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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 Miscellaneous

1.1 Types of Variates

Variates can be separated into categorical (non-numerical) and numerical. Numerical is further divided into discrete
(integer values) and continuous. Note encoded categorical variables are still considered categorical (and not discrete).
Categorical can also be ordinal (with order) or non-ordinal.

1.2 Unbiased Estimate of σ2

The unbiased estimate of σ2 is actually s2 or s2
e (for SLRM).

2 May 8, 2017

2.1 Calculating percentiles

Let
m = (n+ 1)× p

m the index for the p percentile
n sample size
p desired percentile

If m is integer, take the mth element. Otherwise, take the average of the bmcth and dmeth element.

3 May 10, 2017

3.1 Variance

s2 =
1

n− 1

n∑
(yi − ȳ)2

=
1

n− 1

n∑
(y2
i − 2yiȳ + ȳ2)

=
1

n− 1
(
n∑
y2
i − 2ȳ

n∑
yi + nȳ2)

=
1

n− 1
(
n∑
y2
i − 2ȳ(nȳ) + nȳ2)

=
1

n− 1
(

n∑
y2
i − 2nȳ2 + nȳ2)

=
1

n− 1
(
n∑
y2
i − nȳ2)

1
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3.2 Affine transformation

Original data: {x1, x2, . . . , xn}

yi = a+ bxi ∀i = 1, . . . , n

Our statistical values change:

ȳ = a+ bx̄

s2
y = b2s2

x

sy = |b|x
Range = (a+ bxmax)− (a+ bxmin)

= b(xmax − xmin)

3.3 Measure of Symmetry

Skewness

• 0 is perfectly symmetric (mean ≈ median)

• +’ve has long right tail (mean > median)

• -’ve has long left tail (mean < median)

3.4 Measure of Kurtosis

Kurtosis measures frequency of extreme observations compared to the Gaussian distribution.
For a Gaussian distribution, 99% of observations lie within ȳ ± 3s.
Kurtosis for perfect Gaussian is always 3. If K >> 3, then frequency of extreme observations are more than
Gaussian.

3.5 Measures of Association

Objective to find the strength of association between X and Y.
Categorical

Positive Negative
Smoker y11 y12

Non-Smoker y21 y22

Relative Risk

RR =

y11

y11+y12
y21

y21+y22

For high and low values of RR, there is evidence of association.

2
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4 May 12, 2017

4.1 Sample Correlation Coefficient

To calculate rxy the sample correlation coefficient∑
(xi − x̄)(yi − ȳ)

[
∑

(xi − x̄)2]
1
2 [
∑

(yi − ȳ)2]
1
2

which denotes the direction and strength of the linear association between X and Y .
Note when xi > x̄ and yi < ȳ, we have

(xi − x̄)(yi − ȳ) < 0

and similarly for xi < x̄ and yi > ȳ. This means the numerator denotes the direction of the relationship.
Denominator guarantees rxy is between 1 and −1, inclusively. More formally

−1 ≤ rxy ≤ 1

and for a given yi = a+ bxi∀i relationship

rxy =

{
1 b > 0

−1 b < 0

5 May 15, 2017

5.1 CDFs

You may calculate the percentile by simply taking F (percentile). The mode can be inferred by the largest “jump”
in a discrete CDF.

5.2 Box Plots

Use box plots to compare distribution shape of two or more data sets side-by-side.
Whiskers mark min and max data points. The box itself begins and ends at Q1 and Q3, respectively, with a line at
the median or Q2.

5.3 Scatter Plots

Maps bivariate distribution (x and y) to discern whether there is a relationship or not.

6 May 19, 2017

6.1 θ

θ is a given attribute of the population that we want to find out. We can never find out attribute unless we sample
the entire population.
Objective: To find an “estimate” of θ based on {y1, . . . , yn}.

6.2 Maxmimum Likelihood Estimate (MLE)

Question: What is the “most likely” values of θ, given your sample?
θ̂ is the maximum likelihood estimate or MLE. That is θ̂(y1, . . . , yn) is a known value if given the sample.

3
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Step 1 is always setting up a statistical model to estimate the likelihood function. Model is the “identification”
of the random variable Yi from which yi is an outcome.
Moreover, θ is also a parameter of that random variable.

Yi ∼ f(yi; θ) i = 1, . . . , n

where f is the distribution function of Yi.

Example 6.1. A coin is tossed. Let θ be the probability of getting a HEAD.

θ =

{
1
3

or 2
3

}
these are the only two (theoretical) possilibities. Note we do not know what θ is yet.
The coin is tossed 200 times, and we observe y = 140 heads in the sample.
θ̂ = 2

3 = MLE is the “most likely” value of θ given our sample.

6.3 Likelihood Function

Definition 6.1. The likelihood function L(θ; y1, . . . , yn) is the probability of observing the sample as a function
of θ.

Example 6.2. Continuing from the previous example:
Suppose θ = 1

3 . What is the chance of observing our sample?(
200

140

)
θ140(1− θ)60 =

(
200

140

)
1

3

140

(
2

3
)60

If θ = 2
3 , similarly (

200

140

)
2

3

140

(
1

3
)60

Note the probability for our sample for when θ = 2
3 is greater than that for when θ = 1

3 . So θ = 2
3 is our MLE.

Example 6.3. Sample people to find out who likes Trump. So θ is the probability someone likes Trump.
Given this sample

{N,N,N,N, Y, Y,N,N, Y }

what is the estimate for θ?
Note that our likelihood function for a given θ is

L(θ) = (1− θ)7θ3

we need to maximize this with respect to θ.

6.4 Log-Likelihood Function

Introduce the log-likelihood function which is

l(θ) = log(L(θ))

all logs are base e.

4
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Example 6.4. So the l(θ) for our Trump sample is

l(θ) = 7ln(1− θ) + 3ln(θ)

6.5 First Order Condition

To maximize L(θ), we can take the dl
dθ = 0 to solve for θ̂

Example 6.5.

−7

1− θ
+

3

θ
= 0

7

1− θ
=

3

θ

θ = 0.3

So our MLE θ̂ = 0.3, which makes sense since there’re 3 Ys.

In a binomial distribution, sample proportion is the MLE for the population proportion.

6.6 Poisson Distribution Example

Example 6.6. Let θ be the number of accidents at an intersection during rush hour in the month of May. θ is the
same as λ in Pois(λ).
Let our model by a poisson distribution Y Pois(θ).
What is our L(θ)? Given the sample

{2, 0, 1, 0, 3}

from the PDF for the poisson distribution, we get for all 5 elements

e−θθ2

2!
· e
−θθ0

0!
· . . . · e

−θθ3

3!

which results in the likelihood function

L(θ) =
e−5θθ6

2!0!1!0!3!

The log-likelihood function is
l(θ) = −5θ + 6ln(θ)− ln(2!0!1!0!3!)

which when we take dl
dθ = 0→ −5 + 6

θ = 0, we get

θ̂ =
6

5

For the poisson distribution, the sample mean is the MLE of θ.

Example 6.7. Jeopardy problem. Sample is the number of games a Canadian participated in. You must win a
game to play another game. Let θ be the probability that a Canadian wins Jeopardy. Our sample is the number of
wins of a sample of Canadians

{2, 1, 1, 3}

This maps to the probabilities
θ(1− θ) · (1− θ) · (1− θ) · θ2(1− θ)

5
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7 May 23, 2017

7.1 (Discrete) General Likelihood Function

The likelihood function (assuming independence and discrete) can be generalized in terms of each measurement
in the sample. From our initial definition of the likelihood function

Lθ; y1, . . . , yn) = P (Y1 = y1, Y2 = y2, . . . , Yn = yn) definition
= P (Y1 = y1) · P (Y2 = y2) · . . . · P (Yn = yn) independent
= f(y1)f(y2) . . . f(yn) notation

So we have the general equation

Lθ; y1, . . . , yn) =
n∏
i=1

f(yi; θ)

which is the product of the distribution functions evaluated at the sample points (Yi = yi).

Definition 7.1. θ̂ is called the MLE (Maximum Likelihood Estimate) if θ̂ maximizes L(θ).

7.2 (Discrete) General Poisson Example

Example 7.1. Data is drawn from a Poisson distribution with unknown mean µ. The data set is {y1, . . . , yn} is
independently drawn. Based on your sample, what is µ̂.
Note

P (Y = y) =
e−µµy

y!
y = 0, 1, 2, . . .

So we have the likelihood function

L(θ; y1, . . . , yn) =
e−µµy1

y1!
· e
−µµy2

y2!
· . . . · e

−µµyn

yn!

Which simplifies to

L(µ) =
e−nµµ

∑
yi

y1!y2! . . . yn!

where the log-likelihood function is

l(µ) = −nµ+
∑

yilnµ− ln(y1!y2! . . . yn!)

Taking the first order condition (FOC) of the log, we have

dl

dµ
= 0→ −n+

∑
yi
µ

= 0

→ µ̂ =

∑
yi
n

= ȳ

→ û = ȳ

For the general Poisson problem, ȳ is the MLE for µ.

6
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7.3 (Discrete) General Geometric Example

Example 7.2. Let

Yi # of failures before the 1st success

θ probability of success for each trial

The trials are independent. θ is unknown. Given a sample drawn independent {y1, . . . , yn}, what is the MLE of θ,
that is what is θ̂?
Solution the model for our samples is the geometric distribution Yi ∼ Geom(θ) for i = 1, . . . , n i.i.d. So

f(y) = P (Y = y) = (1− θ)yθ y = 0, 1, 2, . . .

Note that when we plug in Y = θ), we get P (Y = θ) = θ. So we have the likelihood function

L(θ) = (1− θ)y1θ · (1− θ)y2θ · . . . · (1− θ)ynθ
= (1− θ)

∑
yiθn

Taking the log or the log-likelihood function

l(θ) =
∑

yiln(1− θ) + nlnθ

The FOC will be
dl

dθ
= 0→ −

∑
yi

1− θ
+
n

θ
= 0

Then solve for θ to find θ̂.

7.4 (Discrete) General Binomial Example

Example 7.3. Let

ñ probability of success for each trial

A more concrete example for ñ is the proportion of left-handed people at UW.
We are doing the experiment n times and we observe y successes.
Based on the sample, what is ˆ̃n?
This is a binomial model.

L(ñ) =

(
n

y

)
ñy(1− ñ)n−y

which is the probability of successes in n trials. Taking the log

l(ñ) = ln(

(
n

y

)
) + ylnñ+ (n− y)ln(1− ñ)

Then we solve for FOC

dl

dñ
= 0→ y

ñ
− n− y

1− ñ
= 0

→ ˆ̃n =
y

n

which is equivalent to the sample’s proportion, which aligns with intuition.

7
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7.5 Some Notes about MLE

Note from the likelihood equation

L = P (Y1 = y1) · P (Y2 = y2) · . . . · P (Yn = yn)

The values of L becomes very, very small as n becomes large (composite of many probabilities → very small
probabilities).

7.6 Relative Likelihood Function

The relative likelihood function is defined as
R(θ) =

L(θ)

L(θ̂)

where θ̂ is the MLE.
Note that since θ̂ maximizes L, R(θ) ≤ 1. Also, R(θ) ≥ 0 for all θ. When R(θ) = 1, then θ = θ̂.
The relative likelihood function tells us the reasonable values of θ (the values that are close to θ̂.

8 May 24, 2017

8.1 (Continuous) General Likelihood Function

L(θ; y1, . . . , yn) =
n∏
i=1

f(yi; θ)

where f is the density function of the r.v Y .

