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Spring 2017 STAT 231 Final Exam Guide 2 DATA SUMMARIES

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 R Code

1.1 Distribution Commands

There are four functions for most distributions in R. For the Binomial distribution:

dbinom Density function. Returns f(x) = P (X = x) ∈ [0, 1] the probability for a given x value to occur (height of
PMF)

Rn → [0, 1]

pbinom P-value function (or CDF). Returns p-value or F (x) = P (X ≤ x) ∈ [0, 1] the percentile to which a given x
value maps.

Rn → [0, 1]

qbinom Quantile function (reverse pbinom). Returns the x value that correspond to the p-value or quantile (domain
is the range of all values possible for your distribution).

[0, 1]→ Rn

rbinom Sampling function. Returns n samples from the distribution with the given parameters.

Type ?pbinom in R console for information on commands.

1.2 θ in exp (Exponential)

In the real world, the parameter λ = 1
µ is the rate (where µ is the population mean). Thus if we want 1 sample

from the exponential function with µ = 5, we need to call rexp(1,1/5).
In the course, we use θ = 1

λ = µ.

2 Data Summaries

2.1 PPDAC

Know the following definitions

Terms • units - element in a given population (target, study, sample)

• variates - characteristic associated with each unit

• attributes - functions of variates over population

Errors • sampling - attributes of sample differ from those of study population

• study - attributes of study population differ from those of target population

1
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• measurement - difference in measured and true values

Problem Types • descriptive - determine attribute of population
• causative - determine existence of causal relationship between two (or more) variates
• predictive - predict response of a variate

Population Types • target - population we want to describe and produce conclusions for
• study - population available to us in the study
• sample - group of units that we extract variates from

Bias Response bias is the tendency of certain groups of the population to be vocal majorities that may misrepresent
the target population

2.2 Summary Techniques

We can summarize a set of data in two ways:

Graphical • Histogram - replicate density function
• Empirical CDF - compare with theoretical CDF
• Scatter plots - association between two variates
• Box plots - checks distribution. Outliers separate data points < q(0.25)− 1.5IQR or > q(0.75) + 1.5IQR.
• Q-Q plots - compare with e.g. normal distribution (linear relationship → Normal)

Numerical • Central tendency - ȳ (sample mean), median, mode
• Variability - s2, s, range, IQR

s2 =
1

n− 1

∑
(yi − ȳ)2

=
1

n− 1
(
∑

y2
i − nȳ2)

• Skewness (mean - median)
• Kurtosis - fatness of tail: higher kurtosis → fatter tails
• Relative Risk - ratio of a given trait between two categories: ≈ 1 means there is no statistical difference,

that is independence
• Sample correlation coefficient - |r| ≈ 1 means high correlation.∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

√∑
(yi − ȳ)2

3 Point Estimation

3.1 Sample Distribution

Yi ∼ f(yi; θ)

Yi is the distribution of the ith sample (a sample can be summarized into one number e.g. 2 successes in a Binomial
sample of 5 trials results in y1 = 2).
The distribution of these numbers (samples really) follows Yi.

2
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3.2 Estimate and Estimator

A given parameter θ in n samples varies depending on what our n samples are. The distribution for these θ values
is represented as the point estimator θ̃.
A point estimate θ̂ is any value that we pick arbitrary from this distribution. Ideally, we want to pick the
maximum likelihood estimate (the most probable one based on our samples).

3.3 Likelihood Function

Find the most probable θ that configures our model to have the maximum “chance” of producing our samples.
We combine all our Yis (combine distributions for each and every sample i) by multiplying their PDFs (likelihood
function)

L(θ, y1, . . . , yn) =

n∏
i=1

f(yi; θ)

Solve for the maximum value (maximum likelihood estimate MLE) by solving for dL
dθ = 0 (first-order condition).

To aid us with exponentials in the PDFs, we can take the log-likelihood or ln(L).

