f is integrable on D1 and D2. Then f is integrable on D1 ∪D2 and∫
D1∪D2

f =

∫
D1

f +

∫
D2

f
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Proof.

Claim. If f is integrable on some subset E, then f is bounded on E (exercise of assignment 11).

Claim. If µ(E) = 0, then f is integrable on E and
∫
E f = 0.

Proof of claim: When m = 1 (real-valued), use property (3) i.e. M1 ≤ f(x) ≤M2 on D, then M1µ(D) ≤∫
D f ≤M2µ(D).

Choose a box I ⊃ D1 ∪D2. Thus ∫
D1

f =

∫
I
fXD1 =

∫
D1∪D2

fXD1

Where the first equality holds since f is integrable on D1, so fXD1 is integrable on D1 ∪D2.

Similarly fXD2 is integrable on D1 ∪D2.

Also, µ(D1 ∩D2) = 0, so by the first part of claim #2, fXD1∩D2 is integrable on D1 ∪D2 (continuous except
possible on a set of size zero).

Note that
fXD1∪D2 = fXD1 + fXD2 − fD1∩D2

Thus ∫
I
fXD1∪D2

property (1)
=

∫
I
fXD1 +

∫
I
fXD2 −

∫
I
fXD1∩D2

⇒
∫
D1∪D2

f =

∫
D1

f +

∫
D2

f − 0

by second part of claim 2.

5. Let D ⊆ Rn be bounded. If f : D → Rm is integrable on D, then ‖f‖ : D → R where ‖f‖(x) = ‖f(x)‖ is
integrable on D and

‖
∫
D
f‖ ≤

∫
D
‖f‖

Proof. Let I be a box containing D. Let ε > 0. We’ll use the refined Cauchy criterion for integrability.

Since f is integrable on D, each component function fj : D → R is integrable on D. So ∃ a partition Pε of I
such that

|S1(fj , Pε)− S2(fj , Pε)| <
ε

m

for all j = 1, . . . ,m (by taking a common refinment of the m partitions corresponding to the m component
functions).

Let {Iα} be the subboxes of I determined by Pε. Fix j ∈ {1, . . . ,m}.
Let xα, yα ∈ Iα arbitrary.

Choose zα, wα ∈ {xα, yα} where

fj(zα) = max{fj(xα), fj(yα)}
fj(wα) = min{fj(xα), fj(yα)}

(i.e. zα, yα correspond to whichever that maps to a larger and smaller value on fj , respectively).
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Thus we can rewrite ∑
α

|fj(xα)− fj(yα)|µ(Iα) =
∑
α

(fj(zα)− fj(wα))µ(Iα)

=
∑
α

fj(zα)µ(Iα)−
∑
α

fj(wα)µ(Iα)

<
ε

m

for any j (from our premise).

So

|S1(‖f‖, Pε)− S2(‖f‖, Pε)| = |
∑
α

‖fj(xα)‖µ(Iα)−
∑
α

‖fj(yα)‖µ(Iα)|

4
≤
∑
α

‖f(xα)− f(yα)‖µ(Iα) |‖a‖ − ‖b‖| ≤ ‖a− b‖

≤ ε

m
m ‖v‖ ≤

n∑
j=1

|vj |

= ε

So |S1(‖f‖, Pε)−S2(‖f‖, Pε)| < ε For any two Riemann sums of ‖f‖ wrt Pε, so by the refined Cauchy criterion
‖f‖ is integrable on D.

Since f , ‖f‖ both integrable on D, for all ε > 0, ∃ partition Qε of I ⊇ D such that xα ∈ Iα for all α satisfies
both

‖
∑
α

f(xα)µ(Iα)−
∫
I
f‖ < ε

2

‖
∑
α

‖f(xα)‖µ(Iα)−
∫
I
‖f‖‖ < ε

2

So we have

‖
∫
I
f‖
4
≤ ‖
∫
I
f −

∑
α

f(xα)µ(Iα)‖+ ‖
∑
α

f(xα)µ(Iα)‖

<
ε

2
+ ‖
∑
α

f(xα)µ(Iα)‖

4
≤ ε

2
+
∑
α

‖f(xα)‖µ(Iα)

<
ε

2
+ (

∫
I
‖f‖+

ε

2
)