8.2 (Continuous) Exponential Example

Example 8.1. To find the average (µ) lifespan of a light bulb from a production line.
A sample of n observations are collected {y1, . . . , yn}. Based on this sample, what is µ̂ (MLE for µ)
Let our model be Yi ∼ Exp(µ) for i = 1, . . . , n and Yis are independent. The density function is

f(y) =
1

µ
e−y/µ µ > 0, y ≥ 0

The likelihood function is therefore

L(µ) =
1

µ
e−y1/µ · 1

µ
e−y2/µ · . . . · 1

µ
e−yn/µ

=
1

µn
e
− 1
µ

∑
yi

Taking the log-likelihood function

l(µ) = −nln(µ)− 1

µ

∑
yi

8
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Taking the first order condition

dl

dµ
= 0→ −n

µ
+

1

µ2

∑
yi = 0

→ µ̂ = ȳ

so for the exponential distribution, the sample mean is the MLE for µ, which aligns with the definition of µ in the
exponential density function.

8.3 (Continuous) Gaussian Example

Example 8.2. We want to estimate

µ population average IQ of UW profs

σ s.d. of IQ of UW profs

A sample of n profs are selected {y1, . . . , yn}. Based on your sample, estimate µ̂ and σ̂.
Assume that the samples are collected independently using a Gaussian model. That is Yi ∼ G(µ, σ). Thus the
density function is

f(y) =
1√
2πσ

e−
1

2σ2 (y−µ)2

The likelihood function is

L(µ, σ) =
n∏
i=1

1√
2πσ

e−
1

2σ2 (yi−µ)2

=
1

(2π)n/2σn
e−

1
2σ2

∑
(yi−µ)2

Thus the log-likelihood function is

l = −n
2
ln(2π)− nln(σ)− 1

2σ2

∑
(yi − µ)2

To maximize l to find µ̂ and σ̂ we take two derivatives ∂l
∂µ = 0 and ∂l

∂σ = 0. Thus we have

(1)
∂l

∂µ
=

1

σ2

∑
(yi − µ) = 0

(2)
∂l

∂σ
= −n

µ
+

1

σ3

∑
(yi − ȳ)2 = 0

So from (2) we have ∑
(yi − µ) = 0∑
yi −

∑
µ = 0∑

yi − nµ = 0

µ =

∑
yi
n

= ȳ

9
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So µ̂ = ȳ as expected.
From (1) we have

− n

σ
+

1

σ3

∑
(yi − ȳ)2 = 0

σ̂2 =
1

n

∑
(yi − ȳ)2

which is the population s.d. equation. Note however that σ2 6= s2 (denomiators n and n− 1 are different).

8.4 Properties of MLEs

Invariance Property
If θ̂ is the MLE for θ then g(θ̂) is the MLE for g(θ) for a continuous g (we will first find θ̂, then plug in g(θ)).

Example 8.3. To estimate the 95th percentile of a population (Gaussian), Y1, . . . , Yn ∼ G(µ, σ) independent.
Find the MLE for the 95th percentile.

P (Y ≤ A) = 0.95

P (
Y − µ
σ

≤ A− µ
σ

) = 0.95

P (z ≤ x) = 0.95 x =
A− µ
σ

Look at the z score table for the 95th percentile, we get x = 1.645. Thus

A− µ
σ

= 1.645

A = µ+ 1.645σ

The MLE for A is µ̂+ 1.645σ̂ where µ̂ and σ̂ are the MLE for µ and σ, respectively (by the invariance property).

Example 8.4. Let Y ∼ Bin(200, π) where π = P (success) (unknown).
Let y = number of successes = 120 (sample).
Find the MLE for P (Y > 1). Note this is the same as

P (Y > 1) = 1− [P (Y = 0) + P (Y = 1)]

= 1− [

(
n

0

)
(1− π)n +

(
n

1

)
π(1− π)n−1]

9 May 26, 2017

9.1 Uniform Example

Given a uniform distribution Y ∼ Unif(0, θ) where θ is unknown, we take a sample of observations {y1, . . . , yn}
(independently drawn). What is the MLE of θ?
Note that the density funtion for uniform distributions is

f(y) =

{
1
θ 0 ≤ y ≤ θ
0 otherwise

10
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The likelihood function is thus

f(y) =

{
1
θn 0 ≤ yi ≤ θ,∀i
0 otherwise

this can also be rewritten in terms of max{y1, . . . , yn}

f(y) =

{
1
θn θ ≥ max{y1, . . . , yn}
0 θ < max{y1, . . . , yn}

Let us denote θ? = max{y1, . . . , yn}. Note f(y) is simply the first order rational function 1
θ that is bounded between

θ ∈ [θ?,∞), and 0 from θ ∈ [0, θ?). It is highest at θ?. Thus θ̂ = max{y1, . . . , yn} is the MLE for θ.

9.2 Model Selection

Given a sample we assume a distribution Y as the model. How do we know that Y is the appropriate model? Use
various tests.

Subjective Tests

Numerical Property Tests Compare numerical measures from sample with theoretical properties of the assumed
distribution

Example 9.1. Given that we assume a Gaussian model, we can check

• Symmetry (mean ≈ median; skewness ≈ 0)
• Kurtosis (K ≈ 3)
• Proportion of samples within 2 σ of mean (95% for Gaussian)

Graphical Methods Superimpose theoretical PDF with the sample relative frequency histogram. Similarly for
the CDF.

Q-Q plot Bivariate plot of sample quantiles against theoretical quantiles of model

Example 9.2. Gaussian model: We need only compare the sample quantiles with theoretical quantiles of
Z = G(0, 1).

We want to plot (zα, yα) where zα is the αth quantile of the Z and yα is the αth quantile of the sample.

Note if our sample is Gaussian, it will form a straight line (not necessarily y = x since the model is just the
standard Gaussian model). Note this checks if the quantiles are linear functions of each other.

Observed vs Expected Frequency

10 May 29, 2017

Examples

(1) Suppose we are interested in attitude of recent (after 2010) immigrants in Canada towards cops. Sample of
100 immigrants drawn from KW area and survey is conducted.

(2) Find out whether there is an association betwen smoking habits of parents with that of teenage sons/daughters.

(3) Predict student i’s STAT231 final score based on past performance of a sample of students with similar GPA.

We will use PPDAC.

11



Spring 2017 STAT 231 Course Notes 10 MAY 29, 2017

10.1 Problem

The target population is the population whose variate we are interested in.
In example (1), it is all Canadian immigrants since 2010.
There are three types of problems

Descriptive Where we want to estimate the unknown parameter of the population (example (1)).

Causative Where we are trying to find the presence (or absence) of association between two variables X and Y
(example (2)).

Predictive We are trying to predict a value of your r.v. (typically) based on past observation (example (3)).

There are two types of variates

Response Variate The variables whose variability we are trying to explain (dependent variable)

Explanatory Variate The variable that is used to explain the response (independent variable)

So the (response) variate in example (1) is whether the immigrant has a positive/negative attitude towards cops.
Attributes in example (1) are properties of immigrants with a positive attitude.

10.2 Plan

Questions to ask

1. What is the study population?

2. What is our sampling protocol? (How do I collect my data?)

The Study population is the population from with your sample is drawn.
In example (1), the target population is all Canadian immigrants since 2010, whereas the study population is all
Canadian immigrants since 2010 who live in the KW area. In most cases, the study population is a subset of the
target population.
An exception is a medical test for a drug. The target population is human beings with a high heart rate, but the
study population is mice in a laboratory.
How is the data collected?

Experimental plan the data collector controls some variables (physical sciences)

Observational plan the data collector has no control over the variables (social sciences)

Random sampling each member of the study population has an equal chance of being chosen.

10.3 Data

Types of data we have collected: binary, numerical, discrete, continuous.
We must ensure our data is unbiased. Pay special attention to outliers and missing observations.
Systematic errors are called bias. Avoid systematic errors!

10.4 Analysis

Estimation, hypothesis testing and predictions for each type of problem, respectively.
Study error: difference in value between the attribute of the study population and the target population. Sampling
error: difference in the value between study and the sample.
Our goal is to analyze and minimize these errors.

12
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10.5 Conclusion

We have to write our conclusions which is understandable for non-statisticians. That comes with useful graphs.

11 May 30, 2017

11.1 Likelihood Intervals

We have an unknown parameter θ of interest. Sample {y1, . . . , yn} drawn independently. Assume a chosen model
Yi ∼ f(yi; θ) is correct.
Objective What are the reasonable values of θ based on my sample? To construct an interval [l, u] such that the
unknown parameter θ would lie in the interval with a high degree of confidence. Note that l and u are functions of
{y1, . . . , yn}.
Method 1 Using the likelihood function
What are the values of θ that are “close” to θ̂? Any values of θ such that L(θ) is close to L(θ̂), we will consider that
θ to be “reasonable”.

Definition 11.1. Take any p ∈ (0, 1). A 100p% likelihood interval is

{θ : R(θ) ≥ p}

where R(θ) is the relative likelihood function.

Example 11.1. Given p = 0.5 (50% likelihood interval), we have to find all θs such that

R(θ) ≥ 0.5

L(θ)

L(θ̂)
≥ 0.5

L(θ) ≥ 0.5L(θ̂)

The value of the likelihood function at θ is at least half the value of L at θ̂.

Example 11.2. Binomial problem for θ (proportion of success).
Let R1 represent n1 = 100 and y1 = 40 successes.
Let R2 represent n2 = 1000 and y2 = 400.
Note θ̂ = 0.4 so θ is maximized for both (parabola with peak at θ = 0.4.
Note that the shape of R2 will be thinner than the shape of R1 since we have more observations and thus the
interval intuitively should be smaller.

11.2 Conventions for Likelihood Intervals

We classify the following R(θ) as such

R(θ) ≥ 0.5 θ very plausible

R(θ) ∈ [0.1, 0.5) θ plausible

R(θ) ∈ [0.01, 0.1) θ implausible

R(θ) < 0.01 θ very implausible

Anything ≥ 10% is plausible!

13
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Example 11.3. Y ∼ Bin(n, θ), n = 500, y = 200, is θ = 0.5 plausible?

Step 1 Construct the likelihood function L(θ) =
(

500
200

)
θ200(1− θ)300

Step 2 Calculate the MLE using Step 1

Step 3 Calculate R(θ)

R(θ) =
L(θ)

L(θ̂)

=

(
500
200

)
θ200(1− θ)300(

500
200

)
0.4200(0.6)300

If the R(θ) is bi-modal (two local maxima), then the likelihood interval (LI) is a union of two disjoint intervals
e.g. [l1, u1] ∪ [l2, u2].

12 June 2, 2017

12.1 Coverage and Confidence Intervals

Method 2 Sampling distributions
Previously with likelihood intervals a interval where θ lies in with a high degree of confidence (based on the R(θ) ≥ p
for some p ∈ (0, 1)).
Now we are given a pre-specified probability (e.g. 90%, 95%) and we want to estimate the random variables L and
U such that

P (L ≤ θ ≤ U) = 0.95

L and U are estimated using our sample (l, u).

Example 12.1. We want to construct a 95% CI (confidence interval) for µ (population mean) of the average score
in STAT231.
A sample of 36 students are drawn independently {y1, . . . , y36}.
Based on the data set, what is the confidence interval?
Our model can be Gaussian

Yi ∼ G(µ, σ), i ∈ {1, . . . , 36}

Assumption: σ = 7 is known (population standard deviation). Thus we have

Yi ∼ G(µ, 72)

where µ̂ = MLE = ȳ. Note that we can denote the r.v. Ȳ for which ȳ (the number calculated from each sample) is
an outcome.

Say we wanted to calculate θ (in Binomial model), and we had n = 500 and y = 220 thus θ̂ = 220/500 = 0.44. Then
θ is the unknown population proportion, θ̂ is the MLE (# from sample), θ̃ is an r.v. from which θ̂ is an outcome.
We call Ȳ the estimator and ȳ an estimate. the MLE is also an estimate.