3.4 Invariance Property

If we wanted to find an attribute of interest that is a function of unknown parameters, the invariance property
states:

Theorem 3.1. If θ̂ is the MLE of θ then g(θ̂) is the MLE of g(θ).

3.5 Relative Likelihood

R(θ) =
L(θ)

L(θ̂)

where θ̂ is the MLE of θ.
The log relative likelihood is ln(R(θ)).

4 Interval Estimation

Two ways to do it: likelihood intervals and “sampling” (coverage and confidence interals).

4.1 Likelihood Interval

For a 100p% LI,
{θ : R(θ) ≥ p}

We can conclude that values of θ are plausible/implausible based on where they fall in R(θ) (or if they fall in a
certain 100p% LI:

R(θ) Value of θ is . . .
≥ 0.5 very plausible

[0.1, 0.5) plausible
[0.01, 0.1) implausible
< 0.01 very implausible

3
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4.2 Pivotal Quantity and Distribution

We want to map n samples from n Yi distributions to a pivotal quantity that lets us solve for an unknown
population parameter. The Central Limit Theorem (CLT - the means of n samples approaches a normal distribution)
is very useful.
The known distribution that this pivotal quantity is equivalent to is called the pivotal distribution.

4.3 Chi-Squared Distribution

Defined with k degrees of freedom

X2
k =

k∑
i=1

Z2

where Z = G(0, 1). Note E(X2
k) = k and V ar(X2

k) = 2k.
Note that

X2
2 ∼ Exp(2) =

1

2
e−

y
2

and for df > 30
X2
n ∼ G(n, 2n)

where σ2 = 2n.
This distribution is used in our pivotal quantity for finding σ for G(µ, σ2) samples and our LRTS.
The sum of Chi-Squared distributions is Chi-squared. That is

X2
k1 + . . .+X2

kn = X2∑n
i=1 ki

4.4 Exponential and Chi-Squared

Note that for Y ∼ Exp(θ)
2Y

θ
∼ Exp(2)

We know that X2
2 ∼ Exp(2) thus

n∑
i=1

2Yi
θ
∼ X2

2n

4.5 Student’s T-Distribution

This is distribution shows up when we use the sample deviation instead of the population deviation

Tk =
Z√
X2
k
k

Refer to Pivotal Quantities.

4.6 Coverage/Confidence Interval

Using our pivotal quantity (with the unknown parameter we want to find) and the pivotal distribution, we can
bound a coverage (and confidence) interval that the unknown parameter is probable to take on based on our samples.
For this example, we n samples taken from Yi ∼ Bin(n, θ) distributions:

4
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Step 1 We want to construct an interval for unknown parameter θ. Construct our pivotal quantity and distribution

θ̃ − θ√
θ̃(1−θ̃)
n

∼ G(0, 1)

Step 2 For a 100p% coverage interval, we construct the following two-tailed interval

P (−z∗ ≤ Z ≤ z∗) = p

P (−z∗ ≤ θ̃ − θ√
θ̃(1−θ̃)
n

≤ z∗) = p

P (θ̃ − z∗
√
θ̃(1− θ̃)

n
≤ θ ≤ θ̃ + z∗

√
θ̃(1− θ̃)

n
) = p

For a two-tailed interval, we want to range in between −z∗ and z∗ in Z = G(0, 1) to contain p proportion of
the distribution.

Thus we take the z-scores at 1−p
2 (−z∗) and 1− 1−p

2 (z∗). For p = 0.95, this corresponds to z-scores p-values
0.025 and p = 0.975 (that is ±1.96).

Step 3 To find the 100p% confidence interval, we use the MLE θ̂ in place of θ̃. Thus our CI for θ for θ̂ = ȳ
n

[θ̂ − z∗
√
θ̂(1− θ̂)

n
, θ̂ + z∗

√
θ̂(1− θ̂)

n
]

4.7 Sample Size in Binomial Sampling

Sometimes we want to guarantee a range for θ with 100p% confidence with Binomial samples by adjusting the
sample size n.
Note the 100p% confidence interval for our binomial samples Yi ∼ Bin(n, θ) is

θ̂ ± z∗
√
θ̂(1− θ̂)

n

The ± part defines the length of our interval or the margin of error (% of mean). Ideally for an interval length of
less than l (on one side)

z∗

√
θ̂(1− θ̂)

n
≤ l

n ≥ (
z∗

l
)2 · 1

4

where 1
4 comes from noting that arbitrary value θ̂(1− θ̂) takes on a maximum value of 0.5(1− 0.5) = 1/4.