=

∫
I
‖f‖+ ε

Therefore ‖
∫
D f‖ ≤

∫
D‖f‖+ ε for any ε > 0, so we have ‖

∫
D f‖ ≤

∫
D‖f‖.
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32.1 Mean value theorem for integration

Theorem 32.1 (Mean value theorem for integration). Let D ⊆ Rn be compact, connected, and sizeable. Let
f : D → R be continuous on D. Then ∃ at least one point x0 ∈ D such that∫

D
f = f(x0)µ(D) (32.1)

Proof. If µ(D) = 0 then both sides of eq. (32.1) are zero for any x0 ∈ D (
∫
D f = 0 by claim #2 in property (4)).

So assume µ(D) > 0. Let

M1 = min{f(x);x ∈ D}
M2 = max{f(x);x ∈ D}

(exists because D compact and f continuous so f(D) compact and hence bounded).
In fact, by the extreme value theorem, these extrema are attained, that is ∃x1, x2 ∈ D such that M1 = f(x1) and
M2 = f(x2) (not unique).
By property (3), M1µ(D) ≤

∫
D f ≤M2µ(D), thus

M1 = f(x1) ≤ 1

µ(D)

∫
D
f ≤ f(x2) = M2

Since D is connected ∃ (not unique) x0 by the intermediate value theorem such that

f(x0) =
1

µ(D)

∫
D
f

Remark 32.1. Why is it called the mean valued theorem?
Suppose f(x1), . . . , f(xM ) ∈ R, x1, . . . , xM ∈ D then

Mean(yi) =

∑M
k=1 f(xk))∑M

k=1 1
→
∫
D f∫
D 1

(this is of course not rigorous but rather a heuristic for intuition).

33 March 26, 2018

33.1 Fubini’s theorem for evaluating integrals

How do we actually evaluate a Riemann integral? We use Fubini’s theorem, which allows us to decompose an
integral over a region in Rn into n iterated single-variable integrals over regions in R1, then applying the fundamental
theorem of calculus.

Theorem 33.1 (Fubini’s theorem). Let I be a box in Rn. Let J be a box in Rm. Then I × J is a box in
Rn+m = Rn × Rm.
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Let f : I × J → Rp. Suppose that f is integrable on I × J and for each x ∈ I the function where y 7→ f(x, y) i.e.
f(x, ·) : J → Rp is integrable on J , that is ∫

J
f(x, ·) = F (x) ∈ Rm

exists for all x ∈ I where F : I → Rm.
Then F is integrable on I and ∫

I
F =

∫
I×J

f

or
∫
I

(∫
J f(x, ·)

)
=
∫
I×J f .

Remark 33.1. This means if the hypotheses are satisfied, to integrate over I × J , we can first integrate over J ,
then over I.
Of course if f is integrable on I × J and f(·, y) is integrable on I for all y ∈ J , let G(y) =

∫
I f(·, y). Then G is

integrable on J , and
∫
J G =

∫
I×J f .

Proof. Let ε > 0. Since f : I × J → Rp is integrable on I × J , there exists a partition Pε of I such that∥∥∥∥S(f, P )−
∫
I×J

f

∥∥∥∥ < ε

2
(33.1)

for any Riemann sum of f wrt any refinement P of Pε.
Let Qε and Rε be the partitions of I and J respectively such that Pε = Qε ×Rε (i.e. we have (Pε)1 × . . .× (Pε)n+m

where (Qε)k = (Pε)k for k = 1, . . . , n and (Rε)k = (Pε)n+k for k = 1, . . . ,m).
Let Q be any refinement of Qε (partition of I) with corresponding subdivision Iα. Choose xα ∈ Iα. For each α,
the function y 7→ f(xα, y) is integrable on J . So ∃ a partition Tα of J such that for each refinement T of Tα with
corresponding subdivision Jβ we have∥∥∥∥∑

β

f(xα, yβ)µ(Jβ)− F (xα)

∥∥∥∥ < ε

2µ(I)
(33.2)

where yβ ∈ Jβ the left term is S(f(xα, ·), T ) and F (xα) =
∫
J f(xα, ·).

