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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 January 4, 2018

1.1 Simple linear regression review

In SLRM, there is a single explanatory variate and a response variate.
A good graphical summary for SLRM are scatterplots.
A good numerical summary for SLRM is the correlation coefficient defined as

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

where −1 ≤ r ≤ 1. If |r| ≈ 1 then the explanatory/response variates have a strong linear relationship.

2 January 9, 2018

2.1 Correlation coefficient and covariance

Note: the measure r is also the covariance divided by the standard deviations or

r =
cov(X,Y )

σXσY

Note that the covariance E[(X − E[X])(Y − E[Y ])] can be graphically separated by the means X̄ and Ȳ .

One can see that the covariance signage is determined by the sum of the magnitudes in the positive and negative
quadrants.

2.2 Simple linear regression (SLR) model

An SLR model can be thought of as a line with covariates x and y where

yi = β0 + β1xi + εi i = 1, . . . , n

1
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where εi is some error term for each i.

Example 2.1. From the dataset

Overhead Office Size
218955 1589
224513 1912

...
...

Thus we have the SLR model

218955 = β0 + β1(1589) + ε1

224513 = β0 + β1(1912) + ε2

2.3 Methods of least squares

Find (estimate) the value of β0, β1 (denoted by β̂0, β̂1, respectively) that minimizes the sum of squares of the errors∑n
i=1 ε

2
i . That is: we find values of β0, β1 that minimizes the function

S(β0, β1) =
n∑
i=1

ε2i =
n∑
i=1

[yi − (β0 + β1xi)]
2

We take the partial derivatives and set to 0 to find the minimum (assuming convexity)

∂S

∂β0
= −2

n∑
i=1

yi − (β0 + β1xi) = 0

∂S

∂β1
= −2

n∑
i=1

xi[yi − (β0 + β1xi)] = 0

which yields (the notation changes to estimates of β assuming we can calculate those)

n∑
n=1

yi = nβ̂0 +
n∑
n=1

xiβ̂1

n∑
n=1

xiyi =
n∑
i=1

xiβ̂0 +
n∑
n=1

x2i β̂1

which gives us the estimates

β̂0 = ȳ − β̂1x̄

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=
Sxy
Sxx

where the second equation follows from substituting in the first and re-deriving for ∂S
∂β1

.
The corresponding fitted line is

µ̂y|X=x = µ̂+ β̂0 + β̂1x

For the example with overhead above, we’d have

µ̂ = −27877.06 + 126.33x

2
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2.4 Fitted residuals

These are the difference between the actual values and our fitted value (distinct from the error terms previously)

ei = (yi − µ̂i) = yi − (β̂0 + β̂1xi)

Some key points regarding this model

• By estimating two parameters (β0, β1), we have imposed two constraints on our residuals (from our partial
derivatives) ∑

ei = 0∑
xiei = 0

These reduces our number of n independent measures by 2 since we can compute the remaining two residuals
from n− 2 observations. Thus we have n− 2 degrees of freedom (or in general, n− k dfs where k is the
number of estimated parameters>).

2.5 Interpretation of estimated parameters β̂i

β1

µ̂ = β̂0 + β̂1x

ˆµx+1 = β̂0 + β̂1(x+ 1)

= β̂0 + β̂1x+ β̂1

= µ̂+ β̂1

thus β̂1 can be interpreted as the estimated mean change in the response (y) associated with one unit change
of x.

β0 For x = 0, µ̂ = β̂0.

However, in the example with overhead, it’s evident that when x = 0 overhead is negative (−27877.06) which
is nonsensical.

Never extrapolate results outside the range of the values of the explanatory variate(s).

3 January 16, 2018

3.1 Invariants for normal SLR models

Recall for the normal SLR model we have

yi = β0 + β1xi + εi i = 1, . . . , n

where εi ∼ N(0, σ2) is some error term for each i.

• β0 + β1xi is the deterministic and εi is the random components of the model.