4.8 Number of Samples for Gaussian and Other Distributions

A similar method as above to bound the margin of error can be applied to the CI of Gaussian and other distributions.

5
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Note the one-sided length of a Gaussian CI is
z∗

σ√
n

Thus we can upper bound this by l the margin of error and solve for n.

5 Hypothesis Testing

The gist is to make an assumption (null hypothesis H0) about the parameters of n samples and conclude whether
it is plausible or not.
For example, for Yi ∼ Bin(n, θ), we may assume that P (success) = 0.5 thus our hypothesis is

H0 : θ = 0.5

H1 : θ 6= 0.5

where H1 is our alternative hypothesis.
To quantitatively test our hypothesis, we employ a test statistic.

5.1 Test Statistic

Ideally, our test statistic or discrepancy measure D (some distribution) with discrepancy value d is a distribution
that:

(i) D ≥ 0

(ii) D = 0 implies best evidence for H0

(iii) Larger values of D, stronger evidence against H0

(iv) P (D ≥ d) is our p-value and can be calculated assuming H0 is true

Remember we derived many pivotal quantities for all types of distributions. Since many of these follow a G(0, 1) or
T distribution, we must take the absolute distribution.
For example, the D for Gaussian samples may be (where H0 : µ = µ0)

D =
∣∣ Ȳ − µ0

S√
n

∣∣ ∼ |G(0, 1)|

Note the p-value calculations must undo the absolute sign!

P (D ≥ d)

P (|Z| ≥ d) 2(1− P (Z ≤ d))

the last statement follows by taking the tail sides of P (Z ≤ −d) and P (Z ≥ d).
Note of one-sided hypothesis tests, we need only take one tail side.
A hypothesis is plausible/implausible based on the p-value:

p-value there is . . . against H0

> 0.1 no evidence
(0.05, 0.1] weak evidence
(0.01, 0.05] strong evidence
≤ 0.01 very strong evidence

6
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The p-value can be interpreted as how unusual (smaller the p-value, the more unusual) our evidence/sample is
assuming H0 is true.
Generally we reject H0 is p-value is ≤ 0.1, but this depends on the context.

5.2 Test Statistic for Variance in Gaussian

Recall we have the pivotal quantity for σ2 in n Gaussian samples which satisfies all properties of D. For H0 : σ = σ0

D =
(n− 1)S2

σ2
0

= X2
n−1

so for our discrepancy value we have

d =
(n− 1)s2

σ2
0

When we compute the p-value, note that the Chi-Squared distribution is not symmetric. To take into account large
and small values of d that provide evidence against H0, we multiply the smaller side by two. We have two cases:

P (X2
n−1 ≤ d) < 1

2 (d is “small”): we take 2P (X2
n−1 ≤ d)

P (X2
n−1 ≤ d) > 1

2 (d is “large”): we take 2(1− P (X2
n−1 ≤ d)) or 2P (X2

n−1 ≥ d)

5.3 Confidence and p-value

The p-value was derived with respect to an interval, which can be mapped to confidence intervals. That is: a
parameter value θ = θ0 falls in a 100q% confidence interval for θ if and only if the p-value for testing H0 : θ = θ0 is
greater than or equal to 1− q.

5.4 Likelihood Ratio Test Statistic (LRTS)

This test statistic is useful for all types of distributions (assuming n number of samples is large)

Λ(θ) = −2ln(R(θ)) ∼ X2
df

where df is the degree of freedoms. df is simply the number of unknowns in your distributions (so for N(µ, σ2)
both unknown, we have df = 2).
For most cases, we have one unknown paramater θ thus Λ(θ) ∼ X2

1 .