Let Tε (partition of J) be a common refinement of Rε and Tα for all α with corresponding subdivision Jβ of J .
Then Qε × Tε is a refinment of Pε with corresponding subdivision Iα × Jβ of I × J .
Choose yβ ∈ Jβ arbitrary, thus from (33.1) we have∥∥∥∥∑

α,β

f(xα, yβ)µ(Iα)µ(Jβ)−
∫
I×J

f

∥∥∥∥ < ε

2
(33.3)

where µ(Iα)µ(Jβ) = µ(Iα × Jβ).
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Thus we have∥∥∥∥∑
α

F (xα)µ(Iα)−
∫
I×J

f

∥∥∥∥ ≤ ∥∥∥∥∑
α

F (xα)µ(Iα)−
∑
α,β

f(xα, yβ)µ(Iα)µ(Jβ)

∥∥∥∥+

∥∥∥∥∑
α,β

f(xα, yβ)µ(Iα)µ(Jβ)−
∫
I×J

f

∥∥∥∥
(33.3) and 4
≤

∑
α

∥∥∥∥F (xα)−
∑
β

f(xα, yβ)µ(Jβ)

∥∥∥∥µ(Iα) +
ε

2

(33.2)
≤

∑
α

(
ε

2µ(I)

)
µ(Iα) +

ε

2

=
ε

2µ(I)

(∑
α

µ(Iα)

)
+
ε

2

=
ε

2
+
ε

2
= ε

We’ve shown F : I → Rp is integrable on I and
∫
I F =

∫
I×J f . We found a partition Qε of I such that for any

Riemann sum of F converges for any refinement Q of Qε i.e. ‖S(F,Q)−
∫
I×J f‖ < ε.

33.2 1-D Fubini’s corollary

Corollary 33.1. (p = 1, m = n = 1). If
∫ b
a f(x, y) dx exists ∀y ∈ [c, d] and

∫
[a,b]×[c,d] f(x, y) exists, then∫

[a,b]×[c,d] f(x, y) =
∫ d
c

(∫ b
a f(x, y) dx

)
dy.

Example 33.1. Let D = [0, 1]× [0, 1] ⊆ R2. Let f(x, y) = y3exy
2 .

f is continuous on D. Also y 7→ f(x, y) continuous on [0, 1] for all x ∈ [0, 1] and x 7→ f(x, y) continuous on [0, 1] for
all y ∈ [0, 1].
By our corollary, we have ∫

D
f =

∫ 1

0

(∫ 1

0
y3exy

2
dy

)
dx

=

∫ 1

0

(∫ 1

0
y3exy

2
dx

)
dy

=

∫ 1

0

(
y3exy

2

y2

∣∣∣∣x=1

x=0

)
dy

=

∫ 1

0
yey

2 − y dy

= (
ey

2

2
− y2

2
)

∣∣∣∣1
0

=
e

2
− 1

33.3 1-D Fubini’s corollary with bounding functions

Corollary 33.2. Let φ, ψ : [a, b]→ R continuous with φ(x) ≤ ψ(x) for all x ∈ [a, b].
Let D = {(x, y) ∈ R2, x ∈ [a, b], φ(x) ≤ y ≤ ψ(x)}.
Let c ≤ d such that c ≤ φ(x) ≤ ψ(x) ≤ d for all x ∈ [a, b].
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Let f : D → R be bounded such that the set D0 ∈ R2 of its points of discontinuity has size zero, and, {y ∈
[c, d], (x, y) ∈ D0} also has size zero as a subset of R1, for each x ∈ [a, b].
Then f is integrable on D and ∫

D
f =

∫ b

a

(∫ ψ(x)

φ(x)
f(x, y) dy

)
dx

Figure 33.1: D is the area between x ∈ [a, b] and φ(x) ≤ ψ(x). There may exist points of discontinuity (e.g. at x
in the diagram) but the region is still integrable.