14
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If Y1, . . . , Yn ∼ G(µ, σ) independent, then the mean of the distributions is

Ȳ =
1

n

n∑
i=0

Yi

Ȳ = G(µ,
σ√
n

)

Example 12.2. So from the previous example, Ȳ ∼ G(µ, 7
6).

Compare it to the standard Gaussian distribution (that is computing the Z-score).

Ȳ − µ
7
6

= G(0, 1) = Z

Note: To get the Z score for the middle section contain 95%, we must look for the 2.5th and 97.5th
percentile respectively!! Getting the Z score for 0.95, we have −1.96 and 1.96. Thus

P (−1.96 ≤ Z ≤ 1.96) = 0.95

P (−1.96 ≤ Ȳ − µ
7
6

≤ 1.96) = 0.95

The left two terms of the inequality yield

µ ≤ Ȳ + 1.96
7

6

and similar the right two terms yield

µ ≥ Ȳ − 1.96
7

6

Thus our coverage interval is (95% chance of µ falling in this range)

P (Ȳ − 1.96
7

6
≤ µ ≤ Ȳ − 1.96

7

6
) = 0.95

So our estimate for this coverage interval

(ȳ − 1.96
7

6
, ȳ + 1.96

7

6
)

Note that the CONFIDENCE interval would be for some ȳ. So if ȳ = 80, our confidence interval is

(80− 1.96
7

6
, 80 + 1.96

7

6
)

which is based on the sample.

More formally

Coverage Interval contains µ with 95% probability

Confidence Interval is the estimate of the coverage interval

Example 12.3. We want to find θ the approval rating of Trump, n = 500, y = 220 (220 approves Trump). Find
the 95% CI (confidence interval) for θ.
Note that

Y ∼ Bin(500, θ)

15
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where θ̂ = 220/500 = 0.44 since θ̂ = y/n in a Binomial distribution. That is θ̃ = Y/n (r.v. for θ).
By the Central Limit Theorem (CLT),

θ̃ − θ√
θ̃(1−θ̃)
n

= G(0, 1)

Thus we can use the Z scores

P (−1.96 ≤ Z ≤ 1.96) = 0.95

P (−1.96 ≤ θ̃ − θ√
θ̃(1−θ̃)
n

≤ 1.96) = 0.95

So our coverage interval is

(θ̃ ± 1.96

√
θ̃(1− θ̃)

n

and our confidence interval is

(0.44± 1.96

√
0.44× 0.56

500

13 June 5, 2017

13.1 Interpretation of Confidence Interval

(i) It is the estimate(s) of the r.v.s L and U such that

P (L < θ < U) = 0.95

(ii) If the experiment is repeated many times, and the CI constructed based on each sample, approximately 95%
of them will fall within the range. ????

13.2 Steps to find Confidence Interval (CI)

Gaussian problem with known variance.
Y1, . . . , Yn are independent Gaussian with mean µ (unknown) and σ s.d. σ0 (σ0 known).
Our data is {y1, . . . , yn}.
Objective: to construct a 90% CI for µ.

Step 1 Find the estimate of the unknown parameter. µ̂ = MLE = ȳ = 1
n

∑
yi. Note that ȳ (estimate) is a known

number.

Step 2 Identify the estimator and its distribution. Ȳ (estimator) is the random variable from which ȳ is an outcome.
We know from STAT230 Ȳ ∼ G(µ, σ0√

n
) which is the sampling distribution of Ȳ .

Step 3 Construct the Pivotal Quantity (convert to something we know i.e. standard normal distribution) and find
the pivotal distribution.

Ȳ − µ
σ0√
n

= Z = G(0, 1)

where Z is the pivotal distribution and the LHS is the pivotal quantity.

16
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Step 4 Find the end points (which depends on the level of confidence) of the pivotal distribution of step 3 (from
percentile (of which p correspond to the proportion of data points within the percentiles) to Z score table).
look for 0.90 (90% probability) to find that x = 1.65.

Step 5 Use step 4 to construct the coverage interval.

P (−1.65 ≤ Z ≤ 1.65) = 0.9

P (−1.65 ≤ Ȳ − µ
σ0√
n

≤ 1.65) = 0.9

P (Ȳ − 1.65
σ0√
n
≤ µ ≤ Ȳ + 1.65

σ0√
n

) = 0.9.

So our converage interval is (Ȳ ± 1.65 σ0√
n

).

Step 6 Estimate the coverage interval from your sample. Thus the cofidence interval is

[ȳ − 1.65
σ0√
n
, ȳ + 1.65

σ0√
n

]

In general for a Gaussian distribution with unknown variance, the CI for the mean is

[ȳ ± z∗ σ0√
n

]

where z∗ depends on level of confidence.

13.3 Notes on Confidence Interval

• As n becomes large, the interval becomes narrower for the same level of confidence.

• As the level of confidence goes up, the interval will be wider.

• As σ0 goes up, the interval will be wider.

• Can we choose the length of the CI? Suppose 95% CI to be length ±5. That is

z∗σ0√
n

= 5

Thus we can choose n (number of samples) such that

n = (
z∗σ0

5
)2

to make the CI have a length ±5.

13.4 Fixing the Length of the Confidence Interval

Example 13.1. Binomial model where n is large. Note that Y ∼ Bin(n, θ) where # of successes is y.
Based on data, construct a 95% CI for θ.
Step 1: the estimate θ̂ = y/n = sample proportion.

17
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Step 2: the estimator θ̃ = Y/n. By CLT,

θ̃ ∼ G(θ,

√
θ̃(1− θ̃)

n

Step 3: Pivotal quantity/distribution
θ̃ − θ√
θ̃(1−θ̃)
n

= Z = G(0, 1)

Step 4: Find points of pivotal distribution (pd)

P (−1.96 ≤ Z ≤ 1.96) = 0.95

Step 5: Coverage

P (−1.96 ≤ θ̃ − θ√
θ̃(1−θ̃)
n

≤ 1.96) = 0.95

So the coverage inteval is

θ̃ ± 1.96

√
θ̃(1− θ̃)

n

Step 6: Find the CI

θ̂ ± 1.96

√
θ̃(1− θ̃)

n

Our margin of error is the ± term. Can we ensure the MOE ≤ 0.03, that is

1.96

√
θ̃(1− θ̃)

n
≤ 0.03

that is
n ≥ (

1.96

0.03
)2 × θ̂(1− θ̂)

We choose n such that
n ≥ (

1.96

0.03
)2 × (

1

2
)2 ≈ 1067

so one would only need to survey 1068 people to have a CI of ±3%.

14 June 7, 2017

14.1 Pivotal Quantity

Definition 14.1. A pivotal quantity Q is a r.v. that depends on Y and θ such that P (Q ≥ a), P (Q ≤ b) for any a
and b (can be calculated without knowing the value of θ).

14.2 Binomial Model Interval Estimation

Example 14.1. A sample of 1200 Americans are selected and 300 of them approve Trump. Find the 100q%
confidence interval for θ = population approval rating of Trump (note q is prespecified, e.g. q = 0.9, 0.95, 0.99).

18
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Step 0: Set up the statistical model
Y ∼ Bin(1200, θ)

where θ is the probability of success.
Step 1: Find the estimate of θ (i.e. θ̂ = MLE where

θ̂ = y/n = 300/1200 = 0.25

Step 2: Identify the estimator and the sampling distributions

θ̃ = Y/n

which is a r.v. for our estimate (ȳ) We know for the CLT, θ̃ ∼ Gaussian
Step 3: Construct the pivotal quantity

θ̃ − θ√
θ̃(1−θ̃)
n

= Z = G(0, 1)

where the LHS is Q, the pivotal quantity.
Step 4: Construct the interval for hte pivotal distribution For a 99% CI, From the Z-table, Z∗ = 2.58
Step 5: Use Step 4 to construct the coverage interval

P (−2.58 < Z < 2.58) = 0.99

P (−2.58 <
θ̃ − θ√
θ̃(1−θ̃)
n

< 2.58) = 0.99

P (θ̃ − 2.58

√
θ̃(1− θ̃)

n
< θ < θ̃ + 2.58

√
θ̃(1− θ̃)

n
) = 0.99

Step 6: Estimate the coverage interval to construct the CI The CI with θ̂ = 0.25 and n = 1200 is

0.25± 2.58

√
0.25× 0.25

1200

14.3 Sample Size

How to choose the “right” sample size?
Problem: Level of confidence (given 95%) and maximum length of interval is also prespecified

θ̂ ± l

where l is given. Can we choose n to make this happen?

19
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Note that our CI for a binomial distribution is

θ̂ ± Z∗
√
θ̂(1− θ̂)

n

→ Z∗

√
θ̂(1− θ̂)

n
≤ l

→ n ≥ (
Z∗

l
)2θ̂(1− θ̂)

Choose n such that it is greater than the RHS for all values of θ̂. For example

max(θ̂(1− θ̂)) =
1

2

1

2
=

1

4

Thus
n ≥ (

Z∗

l
)2 · 1

4

We choose n to be the next biggest integer of the RHS. For example when we want a 95% CI and l = 0.03 or 3%
margin of error

n ≥ (
1.96

0.03
)2 · 1

4
≈ 1068

For 90% confidence, we’d only need to survey 350 people.

14.4 Practical Surveys

Note articles involving surveys will always stat the MOE (e.g. ±0.02 (l)) and the CI % (e.g. 19 times out of 20 =
95% CI).
Why not 99% CI? This would require surveying 3000 more people which takes more time which may allow θ̂ to
change over time, skewing results.

14.5 Chi-Squared Distribution

Definition 14.2. Let W be a continuous r.v. W is said to be a Chi-Squared distribution with n degrees of
freedom denoted by

W ∼ X2
n

if W = Z2
1 + Z2

2 + . . .+ Z2
n where Zi ∼ G(0, 1) and Zi independent.

Geometrically for W = Z2
1 + Z2

2 a given data point (z1, z2) would be a plot on the Cartesian plane where Z1 is the
x-axis and Z2 is the y-axis. The squared distance from the origin is called the chi-squared distance.

The possible values of W ∼ X2
n is W ∈ [0,∞).

The special case is when n = 1.

Example 14.2. Suppose W ∼ X2. Find P (W ≤ 1.44). n = 1→W = Z2. Thus

P (W ≤ 1.44) = P (Z2 ≤ 1.44) = P (−1.2 ≤ Z ≤ 1.2)
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14.6 Chi-Squared and CI

Example 14.3. Suppose W ∼ X2. Find the 95th percentile of W . Let the 95th percentile be x.

P (W ≤ x) = 0.95

P (Z2 ≤ x) = 0.95

P (−
√
x ≤ Z ≤

√
x) = 0.95

Note that
√
x = 1.96 (from Z-table), thus x = 1.962.

15 June 9, 2017

15.1 Chi-Squared Properties

1. W can take on any non-negative values W ∈ [0,∞)

2. Degrees of freedom is a parameter n that specifies the number of Zis. As n increases, the peak (median/mean)
shifts to the right.

3. The expected value E(W ) = n, the degrees of freedom.

Proof. To show that E(X) = n, note that

W = Z2
1 + Z2

2 + . . .+ Z2
n

so taking the expectation
E(W ) = E(Z2

1 ) + E(Z2
2 ) + . . .+ E(Z2

n)

Note that Zi ∼ G(0, 1) thus E(Zi) = 0 and V (Zi) = 1. From the variance formula V (Zi) = E(Z2
i )−(E(Zi))

2 =
1 thus E(Z2

i ) = 1. So E(W ) = n.

4. The variance is V (W ) = 2n.

15.2 Addition of Chi Squared Distributions

Let W1 ∼ X2
n1

and W2 ∼ X2
n2
, W1,W2 independent.