6 Regression

6.1 Simple Linear Regression Model (SLRM)

We want to model dependent variate Yi based on explanatory variate xi (per each ith sample).
If we think of Yi as a linear function of xi with intercept α and slope β (both estimators) with a residual (or noise)
Ri ∼ G(0, σ), then we get the following model

Yi = α+ βxi +Ri ∼ G(α+ βxi, σ)

where µ(xi) = α+ βxi.
The Gauss-Markov assumptions state:

(i) Yi are all independent and normally distributed given xi (for a given xi, Yi is normally distributed)

7
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(ii) E(Yi) = α+ βxi (mean is a linear function of xi)

(iii) V ar(Yi) = σ2 for all i. Variance of each Yi or residual Ri have the same variance.

The MLEs for the coefficients are:

β̃ =
Sxy
Sxx

α̃ = Ȳ − β̃x̄

σ̃2 =
1

n

n∑
i=1

(Yi − α̃− β̃xi)2

The unbiased estimator for σ2 is actually S2
e (estimator for standard error)

S2
e =

1

n− 2

∑
(Yi − α̃− β̃xi)2 =

1

n− 2
(Syy − β̃Sxy)

6.2 Distribution of β̃

Note that we can derive the distribution for β̃ by letting ai = (xi−x̄)
Sxx

(constant) and β̃ =
∑
aiYi. Thus E(β̃) = β

and V ar(β̃) = σ2

Sxx
.

The pivotal quantity for β̃ = G(β, σ√
Sxx

) is

β̃ − β
σ√
Sxx

∼ G(0, 1)

and for the variance
(n− 2)S2

e

σ2
∼ X2

n−2

With Se
β̃ − β
Se√
Sxx

∼ Tn−2

6.3 Distribution of µ̃(x)

Note that µ̃(x) = α̃+ β̃xi or the sum of Gaussian distributions, thus µ̃(x) = G(µ(x), σ
√

1
n + (x−x̄)2

Sxx
).

The pivotal quantities are

˜µ(x)− µ(x)

σ
√

1
n + (x−x̄)2

Sxx

∼ G(0, 1)

˜µ(x)− µ(x)

Se

√
1
n + (x−x̄)2

Sxx

∼ Tn−2

where µ(x) = α+ βx.
For the distribution of α̃, plug in x = 0 into the above.

8
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6.4 Prediction Interval for Ynew

Note that Ynew ∼ G(α+ βxnew, σ) and µ̃new ∼ G(α+ βxnew, σ
√

1
n + (xnew−x̄)2

Sxx
). Thus

Ynew − µ̃new = G(0, σ

√
1 +

1

n
+

(xnew − x̄)2

Sxx
)

with pivotal quantity (for which we can solve for Ynew

Ynew − µ̃new
σ
√

1 + 1
n + (xnew−x̄)

Sxx

∼ G(0, 1)

or with Se
Ynew − µ̃new

Se

√
1 + 1

n + (xnew−x̄)
Sxx

∼ Tn−2

6.5 Graphical Checks of SLRM Assumptions

Note that r̂∗i = r̂i
se

is the standardized residual.

Scatterplot Should follow a linear relationship (xi, Yi)

Residual plots For either (xi, r̂
∗
i ) or (µ̂i, r̂

∗
i ), the plots of r̂i should form a narrow band of values between [−3, 3]

with no apparent pattern (homoscedascity).

Q-Q plot against Z Plot quantiles of r̂∗i against that of Z should be linear near the middle.