• V ar(εi) = σ2 for all i (constant variance)

• εi, εj for i 6= j are independent (otherwise we’d need time series)

3
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3.2 Estimate of variance in SLR

Each of our error terms follow a N(0, σ2) distribution. The unbiased estimate of σ2 is

σ̂2 =

∑n
i=1 e

2
i

n− 2

The residual standard error is σ̂ =

√∑
e2i

n−2 .

3.3 Unbiased estimator of β̂1

The estimator of β̂1 is a random variable β̂1 (usually denoted with a big B) that is similar to the estimate but
with r.v. Yi and Ȳ

β̂1 =

∑
(xi − x̄)(Yi − Ȳ )∑

(xi − x̄)2

Note: β̂1 can be expressed as a linear combination of response variables Yi, i = 1, 2, . . . , n.

β̂1 =

∑
(xi − x̄)Yi − Ȳ

∑
(xi − x̄)

Sxx

=

∑
(xi − x̄)Yi
Sxx

∑
(xi − x̄) = 0

=
n∑
i=1

ciYi ci =
(xi − x̄)

Sxx

Remember that

εi ∼ N(0, σ2) independent ⇒ Yi ∼ N(β0 + β1x, σ
2) independent

⇒β̂1 ∼ Normal (sum of independent normal r.v.’s)

Thus we have

E(β̂1) = E(
∑

ciYi) =
∑

ciE(Yi)

=
∑

(
(xi − x̄)

Sxx
)(β0 + β1xi)

=
β0
∑

(xi − x̄) + β1
∑
xi(xi − x̄)

Sxx

=
β1
∑
xi(xi − x̄)− β1x̄

∑
(xi − x̄)

Sxx
eliminate and introduce 0 term

=
β1
∑

(xi − x̄)(xi − x̄)∑
(xi − x̄)2

= β1

Since E(β̂1) = β1, then β̂1 is an unbiased estimator of β1.

4
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The variance of our estimator β̂1 is

V ar(β̂1) = V ar(
∑

ciYi)

=
∑

c2iV ar(Yi) Yi independent

=
∑ σ2(xi − x̄)2

S2
xx

=
σ2

Sxx

=
σ2∑

(xi − x̄)2

Since our estimator β̂1 follows (from above)

β̂1 ∼ N(β1,
σ2

Sxx
)

we have
β̂1 − β1

σ√
Sxx

∼ N(0, 1)

in terms of the sample variance (or estimate σ̂ we have the T-distribution)

β̂1 − β1
σ̂√
Sxx

∼ tn−2

3.4 Identities of distributions

Recall that the distribution of the sample means follows a normal distribution

X̄ ∼ N(µ,
σ2

n
)

so we have

X̄ − µ
σ√
n

∼ N(0, 1)

X̄ − µ
σ̂√
n

∼ tn−1

5
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This follows from

SD(X) = σ

SE(X) = σ̂

SD(X̄) =
σ√
n

SE(X̄) =
σ̂√
n

X̄ − µ
SE(X̄)

∼ tn−1

β̂1 − β1
SE(β̂1)

∼ tn−2

4 January 18, 2018

4.1 Inference for β1 in SLR

“Is there a relationship between overhead and office size (for the population of offices)?”
There is no (linear) relationship ⇐⇒ β1 = 0.
We can statistically check this using two methods

1. Confidence interval for β1

2. Hypothesis test for β1 (H0 : β1 = 0)

4.2 Confidence interval for SLR

General example, not necessarily SLR: For a distribution with one parameter µ, we can calculate the
(1− α)100% confidence interval for µ (note: we need only one t value since the T-distribution is symmetric)

µ̂± tn−1,1−α
2
· SE(µ̂)

⇒x̄± tn−1,1−α
2

(
σ̂√
n

)
where x̄ is the sample mean of the distribution.
By a similar line of logic, we can produce confidence intervals for our parameters. The (1 − α)100% confidence
interval for β1 (where the we have n− 2 degrees of freedom)

β̂1 ± tn−2,1−α
2
· SE(β̂1)

Example 4.1. The 95% C.I. for β1 for overhead data is

β̂1 ± t22,0.975SE(β̂1)

=126.33± 2.074(10.88)

=126.33± 22.57 = (103, 76, 148.90)

where ±22.57 is the margin of error.