Let W = W1 +W2. What is the distribution of W? Then W ∼ X2
n1+n2

.
In other words, the sum of two chi-squared distributions is a chi-squared distribution.

15.3 Probability Calculations

Note df = degrees of freedom.
Special Cases

Case 1 df = 1

If n = 1, then W = Z2 where Z ∼ G(0, 1).

21



Spring 2017 STAT 231 Course Notes 15 JUNE 9, 2017

Example 15.1. Suppose W ∼ X2
1 . Find c such that P (W ≤ c) = 0.85. That is c is the 85th percentile.

P (W ≤ c) = 0.85

→ P (Z2 ≤ c) = 0.85

→ P (−
√
c ≤ Z ≤

√
c) = 0.85

Note the area inbetween −
√
c and

√
c is 0.85. Thus

√
c is at the 0.925 (92.5th percentile) mark, which

corresponds to a z-score of 1.44 thus
√
c = 1.44, so c = 1.442.

Case 2 df = 2

Result: If W ∼ X2
2 , it is equivalent to saying W = exp(1

2) (their PDFs are the same).

Example 15.2. Suppose W ∼ X2
2 . Find P (W ≤ 2.5).

P (W ≤ 2.5) =

∫ 2.5

0

1

2
e−

x
2 dx

Note for the exponential distribution, if X ∼ Exp(λ), then

F (µ) = P (X ≤ µ) = 1− e−λµ

So for our example
P (W ≤ 2.5) = 1− e−

2.5
2

Case 3 df is “large” (> 30)

As n becomes large, the chi-squared approaches the Gaussian distribution with mean n and variance 2n.

Example 15.3. Suppose W ∼ X2
72. Find P (W ≤ 96).

Note that W ∼ X2
72 →W ∼ G(72, 122) (where 12 =

√
2n). So we have

P (W ≤ 96) = P (
W − 72

12
≤ 96− 72

12
)

= P (Z ≤ 2)

which corresponds to a total probability of 0.95 (inside 2 sigma), thus P (W ≤ 96) = 0.95.

Case 4 df lies between 2 and 30

We use the chi-squared table where the rows = degrees of freedom and the columns = percentiles. In row 15,
column 0.025 we have 6.262. That is P (W ≤ 6.262) = 0.025 for W ∼ X2

15.

Example 15.4. let W ∼ X2
17. Find a such that P (W ≥ a) = 0.05.

We want to locate row 17 (df = 17) and column 1− 0.05 = 0.95→ a = 27.587.

Example 15.5. let W ∼ X2
20. Find a, b such that P (a ≤W ≤ b) = 0.95.

Note that a, b could be any interval as long as the CDF in the middle is 0.95 (a could be the 0.25th percentile
and b the 97.5th, or a could be the 0th percentile and b could be the 95th).

The convention is to use the equal-tailed solution, so when a is the 0.25th percentile and b is the 0.975th
percentile, or for row 20 (df = 20) we have a = 9.591 and b = 34.170.
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16 June 12, 2017

16.1 T-Distribution

A random variable T is said to follow a Student’s T-distribution with n degrees of freedom if T is a ratio of two
independent r.v.s

Tn =
Z

W

where Z,W are independent and

Z ∼ G(0, 1)

W =

√
X2(n)

n

where X2(n) is the n degree chi-squared distribution.

16.2 Properties of T-Distribution

1. Tn ∈ (−∞,∞) for all n

2. Tn is symmetric around zero ∀n, that is mean = median = 0

3. T is “similar” in shape to the Z-distribution but T has fatter tails (more extreme observations compared to
the Z-distribution). THis means K > 3 for any n

4. As n→∞, Tn → Z (The T-distribution approaches the Z-distribution as n→∞)

16.3 Student T Table

Similar to a chi-squared table.

Example 16.1. Suppose T is a r.v. which follows a T-distribution with n = 23 = df . Find a number c such that

P (|T | ≤ c) = 0.95

P (|T23| ≤ c) = 0.95

→ P (−c ≤ T23 ≤ c) = 0.95

We look up row 23 and column 0.975 to find c (since T-distribution is symmetric, we need not look up 0.025). So
c = 2.0687.

Theorem 16.1. Let Y1, . . . , Yn be independent Gaussian random viarables with mean µ and variance σ2 (where
µ, σ2 are unknown). That is our sample is {y1, . . . , yn}. How do we figure out µ from just our sample (and its
sample mean ȳ and sample variance s2.
Note Ȳ = 1

n

∑
Yi is the estimator corresponding to the sample mean.

Note S2 = 1
n−1

∑n
i=1(Yi − Ȳ )2 is the estimator corresponding to the sample variance.

Then our theorem is:
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(a) To estimate µ from ˆ̄y and s, use
Ȳ − µ

s√
n

∼ Tn−1

(b) To estimate σ2 from ȳ and s, use
(n− 1)S2

σ2
∼ X2

n−1

where n− 1 are the degrees of freedom, s the sample deviation, and S2 the estimator for sample variance.

Note σ2 6= s2 6= S2, where S2 is the random variable from which s2 is drawn. Note that σ2 is an unknown constant.
Note that (a) is relevant when we have Y = Y1 + . . .+ Yn where Yi ∼ G(µ, σ2) since Y ∼ G(µ, σ√

n
2) or

Y − µ
σ√
n

∼ Z

for a known σ (but unknown µ). Remember this was our pivot quantity for the pivotal distribution of a Gaussian
distribution.

Proof. Assume (b) is true. Is (a) true? We can rewrite (a) in the form

Ȳ − µ
s√
n

=

Ȳ−µ
σ√
n√

(n−1)S2

σ2 · 1
n−1

=
Z√

X2
n−1 · 1

n−1

Z

W

as desired.

16.4 Expectation of S2

For S2, note that E(S2) = σ2 (the average of our sample variance is the population variance). This follows
from (note E(X2

k) = k).

E(
(n− 1)S2

σ2
) = n− 1

(n− 1)

σ2
E(S2) = n− 1

E(S2) = σ2

this is why we divide by n− 1 and not n. This is to say S2 is an unbiased estimator of σ2.

16.5 Unknown Mean µ from sample variance s (T-distribution)

Example 16.2. Suppose the income of Waterloo residents are Gaussian with mean µ and s.d. σ. A sample of size
20 is drawn where ȳ = 50000 and s = 5000. Based on the data, what is the 95% CI for µ?
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Step 1: Find the estimate of mu

µ̂ = ȳ =
1

n

∑
yi

Step 2: Identify the estimator Ȳ
Step 3: Construct the pivot (from part (a) of our theorem), that is

Ȳ − µ
s√
n

∼ T19

Step 4: Find the endpoints of the pivot We want P (−c < T19 < c) = 0.95. We want row 19 (note df = n-1,
NOT n) and column 0.975, that is c = 2.093
Step 5: Find the coverage interval

P (−2.093 ≤ T19 ≤ 2.093) = 0.95

P (−2.093 ≤ Ȳ − µ
s√
n

≤ 2.093) = 0.95

P (Ȳ − 2.093 · s√
n
≤ µ ≤ Ȳ + 2.093 · s√

n
) = 0.95

Step 6: The CI (confidence) would be

ȳ ± 2.093
s√
n

= 50000± 2.093 · 5000√
20

Key note: For small sample sets, the T-distribution is useful. For really large sample sets, n→∞ which approaches
a Gaussian distribution anyways.

17 June 14, 2017

17.1 Unknown Variance σ from Sample Variance s (Chi-Squared)

What if we wanted to calculate the unknown σ from the example before? Use part (b) of our theorem

Example 17.1. Suppose the income of Waterloo residents are Gaussian with mean µ and s.d. σ. A sample of size
20 is drawn where ȳ = 50000 and s = 5000. Based on the data, what is the 95% CI for σ?
Step 1: The pivotal quantity is

14S2

σ2
∼ X2(14)

where the RHS is the pivotal distribution.
Step 2: Construct coverage interval. Note a and b are found from Chi-Squared table (where the convention is to
have equal tail intervals (so at a where p = 0.025 and b where p = 0.975, and df = 14).

P (a ≤ X(14) ≤ b) = 0.95

P (a ≤ 14S2

σ2
≤ b) = 0.95
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So we get

σ2 ≥ 14S2

b

σ2 ≤ 14S2

a

that is

P (
14S2

b
≤ σ2 ≤ 14S2

a
) = 0.95

Therefore our CI is

(
14s2

b
,
14s2

a
)

where s2 is our best estimate of S2 or simply the sample variance. a and b are from the Chi-Squared table.
More generally, the CI for the variance σ2 is

(
(n− 1)s2

b
,
(n− 1)s2

a
)

17.2 CI for Poisson

Large n
Given Y ∼ Pois(θ), note that µ = θ and σ2 = θ. For a large enough n > 30 sample size, by the CLT

Ȳ − θ√
ȳ
n

∼ G(0, 1)

this holds because V (Ȳ ) = θ
n so SD(ȳ) =

√
V ar(Ȳ =

√
θ
n , and this is the pivotal quantity for a Gaussian

distribution with denominator σ
n .

Solving for the CI for θ, we get the general form for Poisson distributions (with large n)

ȳ ± z∗
√
ȳ

n

17.3 CI for Exponential

Given Ȳ = Y1, . . . , Yn ∼ Exp(θ), note E(Yi) = θ and V (Yi) = θ2. Therefore E(Ȳ ) = θ and V (Ȳ ) = σ2

n so
SD(Ȳ ) = σ√

n
.

Thus by CLT

Ȳ ∼ G(θ,
θ√
n

)

where we have the pivotal relation
Ȳ − θ

θ√
n

= G(0, 1)

Small n
If Y ∼ Exp(θ), then

2Y

θ
∼ Exp(2)
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This follows because if you divide every point in the exponential distribution by the mean θ (normalized), then
multiply by 2, then it should be an exponential distribution with mean 2. Furthermore, note that

Exp(2) ∼ X2(2)

Adding up n of these we get
2

θ

n∑
Yi ∼ X2(2n)

18 June 16, 2017

18.1 Exponential Example

The lifetime of a light bulb has an Exponential distribution with mean θ.
A sample of observations are drawn {y1, . . . , yn}. Note that ȳ = 10000. Find the 95% CI for θ.
Step 1: Find the estimate of θ. Note that θ̂ = ȳ.
Step 2: Identify the estimator: Ȳ (Sums of exponential distribution)
Step 3: Find the pivotal quantity and identify the pivotal distribution

W =
2

θ

∑
Yi = X2(30)

Step 4: Find the end points of the pivotal distribution, that is find a and b such that

P (a < X2(30) < b) = 0.95

Looking up row 30 where a is column 0.025 and b is column 0.975 we get a = 16.791 and b = 46.979.
Step 5: Find the coverage interval

P (16.791 ≤ X2(30) ≤ 46.979) = 0.95

P (16.791 ≤ 2

θ

∑
Yi ≤ 46.979) = 0.95

So θ ≥ 2
∑
Yi

46.979 and θ ≤ 22
∑
Yi

16.791 .
Thus we have the coverage interval

[θ
2nȳ

46.979
, θ

2nȳ

16.791
]

In general we have

[
2nȳ

b
,
2nȳ

a
]

where a and b are computed from the X2(2n) table.

18.2 LI vs CI

Note that 100p% LI for θ = {θ : R(θ) ≥ p}.

18.3 Likelihood Ratio Test Statistic

Theorem 18.1. If θ is the true value of the unknown parameter and θ̂ = MLE then, for a large n
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Λ(θ) = −2ln
L(θ)

L(θ̃)
∼ X2(1)

where θ̃ is the estimator corresponding to the MLE.
Consider Λ(θ) = −2lnL(θ)

L(θ̂)
: these are all outcomes of the X2(1) distribution if n is large.

We call Λ the Likelihood Ratio Test Statistic.