Proof. D ⊆ [a, b]× [c, d] = I. Let f̃ be extension by zero of f to I. Since D0 has size zero, by theorem 30.1 f̃ is
integrable on I so f is integrable on D and ∫

D
f =

∫
I
f̃

By our premise (where {y ∈ [c, d], (x, y) ∈ D0} has size zero), for each x ∈ [a, b] the function y 7→ f(x, y) has
discontinuities on a set of size zero.
Thus y 7→ f(x, y) is integrable on [c, d] for all x ∈ [a, b] and∫ d

c
f(x, y) dy =

∫ ψ(x)

φ(x)
f(x, y) dy

So by Fubini’s, we have ∫
D
f =

∫ b

a

(∫ ψ(x)

φ(x)
f(x, y) dy

)
dx

Example 33.2. Let D = {(x, y) ∈ R2, 1 ≤ x ≤ 3, x2 ≤ y ≤ x2 + 1}.
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Figure 33.2: D is the area between x2 and x2 + 1 and between x = 1 and x = 3.

We have

µ(D) =

∫
D

1

=

∫ 3

1

(∫ x2+1

x2
1 dy

)
dx

=

∫ 3

1

(
y

∣∣∣∣y=x2+1

y=x2

)
dx

=

∫ 3

1
1 dx

= 2

34 March 28, 2018

34.1 Examples of evaluating integrals using Fubini’s theorem

Example 34.1. Let D be the subset of R3 bounded by the planes x = 0, y = 0, z = 0, and x+ y + z = 1.
Compute

∫
D f where f(x, y, z) = y (i.e. the “density” is y).
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Figure 34.1: The tetrahedron is our domain we want to integrate over.

Note that the domain of our variables for the region D is as follows, we we first fix an x value then derive the other
variables:

0 ≤ x ≤ 1

0 ≤ y ≤ 1− x
0 ≤ z ≤ 1− x− y

(there are actually 3! ways to specify these domains depending on the order we express the variables).

Figure 34.2: The bounds between x and y.

By Fubini ∫
D
f =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
y dz dy dx

Remark 34.1. A quick check to see if the order of integrals make sense is to see if the variables in the integral
bounds “disappear” by the last integral.

120



Winter 2018 MATH 247 Course Notes 34 MARCH 28, 2018

∫
D
f =

∫ 1

0

∫ 1−x

0

(
yz

∣∣∣∣z=1−x−y

z=0

)
dy dx

=

∫ 1

0

∫ 1−x

0
(1− x)y − y2 dy dx

=

∫ 1

0

(
(1− x)

y2

2
− y3

3

) ∣∣∣∣y=1−x

y=0

dx

=

∫ 1

0

1

6
(1− x)3 dx

=
−(1− x)4

24

∣∣∣∣1
0

=
1

24

Example 34.2. Find the volume of the region D lying inside the “elliptic” cylinder x2 + 4y2 = 4 above the x-y
plane and below the plane z = 2 + x.
We want to find V ol(D) =

∫
D 1.

Figure 34.3: The region x2 + 4y2 = 4 on the x-y plane.

Note that the base is an ellipse since x2 + 4y2 = 4⇒
(
x
2

)2
+ y2 + 1. We then extend this ellipse along the z axis.
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Figure 34.4: The ellipse extended along the z-axis.

Note that the plane is a function of only x. It is also not parallel to the x-y plane so our cylinder has a slanted top.
From our ellipse we see that

− 2 ≤ x ≤ 2

−
√

1− x2

4
≤ y ≤

√
1− x2

4

And of course from our plane and the x-y plane we have

0 ≤ z ≤ 2 + x

Thus we have

V ol(D) =

∫ 2

−2

∫ √
1−x2

4

−
√

1−x2
4

∫ 2+x

0
1 dz dy dx

=

∫ 2

−2

∫ √
1−x2

4

−
√

1−x2
4

(2 + x) dy dx

=

∫ 2

−2
2(2 + x)

√
1− x2

4
dx

= 4

∫ 2

0
2

√
1− x2

4
dx

= 8

∫ 2

0

√
1− x2

4
dx

= 16

∫ 1

0

√
1− u2du x = 2u,dx = 2du 0 ≤ x ≤ 2, 0 ≤ u ≤ 1

= 4π
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Example 34.3. Suppose we wanted to find the integral∫ 1