Since β1 = 0 is not in the interval, we can conclude that there is a significant positive relationship between overhead
and office size.

6
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Remark 4.1. An X% confidence interval can be interpreted as: X% of X% confidence intervals established from
repeated samples contain the true value.
In other words: they are intervals constructed from a procedure that will contain the population mean for a specified
proportion of the time (X% of the time).

4.3 Hypothesis testing for SLR

We form a null hypthoesis H0 and an alternative hypothesis H1, where we assume H0 unless there is statistical
significance rejecting H0.
For simple linear regression, we suppose

H0 : β1 = 0 no relationship
H1 : β1 6= 0 two-sided alternative

Our test statistic t is the distribution

t =
β̂1 − β1
SE(β̂1)

∼ tn−2

Example 4.2. Under H0 we have for our example

t =
126.33− 0

10.88
= 11.61

If we look at our t22 distribution, we find the total probability of the pdf at P (t ≤ −11.61) and P (t ≥ 11.61) (the
p-value).
We see that P (t22 > 2.819) = 0.0005⇒ P (t22 > 11.61) << 0.005.
Thus the p-value is 2P (t22 > 11.61) << 0.01 (we can multiply by 2 since the T-distribution is symmetric; in fact, it
is 7.47× 10−11), which is lower than 0.05 (the significance level), so we reject the null hypothesis.

Remark 4.2. The p-value of a hypothesis test can be interpreted as: the probability that our sample holds (the
observed or more extreme results) under the null hypothesis. If it is extremely low (past a certain threshold), then
we may reject the null hypothesis as very unlikely.

4.4 Two-sided vs one sided tests

The reason why we took both CDF ends of the T-distribution in the example above is to account for a β̂1 equally
as extreme but on the negative side. Since we assume all this happens due to chance, β̂1 could equally be the same
magnitude but with a negative sign.

4.5 Confidence interval vs hypothesis testing

Deciding which method to use is problem dependent: usually, hypothesis testing is simpler to interpret for many
variates and a confidence interval is only relevant for single variates.
A 95% confidence interval corresponds with a hypothesis test with a 0.05 significance level i.e. we will derive an
equivalent conclusion.

4.6 Multiple linear regression (MLR) model

We want to model the following relationship

Yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi

7
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where εi = N(0, σ2) and independent.
Note we have p variates and p+ 1 parameters (the bias term) thus we have n− (p+ 1) degrees of freedom.
In matrix form, this is represented as

y1
y2
...
yn

 =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp



β0
β1
...
βp

+


ε1
ε2
...
εn


which can be written succinctly as

Y = Xβ + ε

where ε = N(~0, σ2I) or V ar(ε) = σ2I (the covariance matrix; note that the covariance between εi, εj i 6= j is 0
since they are assumed to be independent).

5 January 23, 2018

5.1 Least squares estimation of β in MLR

Our residual expression is now, for n observations and p explanatory covariates

S(β0, β1, . . . , βp) =
∑

[yi − (β0 + β1xi1 + . . .+ βpxip)]
2

Taking the partial derivatives with respect to each βj and finding the minimum

∂S

∂β0
= −2

∑
[yi − (β0 + β1xi1 + . . .+ βpxip)] = 0

∂S

∂β1
= −2

∑
xi1[yi − (β0 + β1xi1 + . . .+ βpxip)] = 0

...
∂S

∂βp
= −2

∑
xip[yi − (β0 + β1xi1 + . . .+ βpxip)] = 0

which can also be expressed as

n(β0) + (
∑

xi1)β1 + . . .+ (
∑

xip)βp =
∑

yi

(
∑

xi1)β0 + (
∑

x2i1)β1 + . . .+ (
∑

xi1xip)βp =
∑

xi1yi

...