18.4 Confidence to Likelihood

Example 18.1. Suppose n is large, and we have a 95% CI. What likelihood interval does this correspond to?

P (−1.96 < Z < 1.96) = 0.95

⇐⇒ P (Z2 ≤ 1.962) = 0.95

⇐⇒ P (Λ(θ) ≤ 1.962) = 0.95

⇐⇒ P (−2ln
L(θ)

L(θ̃)
≤ 1.962) = 0.95

⇐⇒ P (
L(θ)

L(θ̃)
≥ e

−1.962

2 ) = 0.95

where this resembles {θ : R(θ) ≥ p}, thus p = e
−1.962

2 = 0.146.

So a 95% CI is approximately a 14.6% LI. Similar for a 90% CI, it is approximately a e
−1.642

2 LI.
In general

100p%CI = e
−z∗

2

2

where z∗ can be computed from the Z-table.

18.5 Likelihood to Confidence

Example 18.2. Suppose we have a 10% LI. What is the corresponding CI?

R(θ) ≥ 0.1

L(θ)

L(θ̂)
≥ 0.1

− 2ln
L(θ)

L(θ̂)
≤ −2ln(0.1)

So the coverage interval is

P (−2ln
L(θ)

L(θ̃)
≤ −2ln(0.1))

= P (Z2 ≤ −2ln(0.1))

= P (−
√
−2ln(0.1) ≤ Z ≤

√
−2ln(0.1))

Note ln(0.1) = −2.14, so we look at z-score = 2.14 which corresponds to a 96.8% CI.
Note a 50% LI = 76% CI. A 1% LI = 99% CI.
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So a wider LI corresponds to a narrow CI. A narrower LI correspond to a wider CI.

18.6 Prediction Interval

Given Y1, Y2, . . . , Yn are independent Gaussian r.v.s with mean µ and s.d. σ.
Note we use time series analysis if i stands for time.
Data set is {y1, . . . , yn}.
Objective: To construct a 95% prediction interval for Yn+1.
Some examples include:

• Birth rates in Canada where Yi is the # of children born in Canada in month i. Based on data, we want to
predict Yn+1.

• Job Market: forecasting future qualities of candidates can help select the right candidate.

• Yi = stock price of a company in time i. We have data for the past in periods. We want to predict Yn+1.

How to find prediction interval:
Note Y1, . . . , Yn, . . . are all Gaussian (µ, σ). So Yi ∼ G(µ, σ). Note that

Ȳ ∼ G(µ,
σ√
n

)

where Ȳ is the sample mean r.v. Furthermore, note

Yn+1 ∼ G(µ, σ)

Are Ȳ and Yn+1 independent? Yes they are.
Question: What distribution does Yn+1 − Ȳ follow? Note that if X and Y are independent Gaussian where
X ∼ G(µ1, σ1) and Y ∼ G(µ2, σ2) then

aX + bY ∼ G(aµ1 + bµ2,
√
a2σ2

1 + b2σ2
2)

In the example, a = 1, b = −1 thus we get

Yn+1 − Ȳ ∼ G(0,

√
σ2 +

σ2

n
)

Yn+1 − Ȳ ∼ G(0, σ

√
1 +

1

n
)

Extracting the pivotal quantity with pivotal distribution as the Z distribution

Yn+1 − Ȳ

σ
√

1 + 1
n

∼ Z(0, 1)

Note however we do not know what σ is!
We can use the sample s.d. s instead with pivotal distribution as the T distribution

Yn+1 − Ȳ

s
√

1 + 1
n

∼ Tn−1

29



Spring 2017 STAT 231 Course Notes 19 JUNE 21, 2017

Example 18.3. Suppose n = 20. Go to the T-Table and find t∗ (as n− 1) (for 95%)

P (−t∗ ≤ T ≤ t∗) = 0.95

Note t∗ = 2.093, thus we get

P (−2.093 ≤ Yn+1 − Ȳ

s
√

1 + 1
n

≤ 2.093) = 0.95

P (Ȳ − 2.093s

√
1 +

1

n
≤ Yn+1 ≤ Ȳ + 2.093s

√
1 +

1

n
) = 0.95

Thus the prediction interval for Gaussian r.v.s is

ȳ ± t∗s
√

1 +
1

n

Note we had assumed Yis are all independent (which is almost never true for time series data).

18.7 Testing of Hypothesses

A hypothesis is a statement made about some parameter of the population. Ex: θ = θ0

This statement can only be checked if we had the entire population.
We can take a sample and based on the sample we decide whether or not the hypothesis holds.

18.8 Null and Alternate Hypothesis

There are two competing hypotheses

Null Hypothesis (H0) This is the conventional wisdom (the current belief).

Alternate Hypothesis(H1, HA) This is the challenger to the current belief.

18.9 Analogy to Legal System

Testing is very similar to the legal system. For example, the null hypothesis H0 for a suspect in trial is that they
are innocent. H1 is that they are guilty. In a trial, we assume the suspect is innocent until proven guilty. Based on
evidence, we convict when we reject H0 when there is enough evidence, and we acquit when we do not reject H0

when there is enough evidence, and we acquit when we do not reject H0

That is the lower the p-value, the stronger the evidence against H0. Typically, we choose the p-value 0.05, 0.01, etc.

19 June 21, 2017

19.1 Examples of Null and Alternate Hypotheses

Example 19.1. Jeopardy
Let θ be the probability that a Canadian wins Jeopardy. Let our claim (alternate hypothesis) H1 be that θ > 1

3 .
Note the status quo or null hypothesis is H0 where θ = 1

3 .

Example 19.2. Discrimination
Is there discrimination against women in salary terms? Let µ1 be the average salary of men, µ2 for women. Note
that the null hypothesis H0 would be that µ1 = µ2 (status quo that there is no discrimination). H1 is µ1 > µ2.
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19.2 p-value

Definition 19.1. The p-value is the probability of observing your evidence (in the form of a test statistic d) (or
worse/more extreme) given that H0 is true.

This does not mean that the probability of H0 is true is 0.3 for p = 0.3. It means among all H0 cases, 0.3 of the
population exhibits the evidence. That is, how unusual the evidence is amongst the population of H0.
The lower value the p-value, the stronger the evidence against H0.

19.3 Convention for p-value

p > 0.1 No evidence against H0

0.05 < p ≤ 0.1 Weak evidence

0.01 < p ≤ 0.05 Strong evidence

p ≤ 0.01 Very strong evidence

Typical the cut-off is 5% or when p = 0.05. That is when p ≤ 0.05, then we reject H0, otherwise we do not reject
H0.

19.4 Type of Errors in Hypothesis Testing

Type I error When you reject H0 when it is in fact true.

Type II error When you do not reject H0 when it is in fact false.

Note Type I error is the more errorneous error (e.g. convicting an innocent defendant is worse than not convicting a
criminal).
We want to decide on tests with a low type I error probability (< 0.05).

20 June 23, 2017

20.1 Hypothesis Testing Example

Example 20.1. Test whether a coin is fair. A coin is tossed 20 times. Y = #ofheads. Note H0 is when θ = 1
2

and H1 is when θ 6= 1
2 .

This is a two-tailed/sided tests: both “high” and “low” values are bad news for H0.
The Roll up the Rim is an example of a one-sided test where H0 = 1

6 and H1 <
1
6 .

We will focus on two-sided tests.

We can construct a discrepancy measure (D).

20.2 Discrepancy Measure

Definition 20.1. A discrepancy of a r.v. which measures the level of disagreement between the data and H0.
Typically D satisfies the following properties

(i) D ≥ 0

(ii) D = 0 implies best evidence for H0
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(iii) Larger the value of D, stronger evidence against H0

(iv) P (D ≥ d) (p-value) can be calculated if H0 is true

Example 20.2. Going back to the fair coin example, H0 : θ = 1
2 and H1 : θ 6= 1

2 where θ = P (H).
If n = 200, then is D|Y − 100|, where Y is the number of heads, a good D?
If the p-value (P (D ≥ d)) is small means one of two things:

(i) H0 is true, and you observed a really rare event

(ii) H0 is not true

Example 20.3. Y1, . . . , Y25 are iid Gaussian r.v.s with mean µ and sd σ. Let our sample {y1, . . . , y25} with ȳ = 8.
Let H0 : µ = 6 and H1 : µ 6= 6. What should we conclude?
Note the pivotal quantity is

Ȳ − µ
σ√
n

If we assume H0 is true (we do), then we can use

D = | Ȳ − 6
σ√
n

|

which maps to the standard normal distribution which is 0 when µ = 6 (we assumed this for H0.

20.3 Calculate d and p-value

In the above example, note ȳ = 8. Suppose σ = 5. Plugging this into D, we see that

d = |8− 6
5√
25

| = 2

So we have P (D ≥ d) = P (|Z| ≥ 2). Looking this up in the Z table, we see that the p-value < 0.05.
Therefore there is strong evidence against H0.

20.4 When σ is Unknown

Example 20.4. Y1, . . . , Y25 ∼ G(µ, σ). Note that our hypotheses are H0 : µ = 6 and H1 : µ 6= 6.
Finally let ȳ = 8 and s2 = 25 and σ unknown.
How do we calculate the p-value? Use the T distribution.

D = | Ȳ − 6
s√
n

|

Which is T24. Note that
d = |8− 6

5
5

= 2

So we have P (|T35| ≥ 2). So p-value is in between 5 and 10%, which is weak evidence against H0.
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20.5 Binomial Example

Coin question. H0 : θ = 1
2 and H1 : θ 6= 1

2 .
Let n = 200. Our pivotal quantity (from CLT) is

θ̃ − θ√
θ(1−θ)
n

so

D = | θ̃ − 0.5√
0.52

n

|

21 June 26, 2017

21.1 Summary of Hypothesis Testing

Step 0 Set up the model

Step 1 Set up the null and alternate hypotheses

H0 : θ = θ0

H1 : θ 6= θ0

where θ0 is a given constant, θ unknown

Step 2 Construct the discrepancy measure D (Test-Statistic r.v.) and calculate d (value of test-statistic in your
sample, outcome of r.v. D). Some desirable properties of D:

1. D ≥ 0

2. D = 0→ best evidence for null hypothesis

3. D >> 0→ strong evidence against H0

4. P (D ≥ d) can be calculated if we assume that H0 is true

Step 3 Calculate the p-value using d = outcome from your sample

p-value = P (D ≥ d;H0 is true)

Note this will most likely be two-tailed since D = |Z|.

Step 4 Based on Step 3, we draw appropriate conclusions

The conclusion of a test can be written in one of two ways:

1. Find the p-value and apply the chart provided

2. We decide on a cut-off p-value (e.g. p = 0.05). If p < 0.05 then we reject H0 at 5% level of confidence.
Otherwise (p ≥ 0.05) we do not reject H0 at 5% level.

In the social sciences, p = 0.05 typically. Physical sciences p = 0.01 (usually).
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21.2 Sigma Test

Note that a p-value of 0.05 corresponds to a 2-sigma test. Similarly, a 1− p(nσ) p-value corresponds to an n-sigma
test (1-sigma test has a p-value of 1− p(1) = 1− 0.68 = 0.32).

21.3 Another Hypothesis Testing Example

Example 21.1. Y1, . . . , Y − n ∼ G(µ, σ) independent, where µ, σ unknown.
Note that n = 16, ȳ = 7 · 8, s = 4.
We want to test whether H0 : µ = 10 (µ0) or H1 : µ 6= 10.
Solution: Construct the test-statistic

D = | Ȳ − µ0

S√
n

| = | Ȳ − 10
S√
n

|

and we calculate d
d = | ȳ − 10

s√
n

| = 2.2

Next we calculate the p-value where

p-value = P (D ≥ d)

= P (|T15| ≥ 2.2)

Note we have a two-tailed problem (absolute sign; need to find area of PDF in between ±2.2).
From the T-table, we see that there is a large gap for 2.2 (between p = 0.975 and p = 0.99). Thus we know
0.01 < P (T15 ≥ 2.2) < 0.025 so (with the two tails) p-value must be between 0.02 and 0.05. There is thus strong
evidence against H0.