7 Goodness of Fit

7.1 LRTS for Multinomial

The multinomial LRTS is useful for a lot of hypothesis testing problems that involve multiple categories. For n
sample with distribution Xi ∼ f(xi; θ)

Λ(θ) = 2

k∑
j=i

Yjln(
Yj
Ej

) ∼ X2
df

where Yj are the observed frequencies and Ej are the expected frequencies for category j. We bin the results Xis
into k categories. Note that we will collapse 1 or more yjs if yj < 5. df is the degrees of freedom (see below).
Ej is is calculated as

Ej = n× pj

where pj is the probability a given x = j occurs (or P (Xi = j)). Note for λ, we use find ej = n × p̂j using θ̂ in
f(xi; θ).
For categories with intervals, we need to take the integral for p̂j .
Note

∑k
j=1 pj = 1 for this to work.

For the p-value, we always take
P (Λ(θ) ≥ λ)

instead of the two tailed approach.

9
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7.2 Degrees of Freedom

We have two special cases:

Categorical parameters When we have categorical parameters (like θj = P (j) for face j ∈ [1, 6] in a dice roll),
note that sumθj = 1, thus there are only 5 free parameters.

Hypothesis parameters In the null hypothesis, we may assume some parameters (e.g. H0 : θ1 = 0.5). We must
account for these hypothesis parameters from our df . So for our dice example, we have 5 free parameters, we
subtract 1 to account for known θ1 under H0, thus df = 5− 1 = 4.

More generally for bounded categorical distributions (that is say the sum of the parameters of the categories is
known)

df = (n− 1)− p

where n is the number of categories and p is the number of parameters in the null hypothesis.

7.3 Testing Two Gaussian Population Means

We want to see test if the mean of two populations with distributions Ai ∼ G(µ1, σ1) and Bi ∼ G(µ2, σ2) are equal
(µ1 = µ2).
We have three cases:

Matched Data Every Ai is paired with its corresponding Bi. Thus we can take Yi = Ai−Bi ∼ G(µ1−µ2,
√
σ2

1 + σ2
2

and test H0 : µy = 0

D =
∣∣ Ȳ − 0

S√
n

∣∣ ∼ |Tn−1|

where S2 = 1
n−1

∑
(Yi − Ȳ )2.

Unmatched Data with Common Variance Note σ1 = σ2. We use their sample mean distributions Ȳ1 ∼
G(µ1,

σ√
n1

) and Ȳ2 ∼∼ G(µ2,
σ√
n2

). Thus we have

D =
∣∣(Ȳ1 − Ȳ2)− 0

S
√

1
n1

+ 1
n2

∣∣ ∼ Tn1+n2−2

where

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

Unmatched Data with Different Variances We need n1, n2 ≥ 30 large sample sizes. Similar to how the above
derivation with a common variance

D =
∣∣(Ȳ1 − Ȳ2)− 0√

S2
1
n1

+
S2
2
n2

∣∣ ∼ |Z|
Note it is Z and not T since for large sample sizes n Tn ∼ Z

7.4 Matched vs Unmatched Testing

Generally, we want matched data since

V ar(Ȳ1 − Ȳ2 = V ar(Ȳ1) + V ar(Ȳ2)− 2Cov(Ȳ1, Ȳ2)

10
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We expect matched data to have positive covariance (we must enforce this) thus the variance is smaller (ideal).
Independent samples imply a covariance = 0, which is worse than matched data since it has a larger variance.

7.5 Independence Testing for Two Variates

For a given population, we may test for the independence of two variates A and B such that they have discrete
types/values Ai and Aj . We construct a contingency table with frequencies of each occurrence

A \B B1 . . . Bb Total
A1 y11 . . . y1b r1
...

... . . .
...

...
Aa ya1 . . . yab ra

Total c1 . . . cb n

Note that independence implies that P (Ai ∩Bj) = P (Ai) · P (Bj) = ri
n ·

cj
n .

We can then treat this as a hypothesis testing question with H0 : θij = . . . and use LRTS

Λ(θ) = 2
a∑
i=1

b∑
j=1

Yijln(
Yij
Eij

) ∼ X2
(a−1)(b−1)

where Eij = n× P (Ai ∩Bj) =
ri×cj
n .