0

∫ 1

z

∫ x

0
ex

3
dy dx dz =

∫ 1

0

∫ 1

z
ex

3
y

∣∣∣∣y=x

y=0

dx dz

=

∫ 1

0

∫ 1

z
xex

3
dx dz

It is hard (i.e. impossible) to find the explicit anti-derivative of xex3 in terms of x.
Fubini’s theorem says we can change the order of integration. Note that we had 0 ≤ z ≤ 1 and z ≤ x ≤ 1 from our
integral bounds. Let us express x first then find the bounds of z in terms of x, i.e. 0 ≤ x ≤ 1 and 0 ≤ z ≤ x.
Thus we have ∫ 1

0

∫ x

0
xex

3
dz dx =

∫ 1

0

(
xex

3
z

∣∣∣∣z=x
z=0

)
dx

=

∫ 1

0
x2ex

3
dx

=
1

3
ex

3

∣∣∣∣1
0

=
1

3
(e− 1)

34.2 Change of variables theorem

Theorem 34.1 (Change of variables theorem). Let U ⊆ Rn be open and non-empty. Let K ⊆ U be compact,
non-empty and sizeable. Suppose ψ : U → Rn is in C1(U). Suppose ∃ a subset D ⊆ K with µ(D) = 0 such that

1. ψ
∣∣∣∣
K\D

is injective

2. det((Dψ)x) 6= 0 for all x ∈ K \D.

Then ψ(K) is sizeable and for any f : ψ(K)→ Rp which is continuous, then f is integrable on ψ(K) and∫
ψ(K)

f =

∫
K

(f ◦ ψ)|det(Dψ)|

where f ◦ ψ : K → Rp and |det(Dψ)| is the “scaling factor”.

34.3 Cylindrical coordinates

Example 34.4. Note that the cylindrical coordinates on R3 are

x = r cos θ

y = r sin θ

z = z
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where

0 ≤ r ≤ ∞
0 ≤ θ ≤ 2π

−∞ < z <∞

(there is some symmetry around the z-axis).

Figure 34.5: Cylindrical coordinates in the xyz R3 space.

Suppose we have
(x, y, z) = ψ(r, θ, z) = (r cos θ, r sin θ, z)

where ψ ∈ C∞(R3). ψ fails to be injective on half-plane θ = 0., which has size zero in R3 (when restricted to any
compact subset).
We have

Dψ =

∂x∂r ∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z


=

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1


where |det(Dψ)| = r 6= 0 except on set of size zero when r = 0 (when intersected with a compact subset).
The Change of variables theorem says if f : ψ(K)→ R is continuous, then∫

ψ(K)
f =

∫
K

(f ◦ ψ)r

So we use cylindrical coordinates if the region and/or the function being integrated becomes simpler.
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For example: suppose we want to find
∫
D f where f(x, y, z) = x2 + y2 and D is bounded by

x2 + y2 = 1

x2 + y2 = 4

z = 0

z = 1

y = 0

y = x

Note that x2 + y2 = r2 in cylindrical coordinates.

Figure 34.6: Domain of our example.

So in cylindrical coordinates we have

1 ≤ r ≤ 2

0 ≤ θ ≤ π

4
0 ≤ z ≤ 1

Thus we find (where f = r2 and |det(Dψ)| = r)∫
D
f =

∫ 1

0

∫ π
4

0

∫ 2

1
r2r dr dθ dz

=
π

4

∫ 2

1
r3 dr

=
π

16
(24 − 1)

=
15π

16
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35 April 2, 2018

35.1 Geomtric heurisitic of cylindrical coordinates

If we imagine that we change r, θ, z by a small delta in each direction for a given cylindrical coordinate point, we
see that it forms a small cube.

Figure 35.1: We take small deltas in each direction which forms small cubes we sum over.

When we integrate, we integrate over these small boxes to find our total volume.
Note that the base of the triangle is a rectangle with sides r∆θ (r + ∆r)∆θ, and ∆r on the two other sides. Since
∆r and ∆θ is small, then we have a base with area r∆r∆θ.
This is why dx dy dz → r∆r∆θ∆z (“infintesimal volume element”).

35.2 More examples with cylindrical coordinate

Example 35.1. Find the volume of the region above the paraboloid z = x2 + y2 = r2. and inside the sphere
x2 + y2 + z2 = 12.
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Figure 35.2: The region is bounded by the paraboloid and sphere shown.