21.4 Relationship between CI and p-value

Theorem 21.1. If θ0 belongs to the 100q% CI, where q ∈ (0, 1), the p-value of the test

H0 : θ = θ0

H1 : θ 6= θ0

must be bigger than 1− q (assuming we use the same pivot).

Proof. Proof for Gaussian:
Gaussian µ with known σ.

H0 : µ = µ0

H1 : µ 6= µ0

If p-value > 0.05, then µ0 ∈ 95% CI.

P (D ≥ d) > 0.05

P (| µ̄− µ0
σ√
n

| ≥ d) > 0.05

P (|Z| ≥ d) > 0.05
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So d < 1.96 (since we want the middle portion to be smaller than 0.95). Therefore µ0 must belong to the 95%
CI.

21.5 One vs Two Sided Tests

For Roll up the Win hypothesis testing, note that instead of a two sided test

H0 : θ =
1

i

H1 : θ 6= 1

i

where θ = P (prize), we have a one-sided inequality

H0 : θ =
1

i

H1 : θ <
1

i

Example 21.2. Let n = 300, Y = #ofprizes. If Y > 50, then D = 0 (right-tail is irrelevant): best news for null
hypothesis. Otherwise is Y < 50, then

D = | θ̃ − θ0√
θ0(1−θ0)

n

|

21.6 Poisson Example

Example 21.3. Assume n is large, Y1, . . . , Yn ∼ Pois(µ)

H0 : µ = µ0

H1 : µ 6= µ0

By CLT

D = | Ȳ − µ0√
µ0

n

| = Z

with the test-statistic sample being
d = | ȳ − µ0√

µ0

n

|

The p-value will thus be

= P (D ≥ d)

= P (|Z| ≥ d)

22 June 28, 2017

22.1 Poisson Testing

Example 22.1. Sample {y1, . . . , y50} and H0 : µ = 5, H1 : µ 6= 5. Also ȳ = 6. What can we conclude?
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Construct the test statistic D and calculate outcome from experiment d:

D = | Ȳ − µ√
µ
n

= | Ȳ − 5√
5
n

Thus our d is
d = |6− 5√

5
50

=
√

10 ≈ 3.1

Finally the p-value is

P (D ≥ d) = p(|Z| ≥ 3.1)

< 0.01

very strong evidence against H0.

22.2 Measurement Bias Testing

Note that bias is NOT the same as accuracy.

Example 22.2. Take an object of known weight and measure it using your scale n times where Yi is your ith
reading on your scale and δ is the bias of your scale. Thus we have

Yi = 10 + δ +Ri

where Ri is the error in measurement, Ri ∼ G(0, σ).
We would like to test H0 : σ = 0, H1 : σ 6= 0.
Note 10 + δ is just a constant, so Yi = µ+Ri is in fact a Gaussian distribution G(µ, σ) where µ = 10 + δ. Note µ is
called the systematic part and Ri is the random part of the model.
Thus our hypotheses are now H0 : µ = 10, H1 : µ 6= 10.
Suppose n = 36, ȳ = 13, s = 12. We have the test statistic D

D = | Ȳ − µ0

S√
n

| = | Ȳ − 10
s√
n

|

Thus d is
d = |13− 10

12√
36

| = 1.5

So our p-value is

P (D ≥ d) = P (|T35| ≥ 1.5) > 0.05

We do not have enough evidence to reject H0.

Note there were two factors that affected our results in the example:

1. n sample size (If we change n = 36 to n = 1000, our d goes up and we reject H0).

2. s variability (If we change s = 12 to s = 1.2, note our d goes up and thus we will reject H0).
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22.3 Testing for Variance

Let Y1, . . . , Yn ∼ G(µ, σ) independent. We want to test

H0 : σ2 = σ2
0

H1 : σ2 6= σ2
0

Note we have the distribution with σ (and thus test statistic D)

D =
(n− 1)S2

σ2
∼ X2

n−1

Issues with Chi-Squared as Test Statistic
Note D ≥ 0, but it does not satisfy the desired property where D = 0 is best evidence for H0. The baseline is no
longer 0 but n− 1 (expected value of X2

n−1). D >> n− 1 and D << n− 1 are evidences against H0.
X2 is not symmetric.
The convention is:

(a) If d is right of the median of X2, then the p-value = 2P (D ≥ d)

(b) If d is left of median, then the p-value = 2P (D ≤ d)

This bounds p-value to be ≤ 1.

Example 22.3. Suppose Y1, . . . , Y51 ∼ G(µ, σ). Let our sample be n = 51, ȳ = 10, s2 = 2.055. Furthermore we’d
like to test H0 : σ2 = 1, H1 : σ2 6= 1.
Our test statistic D is

D =
(n− 1)S2

σ2
0

=
(n− 1)S2

1

So our d from measurement is
d = (50)(2.055) = 102.75

Note X2
50 has µ = 50 and σ2 = 100 (also X2 is roughly normal). Thus we know d lies far right of the median. So

the p-value is 2P (D ≥ 102.75).

22.4 More Statistics about Chi-Squared

For a given X2(n) distribution, we have

mean = n

mode = n− 2

median ≈ n− 0.7

The median tells us whether d lies to the right/left of the median.

23 June 30, 2017

23.1 Degrees of Freedom

Given Yi = µ+Ri (from e.g. systemic bias model), the degrees of freedom is the number of samples subtract the
number of unknowns in the systematic part of the model. Since there is one unknown in Yi, then df = n− 1.
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23.2 Testing with Likelihood Function

Given a sample distribution
Yi ∼ f(yi; θ)

where Yi independent, θ is an unknown parameter, we would like to test

H0 : θ = θ0

H1 : θ 6= θ0

In some cases, constructing D might be difficult if we do not know the properties of the distribution. (e.g. unknown
distribution).
We can use the LRTS (likelihood ratio test statistic)

D = Λ(θ0) = −2ln
L(θ0)

L(θ̃)

where θ̃ is the MLE. Thus our measurement for a given observation is

d = λ(θ0) = −2ln
L(θ0)

L(θ̂)

Note D is equivalent to X2
1 , which indeeds satisfies the properties:

(i) Λ ≥ 0

(ii) Λ = 0 best case for H0

(iii) Λ >> 0 evidence against

(iv) Distribution H0 = X2(1)

Example 23.1. Is a coin fair? Toss coin 200 times where Y = number of heads.
Our sample yields y = 110. We want to test H0 : θ = 0.5, H1 : θ 6= 0.5 where θ = P (H). What should we conclude?
Step 1: Set up hypotheses, done!
Step 2: Set up D and calculate d

Λ = −2ln
L(θ0)

L(θ̃)

so
λ = −2ln

L(θ0)

L(θ̂)

Note that the likelihood function for our binomial distribution is

L(θ) =

(
200

110

)
θ110(1− θ)90

Note that θ̂ = 110/200 = 0.55 and θ0 = 0.5. If we plug in our numbers we get λ = 2.003.
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Step 3: Calculate the p-value

p-value = P (D ≥ d)

= P (Λ ≥ λ)

= P (Λ ≥ 2.003)

= P (Z2 ≥ 2.003)

≈ 0.16

where this was calculated by taking P (Z ≤ −
√

2.003) + P (Z ≥
√

2.003).
Step 4: Draw appropriate conclusion. Since p = 0.16, we have no evidence against H0.

Example 23.2. Y1, . . . , Y50 ∼ Exp(θ) and

H0 : θ = 2000

H1 : θ 6= 2000

A sample of 50 observations yields ȳ = 1867.8 hours.
The traditional method is to use the X2(2n) pivot.
Instead we can use

Λ = −2ln
L(θ0)

L(θ̃)

so
λ = −2ln

L(θ0)

L(θ̂)

Note L(θ) = 1
θe
− y
θ . Note θ̂ = 1867.8 and θ0 = 2000, so we get z = 0.1979. Thus

p = P (Λ ≥ λ)

= P (Z2 ≥ 0.1979)

≈ 0.7

So there is no evidence against H0.

24 July 5, 2017

24.1 Simple Linear Regression Model (SLRM)

Note that we have Yi = variable of interset or response variate (e.g. STAT231 score of student i).
We also have xi as the explanatory variate used to explain the variate (e.g. STAT230 score of student i).
We will try to estimate the relationship between xi and Yi using sample of observation.
Some assumptions we make

(i) Yi are all independent

(ii) Yis are normally distributed given xi. If we graphed all yi ∈ Yis for a given x ∈ xi value, then we will see that
the Yi is normally distributed.

(iii) E(Yi) = α+ βxi (or the mean of the Yis is a linear function of each xi) where α, β are unknown constants
(take the expectation of both sides; E(Ri) = 0)
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(iv) V ar(Yi) = σ2 for all i That is we assume σ2 does not depend on X (homoscedastic; if σ2 = σ2(x) then it will
be a heteroscedastic model) This is perilous since oftentimes this is not the case.

These 4 assumptions are called the Gauss-Markov assumptions.
With these assumptions, we can construct the model

Yi ∼ G(α+ βxi, σ)

where Yi independent, which is equivalent to

Yi = α+ βxi +Ri

where Ri ∼ G(0, σ) (α+ βxi is the systematic part). The degrees of freedom is n−# of unknowns in systematic =
n− 2.

24.2 Finding the SLRM model using MLEs

Given a sample {(x1, y1), . . . , (xn, yn)} what are the MLE for α̂, β̂, σ̂?
Note that the density of Y is

f(y) =
1√
2πσ

e−
1

2σ2 (y−(α+βx))2

The likelihood function is
L(α, β, σ) =

1

(2π)
n
2 σn

e−
1

2σ2

∑
(yi−(α+βxi))

2

So the log-likelihood function is

l(α, β, σ) = −n
2
ln(2π)− nlnσ − 1

2σ2

∑
(yi − (α+ βxi))

2

We must take the FOC ∂L
∂α = 0, ∂L∂β = 0, ∂L∂σ = 0. Solving the equations, we get

α̂ = ȳ − β̂x̄

β̂ =
Sxy
Sxx

=

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

σ̂2 =
1

n

∑
(yi − (α̂+ β̂xi))

2 =
Syy − β̂Sxy

n

where Syy =
∑

(yi − ȳ)2.
Let’s start with β̂:

1.

β̂ =

∑
(xi − x̄)(yi − ȳ)

Sxx

=

∑
(xi − x̄)yi
Sxx

=

∑
xi(yi − ȳ)

Sxx
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This comes from the fact that the numerator can be manipulated as:∑
(xi − x̄)(yi − ȳ) =

∑
(xi − x̄)yi −

∑
(xi − x̄)ȳ

=
∑

(xi − x̄)yi − ȳ(
∑

xi −
∑

x̄)

=
∑

(xi − x̄)yi − ȳ(nx̄− nx̄)

=
∑

(xi − x̄)yi

24.3 rxy and β̂

Does rxy = 0 ⇐⇒ β̂ = 0?

rxy =
Sxy√

Sxx
√
Syy

=
Sxy
Sxx
·
√
Sxx√
Syy

thus rxy = β̂ ·
√
Sxx√
Syy

.

24.4 Finding the model using Least Squares

Note we define the square error as ∑
e2
i =

∑
(ŷi − yi)2

where ŷi is the prediction and yi is the actual.
Choose α̂, β̂ to minimize

n∑
i=1

(yi − (α̂+ β̂xi))
2

Note these α̂, β̂ are teh same as the MLEs. They are called the least square estimates.

24.5 Mean on Regression Line

Is (x̄, ȳ) on the regression line?