8 Causation

8.1 Causal Effect and Confounding Variables

We say X has a causal effect on Y if all other factors that affect Y are held constant, then a change in X sees a
change in Y .
A positive correlation between X and Y can mean at least three things: X causes Y , Y causes X, or some other
factor Z causes both X and Y .
A confounding variable is any other factors or variates that may affect X or Y .

8.2 Blocking and Randomization in Experimental Studies

For experimental studies, we need to control our confounding variables. There are one of two ways:

Blocking We keep the value/level of the confounding variables constant across all samples

Randomization We randomly partition the samples into our desired categories (e.g. Y and non-Y ). We strive to
distribute confounding variates evenly.

9 Other Reference Equations

9.1 LI ⇐⇒ CI

From a 100p% LI to a 100q% CI, we take the q that corresponds to

P (−
√
−2lnp ≤ Z ≤

√
−2lnp) = q

11
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From a 100p% CI to a 100q% LI, the relative likelihood ratio value is

P (R(θ) ≥ e−
z∗2
2 )

9.2 Percentile

To find the 100pth percentile in a sample of y1, . . . , yn, we take ym where

m = (n+ 1)p

If m 6∈ Z, then
ym =

yj + yj+1

2

where j < m < j + 1, j ∈ Z.

9.3 Relative Risk

Between two discrete (binary) variates, how is one type of variate B affected by the types of A?

A \B B not B
A y11 y12

not A y21 y22

The relative risk of B with respect to A vs not A is

y11
y11+y12
y21

y21+y22

9.4 PMFs/PDFs

Binomial y number of successes in k # of (Bernoulli) trials and θ = P (success)

f(y; k, θ) =

(
k

y

)
θy(1− θ)k−y

µ = kθ

σ2 = kθ(1− θ)

If k large and θ small, then Bin(k, θ) ∼ Pois(kθ).

Exponential y is the time between events in a Poisson process where θ is the mean (or inverse rate, where rate is
the equivalent of average time in between events)

f(y; θ) =
1

θ
e−

y
θ

µ = θ

σ2 = θ2

Poisson y is the number of events that occur in an interval where θ is equivalent to the average number of times

12



Spring 2017 STAT 231 Final Exam Guide 9 OTHER REFERENCE EQUATIONS

an event occurs in an interval

f(y; θ) =
θye−θ

y!

µ = θ

σ2 = θ

Negative Binomial y is the number of successes before r desired number of failures and θ = P (success)

f(y; r, θ) =

(
y + r − 1

y

)
θy(1− θ)r

µ =
θr

1− θ

σ2 =
θr

(1− θ)2

Gaussian/Normal y is the desired value with population mean µ and variance σ2

f(y;µ, σ2) =
1√
2πσ

e−
(y−µ)2

2σ2

Denoted as N(µ, σ2) ∼ G(µ, σ), where Z = G(0, 1).

Geometric y number of failures before first success with θ = P (success)

f(y; θ) = (1− θ)yθ

µ =
(1− θ)
θ

σ2 =
(1− θ)
θ2

9.5 MLEs

The maximum likelihood estimate for a given parameter θ is denoted as θ̂

Binomial θ is the mean (or P (success)) and k is the number of trials

θ̂ =
ȳ

k

Exponential θ is the mean (or inverse rate)
θ̂ = ȳ

Poisson θ is the mean (or average number of times an event occurs)

θ̂ = ȳ

13
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Gaussian/Normal µ is the population mean and σ2 is the population variance

µ̂ = ȳ

σ̂2 =
1

n

∑
(yi − ȳ)2

Geometric θ is P (success)

θ̂ =
1

ȳ + 1

9.6 Pivotal Quantities

Binomial
θ̃ − θ√
θ̃(1−θ̃)
n

∼ G(0, 1)

Exponential
Ȳ − θ
Ȳ√
n

∼ G(0, 1)

Poisson
Ȳ − θ√

Ȳ
n

∼ G(0, 1)

Gaussian

Ȳ − µ
σ√
n

∼ G(0, 1)

Ȳ − µ
S√
n

∼ Tn−1

(n− 1)S2

σ2
∼ X2

n−1

14
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