These two surfaces intersect when z = x2 + y2 ≥ 0 and x2 + y2 + z2 = 12. So

z2 + z − 12 = 0

(z − 3)(z + 4) = 0

z = 3 z ≥ 0

Intersect is the circle of radius
√

3 in the plane z = 3.
Thus the region D has bounds

0 ≤ θ ≤ 2π

0 ≤ r ≤
√

3

r2 ≤ z ≤
√

12− r2

So the volume of D is

V ol(D) =

∫ 2π

0

∫ √3

0

∫ √12−r2

r2
1r dz dr dθ

=

∫ 2π

0

∫ √3

0
r(
√

12− r2 − r2) dr dθ

= 2π

∫ √3

0
r(
√

12− r2)− r3 dr

= 2π

(
−1

3
(12− r2)

3
2 − r4

4

) ∣∣∣∣
√

3

0

= 2π

(
(12)

3
2

3
− 9− 9

4

)
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35.3 Spherical coordinates

Figure 35.3: Spherical coordinates with ρ, θ, φ against the xyz axes.

We have three axes in spherical coordinates:

ρ2 - square of distance to origin ρ2 = x2 + y2 + z2

θ - “longitude” Same as in cylindrical, angle from positive x-axis, 0 ≤ θ ≤ 2π

φ - “latitude” Angle from positive z-axis, 0 ≤ φ ≤ π, where

• φ = 0 is the “north pole”

• φ = π is the “south pole”

• φ = π
2 is the “equator”
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Figure 35.4: The z-axis with respect to ρ and r from cylindrical coordinates.

Note that from the triangle (derived by comparing with cylindrical coordinates), we see that r = ρ sin θ, thus

z = ρ cos θ

x = r cos θ = ρ sinφ cos θ

y = r sin θ = ρ sinφ sin θ

thus ψ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cos θ).
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So taking the determinant of the derivative

det(Dψ) = det


∂x
∂ρ

∂x
∂φ

∂x
∂θ

∂y
∂ρ

∂y
∂φ

∂y
∂θ

∂z
∂ρ

∂z
∂φ

∂z
∂θ


= det

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0


= 0 + ρ2 sinφ cos2 φcos2θ + ρ2 sin3 φ sin2 θ + ρ2 sinφ cos2 φ sin2 θ + 0 + ρ2 sin3 φ cos2 θ

= ρ2 sinφ cos2 φ+ ρ2 sinφ sin2 φ

= ρ2 sinφ 0 ≤ φ ≤ π sinφ ≥ 0

so |det(Dψ)| = ρ2 sinφ.

35.4 Geometric heuristic of spherical coordinates

We can perform the same geometric analysis of spherical coordinates by taking small deltas in each direction of
ρ, θ, φ and note that we end up with a small cube.

Figure 35.5: We take small deltas in each direction which forms small cubes we sum over.

The lengths of the base consists of a side of length ρ∆φ and (ρ+ ∆ρ)∆φ, so we have a side ρ∆φ.
Another side of the cube is simply ∆ρ.
Finally the last sides has length r∆θ where r = |ρ sinφ| and ρ sin(φ+ ∆φ). Note sin(φ+ ∆φ) = sinφ cos(∆φ) +
cosφ sin(∆φ) = sinφ, thus we get for the volume to be approximatley ρ2 sinφ∆ρ∆φ∆θ.

35.5 Canonical examples of spherical coordinates

Note that for ρ constant, it is a sphere centred at the origin of that radius.
Note that for φ constant, it is a cone centred at the origin where 0 < φ < π

2 .

130



Winter 2018 MATH 247 Course Notes 35 APRIL 2, 2018

Figure 35.6: When 0 < φ < π
2 constant, we have the cone centred at the origin

.

For φ = π
2 we have the circl on the x-y plane.

Figure 35.7: When φ = π
2 constant, we have a circle on the x-y plane.

For π
2 < φ < π we have an upside down cone.
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Figure 35.8: When π
2 < φ < π constant, we have an upside-down cone.

35.6 Examples of spherical coordinates

Example 35.2. Find
∫
D g where g(x, y, z) = 1 −

√
x2 + y2 + z2 = 1 − ρ and D is the region above the cone

z = 1√
3

√
x2 + y2 and inside the sphere x2 + y2 + z2 = 1.

Figure 35.9: We compare the z value to r to find a bound for φ.