25 July 7, 2017

25.1 Interpretation of α and β

We have
E(Yi) = α+ βxi

If we increase x by 1 unit, the average value of Y goes up by β units. alpha is the average value of Y when x = 0.

25.2 MLE for Sample Variance s2 (Standard Error)

Remember from before we had the MLE for the variance as

σ̂2 =
1

n
(Syy − β̂Sxy)

where Syy =
∑

(yi − ȳ)2.
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For our sample variance, instead of subtracting 1 from n, we subtract 2 from n since we have 2 degrees of freedom
(α and β in systematic part).

ŝ2 =
1

n− 2
(Syy − β̂Sxy)

Note that s or se is also called the standard error of the regression model.

25.3 Relationship between β̂ and Y

Remember that we derived
β̂ =

∑
(xi − x̄)yi
Sxx

If we let ai = xi−x̄
Sxx

, then we get

β̂ =
∑

aiyi

We can thus even have a random variable (estimator) β̃ (distribution of β̂)

β̃ =
∑

aiYi

Since β̃ is a linear function of the Yis, β̃ must be Gaussian as well.

25.4 Properties of ai Expressions

(i) ∑
ai =

∑ xi − x̄
Sxx

=
1

Sxx

∑
(xi − x̄)

= 0

Since Sxx is a constant and the sum of the deviations from the mean is always 0.

(ii) ∑
aixi =

∑ (xi − x̄)xi
Sxx

=
1

Sxx

∑
(xi − x̄)(xi − x̄)

=
Sxx
Sxx

= 1
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(iii)

∑
a2
i =

∑ (xi − x̄)2

(Sxx)2

=
Sxx

(Sxx)2

=
1

Sxx

25.5 Mean of β̃ (Expectation of β̂)

β̃ =
∑

aiYi

E(β̃) = E(
∑

aiYi)

=
∑

aiE(Yi)

=
∑

ai(α+ βxi)

= α
∑

ai + β
∑

aixi

= 0 + β

= β

as desired (Note ai is not in the expectation since xis are known).

25.6 Variance of β̃

V (β̃) = V (
∑

aiYi)

=
∑

a2
iV (Yi)

= σ2
∑

a2
i

=
σ2

Sxx

25.7 Distribution of β̃

Since β̃ is a linear function of Yi it is Gaussian

β̃ ∼ G(β,
σ√
Sxx

)

where the second parameter is the standard deviation.
We can thus form the pivotal quantity and distribution

β̃ − β
σ√
Sxx

= Z
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Note for the sample variance, we can use Tn−2 (note the n− 2!)

β̃ − β
S√
Sxx

= Tn−2

25.8 Confidence Interval for β̃

From the t-table (for example a 95% confidence interval)

P (−t∗ < Tn−2 < t∗) = 0.95

P (−t∗ < β̃ − β
S√
Sxx

< t∗) = 0.95

Thus the 95% confidence interval for β is
β̃ ± t∗ s√

Sxx

25.9 Hypothesis Testing Example for Correlation

Note a no correlation relationship corresponds to a β = 0, hence we can hypothesis test for this where

H0 : β = 0

H1 : β 6= 0

Our discrepancy measure would be the pivotal quantity

D = | β̃ − β0

S√
Sxx

|

where

d = | β̂ − β0
s√
Sxx

|

Thus the p-value is

p = P (D ≥ d)

= P (|Tn−2| ≥ d)

26 July 10, 2017

26.1 Recap of SLRM Problems

Least Square Line The line of best fit (or least square line) is

Y = α̂+ β̂x
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where

α̂ = ȳ − β̂x

β̂ =
Sxy
Sxx

these are also the MLEs.

Confidence Interval Remember we have a β̃ as the random estimator that corresponds to β̂. From our previous
theorem, we derived pivotal quantities

β̃ − β
Se√
Sxx

∼ Tn−2

and similarly
(n− 2)S2

e

σ2
∼ X2

n−2

Thus we can derive the confidence interval for a given t∗ corresponding to the t-score of a Tn−2 distribution

β̂ ± t∗ se
Sxx

Hypothesis Testing We can do hypothesis testing with H0 : β = β0 and H1 : β 6= β0 with the discrepancy
measure

D = | β̃ − β0

Se√
Sxx

|

and point estimate

d = | β̂ − β0
se√
Sxx

|

with p-value

P (D ≥ d)

= P (|Tn−2| ≥ d)

Confidence Interval for Mean Response See section below.

Prediction Interval for Ynew

26.2 Mean Response (SLRM)

We can µ(x) = α+ βx the mean response at a given x value (the average values for all Y for a given x).
Suppose x = 75, we want to find the 95% CI for µ(75) = α+ β · 75 or

µ̂ = α̂+ 75β̂

Where µ̃(75) is an estimator corresponding to µ̂ or

µ̃ = α̃+ 75β̃

and
α̃ = Ȳ − β̃x̄
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Note that α̃ is Gaussian since β̃ is Gaussian. We can thus derive the Gaussian distribution for µ̃

µ̃(x) ∼ G(µ(x), σ

√
1

n
+

(x− x̄)2

Sxx
)

We can thus form the pivotal quantity
µ̃(x)− µ(x)

σ
√

1
n + (x−x̄)2

Sxx

= Z

since we want to use the standard error Se instead

µ̃(x)− µ(x)

Se

√
1
n + (x−x̄)2

Sxx

∼ Tn−2

26.3 Confidence Interval for Mean Response (SLRM)

We thus derive the confidence interval

µ̂(x)± t∗se

√
1

n
+

(x− x̄)2

Sxx

where µ̂(x) = α̂+ β̂x. We can find α, β from our sample and x is some arbitrary x value we want to find µ̂ for.

26.4 Confidence Interval for Alpha

Note in the CI for µ(x), we can plug in x = 0 to find the CI for α

µ̂(0)± t∗se

√
1

n
+

x̄2

Sxx

= α± t∗se

√
1

n
+

x̄2

Sxx

26.5 Confidence Interval for Variance σ2 (SLRM)

Note we have the pivot
(n− 2)S2

e

σ2
∼ X2

n−2

26.6 Prediction Interval for Ynew (SLRM)

Given x = xnew (e.g. xnew = 80), what is the 95% prediction interval for Ynew.
Note that the MLE for Ynew = α̂+ β̂xnew = µnew. Thus the distribution for Ynew is

Ynew ∼ G(α+ βxnew, σ)
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Note we also have for our mean

µ̃new ∼ G(α+ βxnew, σ

√
1

n
+

(xnew − x̄)2

Sxx
)

Lets subtract Ynew − µ̃new (to come up with a pivotal quantity for Ynew)

Ynew − µ̃new ∼ G(0, σ

√
1 +

1

n
+

(xnew − x̄)2

Sxx
)

Thus we have the pivotal quantity
Ynew − µ̃new

Se

√
1 + 1

n + (xnew−x̄)2

Sxx

∼ Tn−2

So our prediction interval for Ynew is

µ̂new ± t∗se

√
1 +

1

n
+

(xnew − x̄)2

Sxx

where µ̂new = α̂+ β̂xnew.

27 July 12, 2017

27.1 Residual

The estimated residual is

r̂i = yi − ŷ
= yi − (α̂+ β̂xi)

These values can be calculated from our sample where yi are the actual values and ŷ is the predicted value. Thus

Ri = Yi − (α+ βxi)

If the model is correct, r̂i should act like Ris e.g. G(0, σ).

27.2 Standardized Residuals

Note that we can standardize the residuals with respect to the standard error se

r̂i
∗ =

r̂i
se

Thus

R̂i
∗

=
R̂i
se

If the model is correct, then r̂i∗ are outcomes of G(0, 1) random variable.
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27.3 Tests for Assumptions

Scatter Plot We plot (xi, yi) and look for evidence of linearity.

Residual Plot We can either plot (xi, r̂i) or (µ̂i, r̂i) (and similarly for standardized residuals). We expect plot to
form a narrow band around zero. For standardized residuals, r̂i fall in between [−3, 3] (since 3 corresponds to
a 99.7% p-value).

We look for the absence of any pattern. If there is a pattern, then there is evidence of dependency. That is, if
the dispersion of r̂i changes with x then there is evidence of heteroscedasticity.

Q-Q plot Draw Q-Q plot of r̂i∗. If assumptions are true (Ri is normal) then Q-Q plot is a 45 degrees line through
the origin.

27.4 Comparing Two Populations

We want to compare two different populations and see whether they are similar in some way. For example, we could
test two population from a medical test or test for discrimination between men and women.

Test for Means We have the hypotheses

H0 : µ1 = µ2

H1 : µ1 6= µ2

where µ1 and µ2 are the means of the 1st and 2nd population, respectively.

Test for Proportions We have the hypotheses

H0 : π1 = π2

H1 : π1 6= π2

where π1 and π2 are the proportions of successes.

28 July 14, 2017

28.1 Hypothesis Testing of Equality of Two Means (Matched Data)

Matched Pair problem: There is a relationship between units of the two populations. Let us have a “before” and
“after” population

B1, B2, . . . , Bn ∼ G(µ1, σ1)

A1, A2, . . . , An ∼ G(µ2, σ2)

Where we want to tset H0 : µ1 = µ2, H1 : µ1 6= µ2. We define

Yi = Ai −Bi

which is equivalent to

Ai −Bi ∼ G(µ2 − µ1,
√
σ2

1 + σ2
2)

where our sample is {y1, . . . , yn} where yi = ai − bi.
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Thus Yi is Normal
Y ∼ G(µ, σ)

where σ =
√
σ2

1 + σ2
2 and µ = µ2 − µ1 (Gaussian problem with unknown mean and variance).

Our original test thus becomes H0 : µ = 0

D = | Ȳ − 0
S√
n

|

and
d = | ȳ − 0

s√
n

|

where s2 = 1
n−1

∑
(yi − ȳ)2. With the p-value

p = P (D ≥ d)

= P (|Tn−1| ≥ d)

We use degrees of freedom of 1 because there is only one unknown, ȳ which comes by subtracting each pair of data
points. See the unmatched data for an example of df = 2.
This same technique can be used for difference of the means e.g. H0 : µ2 = µ1 + 5, H1 : µ2 6= µ1 + 5.

28.2 Confidence Interval for Difference of Two Means

Can we construct the CI for µ1 − µ2? Yes! Use the Yi distribution. Left as exercise.

28.3 Unmatched Data

What if there was no underlying natural pairing between two populations?
Our models are

Y1,i ∼ G(µ1, σ)

Y2,j ∼ G(µ2, σ)

Assumptions: the variances are equal (need to be supported by the data).
Thus our hypotheses are

H0 : µ1 = µ2

H1 : µ1 6= µ2

Method 1 We use their sample mean distributions! We have sample mean distributions

Ȳ1 ∼ G(µ1,
σ
√
n1

)

Ȳ2 ∼ G(µ2,
σ
√
n2

)

We take the difference of the two distributions thus we get

Ȳ1 − Ȳ2 ∼ G(µ1 − µ2, σ

√
1

n1
+

1

n2
)
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which is also Gaussian. Our pivotal quantity is

Ȳ1 − Ȳ2 − (µ1 − µ2)

σ
√

1
n1

+ 1
n2

= Z

We want to see if µ1 − µ2 = 0 with the test statistic

D = |(Ȳ1 − Ȳ2)− 0

σ
√

1
n1

+ 1
n2

|

We do not know σ though! Let’s use the unbiased estimate of σ which is the sample deviation s

D = |(Ȳ1 − Ȳ2)− 0

S
√

1
n1

+ 1
n2

|

which is similar to Tn1+n2−2 (two unknowns µ1, µ2).

For the distribution of our sample variance, we have

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

Method 2 We perform a regression on the two datasets combined with a binary independent variate. For example
for two datasets for income, one for men and one for women, we let men have x = 0 and women have x = 1.
Thus we have a bivariate dataset with n1 + n2 datapoints.

Note when we try to draw the least square line, the intercept at x = 0, α = E(Y ) when x = 0, is the average
men’s salary or µ1.

Note that β is the change of average income when we go from men to women. If β > 0, women’s salary is
higher. If β < 0, men’s salary is higher.

Testing for equality of means is testing for β = 0 in our constructed regression problem, which we’ve done
before!

D = | β̃ − 0
Se√
Sxx

|

Our p-value is thus

p = P (D ≥ d)

= P (|Tn1+n2−2| ≥ d)

This method works only if the variances are equal.
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29 July 17, 2017

29.1 Recap of Comparing Distributions

1. Is the data matched? Pair each datapoint such that Yi = Ai −Bi where Y is our new distribution. Thus our
hypothesis becomes H0 : µy = 0.

D = | Ȳ − 0
S√
n

| ∼ |Tn−1|

If no...

2. Are the variances equal? If yes

D = | Ȳ1 − Ȳ2

S
√

1
n1

+ 1
n2

| ∼ |Tn1+n2−2|

where

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

If no...

3. Are the sample sizes large? (n1 ≥ 30, n2 ≥ 30) If yes

D = | Ȳ1 − Ȳ2√
S2

1
n1

+
S2

2
n2

| ∼ |Z|

Note it is Z and not T since for large ni ≥ 0, T-values ≈ Z-values.

If the sample sizes are not large, ignore.

For paired data, the paired test is “more powerful” than the unpaired test.

29.2 Vector Parameters

In some cases, the unknown parameter of interest is a vector

θ = (θ1, . . . , θm)

H0 : θ = θ(d)

(with some restrictions on the values of θ).
Note that the Likelihood Ratio Test Statistic was previously defined for a scalar θ, where Λ(θ) = X2

1 .

Theorem 29.1. If θ is a vector, then the Likelihood Test Statistic follows

Λ(θ) = −2log
L(θ)

L(θ̃)
∼ X2

n

where n is the number of independent, unrestricted parameters of θ or the number of parameters estimated under
H0.

Example 29.1. A die is rolled. Test whether the die is fair.
Roll the die 300 times, and we count the # of 1s, 2s, etc.
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Let θi be the probability of rolling i. Then our hypotheses are

H0 : θ1 = θ2 = . . . = θ6 =
1

6
H1 : otherwise

Note our n = df = 5 since we have 5 choices/degrees of freedom (the 6th is simply 1 subtract the rest since∑
θi = 1).

If we instead tested for only i = 1, 6 where

H0 : θ1 = θ6 =
1

6
H1 : otherwise

then we have df = 5− 3 = 2.

29.3 Degrees of Freedom

Thus the degrees of freedom for n categories and k parameters estimated under H0 is

df = (n− 1)− k

where n− 1 is equivalent to the # of free choices.
Typically we want a higher degree of freedom (less estimated parameters, more categories).

29.4 Likelihood Test Statistic for Multinomial

So for a Multinomial problem,

Λ = 2
∑

Yiln
Yi
Ei
∼ X2

n−1−k

where

Yi = observed frequency of category i
Ei = expected frequency of category i if H0 is true

That is Ei = n× pi where pi is the expected probability of category i under H0, n the sample size.
Note the closer the observed to the expected frequency is for each class, then the smaller and better our statistic is.

29.5 Goodness of Fit - Multinomial

Example 29.2. In n = 300 die rolls, the ei for each i ∈ {1, . . . , 6} is 300(1
6) = 50.

The Likelihood Test Statistics gives us a measure of how close our observed frequencies align with our expected
frequencies. For observed frequencies y = (40, 60, 55, 45, 50, 50), we have

λ = 2
∑

yiln
yi
ei

= 2(40ln
40

50
+ 60ln

60

50
+ . . .)
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So for our p-value we have

p = P (Λ ≥ λ)

= P (X2
5 ≥ λ)

and draw the appropriate conclusions.

30 July 19, 2017

30.1 Goodness of Fit - Arbitrary Frequencies

Example 30.1. Four people 1, 2, 3, 4 are playing poker. Let θi be the probability player i wins the poker game.
Let H0 : θ1 = θ2 = 0.4, θ3 = θ4 = 0.1.
We test H0 with an appropriate sample. A sample of 200 days are taken, where we get the observations as follows.
We also construct the expected frequency assuming H0 is true.

Player yi = number of wins ei
1 90 200× 0.4 = 80
2 70 200× 0.4 = 80
3 25 200× 0.1 = 20
4 15 200× 0.1 = 20

We calculate λ(θ)

λ(θ) = 2
∑

yiln
yi
ei

= 2(90ln
90

80
+ 70ln

70

80
+ . . .)

We then calculate the p-value. Note df = (4− 1)− 0 = 3.

p = P (Λ ≥ λ)

= P (X2
3 ≥ λ)

30.2 Goodness of Fit - Poisson

Example 30.2. Let X1, . . . , Xn be samples where H0 : Xi ∼ Pois(θ).
We have the following frequencies

Values of x yi ei
0 10 n× p̂0

1 25 n× p̂1

2 15 n× p̂2

3 10
...

≥ 4 10
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Let us assume it is poisson, that is µ̂ = x̄. We want to first calculate the probabilities of each class:

P (X = 0) = p̂0 =
e−µ̂µ̂0

0!

P (X = 1) = p̂1 =
e−µ̂µ̂1

1!
...

where ei = n× p̂i.
We caclulate the test statistic

λ(θ) = 2
∑

yiln
yi
ei

= known value

With this we can calculate the p-value using df = (5− 1)− 1 = 3. Note we subtracted 1 for number of estimated
parameters since we esimated µ.
If instead we had H0 : Pois(3), then df = (5− 1)− 0 = 4.

30.3 Goodness of Fit - Intervals (for Continuous Data) and Exponential

Example 30.3. X1, . . . , Xn independent r.v.s and H0 : Xi ∼ Exp(θ).
We have a sample of n = 200 with x̄ = 25.
The samples for x = ([0, 10], [10, 20], [20, 40],≥ 40) are y = (20, 70, 80, 30).
Note we have intervals for our x values, thus we need to take the integral for p̂i. For example (where θ̂ = x̄

p̂1 = P (x ∈ [0, 10])

=

∫ 10

0

1

θ̂
e−

x

θ̂ dx =

∫ 10

0

1

x̄
e−

x
x̄dx

We can then calculate λ the p-value P (Λ ≥ λ) where df = (4− 1)− 1 = 2 (estimated θ) or P (X2
2 ≥ lambda).

31 July 21, 2017

31.1 Restrictions on Multinomial LRTS with Intervals

Note in order for our test statistic to hold, we need

1. n needs to be large (n ≥ 50)

2. yi ≥ 5∀i

If we given intervals with yi < 5 e.g. y[7,12) = 4, y[12,16] = 3, we can collapse these intervals together into y[7,16] = 7.
How the data is divided into different categories might affect the final analysis (e.g. 3 categories vs 5 categories).
This is difficult to determine.

31.2 Goodness of Fit - Normal

Note if H0 : Xi ∼ G(µ, σ), then k in df is 2 (since we need to estimate both µ and σ). If σ is given then we only
estimate µ̂ thus k = 1.
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31.3 Recap on Goodness of Fit Tests

1. Divide the data into categories and compute the frequencies (yi)

2. Estimate θ (θ̂ MLE) and use θ̂ to estimate p̂i assuming H0 true (and thus ei)

3. Use the LRTS for multinomial data to find λ, df for X2
df , and p-value

31.4 Test for Independence for Categorical Variates (Contingency Tables)

Are the two variables C going to college and T being a Trump supporter dependent?
We collect a sample and construct a contingency table.

T not T
C 20 60 80

not C 40 80 120
60 140 200

Note if they are independent (H0), then

P (C ∩ T ) = P (C) · P (T )

=
80

200
· 60

200

So for our expected frequency for C and T to occur at the same time is

eCT = n× p̂CT

= 200× 80

200
· 60

200

=
80× 60

200

In general, for a given row i and column j, the expected frequency eij is

eij =
ri × cj
n

where ri is the sum of row i and cj is the sum of column j.
We can thus construct the test statistic

λ = 2
∑
i

∑
j

yijln
yij
eij

Our hypothesis is typically
H0 : θij = αiβj , ∀i, j

Our k value is 2 because once we know a θij for a fixed row i, then we know the other θik for that fixed row i (we
can subtract the total number of people in that category to find θik). That is we need to know at least θ per row
and per column. Thus degrees of freedom is (4− 1)− 2 = 1.
In general our degrees of freedom for a rows and b columns is

df = (n− 1)− k
= (ab− 1)− ((a− 1) + (b− 1))

= (a− 1)(b− 1)
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31.5 Tests for Equality of Proportions

We want to test if
H0 : π1 = π2

where π1 is the proportion of smokers with a college degree and π2 are smokes without a college degree.

Smoker Non-Smoker
College y11 y12

No College y21 y22

Note if they are equal, this is analagous to not being able to tell if someone has a college degree based on the fact
that they are a smoker (or not a smoker).
This implies that we are testing if smoking and college are independent (indepedence test).

32 July 24, 2017

32.1 Equal Proportions Example (Independence)

Example 32.1. We want to test if the proportions of smokers are equal across incomes groups. If they are, then
this implies that smoking is independent of income.
We have poor and rich for income categories and smoker and non-smoker for smoking categories.

• 64 of rich people smoke

• 240 rich people

• 86 poor people smoke

• 236 poor people

Step 1 Set-up contingency table of observed frequencies

Smoker Non-Smoker
Rich 64 176 240
Poor 86 150 236

150 326 476

where yij is the observed frequency of the i,jth group.

Step 2 Construct table of expected frequencies. Note under H0 : π1 = π2 (where π1 are proportion of rich smokers,
π2 proportion of poor smokers), we have

eij =
ri × cj
n

For example e11 = 240×150
476 = 75.6.

Smoker Non-Smoker
Rich 75.6 164.4 240
Poor 74.4 161.6 236

150 326 476
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Step 3 Calculate λ

λ = 2
∑
i

∑
j

yijln
yij
eij

= 5.25

Step 4 Calculate p-value

p = P (Λ ≥ λ)

= P (X2
(a−1)(b−1) ≥ λ)

= P (X2
1 ≥ λ)

= P (Z2 ≥ 5.25)

= p(Z ≤ −
√

5.25) + P (Z ≥
√

5.25)

= 0.02

so we have evidence against H0.

32.2 Confidence Interval of Proportions

Example 32.2. From the previous example, let’s find the 95% CI for rich smokers. The CI is (from the Binomial
distribution/CI)

π̂1 ± z∗
√
π̂1(1− π1)

n

where π̂1 = 64
240 .

32.3 Notes about Independence/Goodness of Fit Testing

1. Note that an alternative test is the Relative Risk (subective). LRTS is an objective mathematical test.

2. Applications of goodness of fit tests: see Freakonomics - Levitt.

32.4 Design of Experiments

Let X be our explanatory variable and Y be a response variable.
How can we design an experiment to check whether X “causes” Y ?

Definition 32.1. X causes Y , if all other things equal, a change in X results in a change in Y .

Note that confounding variables are additional variables that add noise to our analysis. For example, suppose
the number of Big Macs eaten are confounding variables to our analysis of smoking and cancer.
To check for causation, we have to control confounding variables:

Blocking We fix the level of the confounding variables when we collect data (e.g. sample units who eat the same
number of Big Macs).

Randomization We divide the sample randomly into two groups: control and testing group, expecting the
confounding factors cancelling out (that is we evenly distribute our confounding variables across the two
groups and see if there is a statistical difference).
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