Note that z = 1√
3
r so cosφ0 = 1

2 thus φ0 = π
3 (the angle from the z-axis of the cone).

The region of D is thus bounded by the cone and the sphere
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Figure 35.10: We want to find the bounds for the region bounded by the cone and the sphere.

Thus we have for the bounds of D

0 ≤ θ ≤ 2π

0 ≤ φ ≤ π

3
0 ≤ ρ ≤ 1

Thus we have ∫
D
g =

∫ 2π

0

∫ π
3

0

∫ 1

0
(1− ρ)ρ2 sinφ dρ dφ dθ

= 2π

∫ π
3

0

∫ 1

0
(ρ2 − ρ3) sinφ dρ dφ

= 2

(
1

3
− 1

4

)∫ π
3

0
sinφ dφ

=
π

6
(− cosφ)

∣∣∣∣π3
0

=
π

6

(
1− 1

2

)
=

π

12

36 April 4, 2018

36.1 Idea behind change of variables formula

For the special case: F : U ⊆ Rn → Rn which is C1(U), one-to-one everywhere and (DF )x invertible for all x ∈ U .
Each component Fk : U ⊆ Rn → R is in C1(U) hence differentiable. Note that

Fk(x) = Fk(a) + (∇Fk)(a) · (x− a) +Rk,a(x)
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where limx →a
Rk,a(x)
‖x−a‖ = 0 by Taylor’s theorem.

Let I be a box in Rn with a as the “lower left corner”, i.e.

I = {a+ t1e1 + t2e2 + . . .+ tnen | 0 ≤ tk ≤ lk}

where lk is the length of the kth edge of box.
Let Rn ⊇ F (I) = {F (a+ t1e1 + . . . + tkek} and x = a+ t1e1 + . . . + tkek where t1e1 + . . . + tkek is small (small
box). Note that the length

√
t21 + . . .+ t2n ≤

√
l21 + . . .+ 2

n. We thus have

Fk(x) = Fk(a) + (∇Fk)(a) · (t1e1 + . . .+ tnen) +Rk,a(x)

In vector form we have F1(x)
...

Fn(x)

 =

F1(a)
...

Fn(a)

+

(∇F1)(a)
...

(∇Fn)(a)


t1...
tn

+Ra(x)

Thus we have
F (I) = {F (a) + t1(DF )a(e1) + t2(DF )a(e2) + . . .+ tn(DF )a(en) +Ra(x)}

and for I small

F (I) ≈ {F (a) +
n∑
k=1

tk(DF )a(ek) | 0 ≤ tk ≤ lk}

Note that each (DF )a(ek) are linearly independent since (DF )x invertible for all x ∈ U .

Figure 36.1: The volume of the parallelpiped formed by the vectors of (DFk)a(ek) and F (a) approximates µ(F (I))
for small enough I.

From linear algebra, the volume of this parallelpiped is l1 · . . . · ln multiplied by |det((DF )a(e1) . . . (DF )a(en))|.
Note that l1 · . . . · ln is µ(I) thus we have µ(I)|det(DF )a| for the volume and thus µ(F (I)) ≈ |det(DF )a|µ(I).
So if h : F (U) ⊆ Rn → R where h ∈ C0(U) then∫

F (I)
h =

∫
I
(h ◦ F )|det(DF )|

36.2 Fundamental thereom of calculus (FTC) for multiple variables

There is an analogous FTC in Rn to the FTC in one variable: Stoke’s theorem.
Mk is a subset of Rn is called a k-dimensional submanifold if locally, it “looks like” an open set in Rk.
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The manifold boundary (not the same as set boundary) ∂M of M is a (k − 1)-dimensional submanifold.
On k-dimensional manifolds, the objects that can be “integrated” are called smooth k-forms where Ωk is the space
of smooth k-forms.
There exist a natural notion of differentiation d : Ωk → Ωk+1 the exterior derivative (takes something integrable
on k-dimensional manifolds to something intergrable on (k + 1)-dimensional manifolds).
Stoke’s theorem: Let M be a k-dimensional, ∂M be (k− 1)-dimensional manifold, dω ∈ Ωk and ω ∈ Ωk−1. Then∫

∂M
ω =

∫
M
dω
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