(
∑

xip)β0 + (
∑

xi1xip)β1 + . . .+ (
∑

x2ip)βp =
∑

xipyi

In matrix form, this is written as

(XTX)β̂ = XT y

yields the best square estimate
β̂ = (XTX)−1XT y

assuming XTX is of full rank (i.e. p+ 1 linearly independent columns).

8
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5.2 Estimate of variance in MLR

We can estimate the variance for the error terms (or the variance of the random component in our model) by taking
the sum of squared residuals and dividing by the degrees of freedom

σ̂2 =

∑
e2i

n− (p+ 1)
=

∑
[yi − (β0 + β1xi1 + . . .+ βpxip)]

2

n− (p+ 1)

The residual standard error is the square root of this or

σ̂ =

√ ∑
e2i

n− (p+ 1)

5.3 Hat matrix

The hat matrix (also known as the influence matrix ) maps our responses to predicted values.
Given our predicted mean responses

µ̂ = Xβ̂ = X(XTX)−1XT y = Hy

The matrix H is the hat matrix
H = X(XTX)−1XT

Some properties of H are:

H is symmetric (H = HT ) Note that

HT = [X(XTX)−1XT ]T = X[(XTX)−1]TXT (AB)T = BTAT

= X[(XTX)T ]−1XT (A−1)T = (AT )−1

= X(XTX)−1XT

= H

H is idempotent (H = HH)

HH = (X(XTX)−1XT )(X(XTX)−1XT )

= X[(XTX)−1(XTX)](XTX)−1XT

= X(XTX)−1XT

= H

Note that
µ̂ = Hy

where our residual is

e = y − µ̂
= y −Hy
= (I −H)y

The residuals are a linear combination of our responses.

9
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So we have

y = µ̂+ e

= Hy + (I −H)y

where Hy is orthogonal to (I−H)y (that is: (Hy)T (I−H)y = 0 - follows by expansion and the fact that HTH = H).
This implies that µ̂i and ei are independent and thus

Cov(µ̂i, ei) = 0

5.4 Inference for β in MLR

To infer the meaning of the model parameters (β0, β1, . . . , βp), we note that

ε ∼ (0, σ2I)⇒ Y ∼ N(XB,σ2I)

since Y = Xβ + ε.
The distribution of β̂ is thus

β̂ = (XTX)−1XTY

so β̂ ∼ Normal.
Its model parameters are

E[β̂] = E[(XTX)−1XTY )

= (XTX)−1XTE[Y ]

= (XTX)−1XT (Xβ)

= β

and for the variance

V ar(β̂) = V ar((XTX)−1XTY )

= [(XTX)−1XT ]V ar(Y )[(XTX)−1XT ]T V ar(AY ) = AV ar(Y )AT

= σ2(XTX)−1XTX[(XTX)−1]T

= σ2(XTX)−1

thus β̂ ∼ N(β, σ2(XTX)−1). Note that for a specific βj , its marginal distribution is

β̂j ∼ N(βj , σ
2(XTX)−1jj ) j = 0, 1, 2, . . . , p

where SE(β̂j) = σ̂
√

(XTX)−1jj .
One can see that the variance is not constant (some parameters will be estimated with a larger confidence interval)
since

V ar(β̂j) = σ2(XTX)−1jj

where the diagonal entries are not the same.
It is often common for βj to change as more covariates are added to a multiple linear model. This implies each

10
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explanatory covariate are correlated and thus

Cov(β̂j , β̂k) = σ2(XTX)−1jk 6= 0

The covariance of βj , βk j 6= k can all be 0 if all explanatory variates are independent.

Remark 5.1. Covariate xj , xk are independent iff Cov(β̂j , β̂k) = 0.

The βjs can be interpreted as: keeping all other covariates in the model constant, what is the mean response of my
covariate xj? In effect, multiple linear regression corrects for other covariates.

5.5 Confidence interval in MLR

Note: this is a confidence interval for the parameter βj, not the estimate β̂j .
For a (1− α)100% confidence interval we have

β̂j ± tn−(p+1),1−α
2
SE(β̂j)

Example 5.1. For example, the 95% CI for β1 (size) in the overhead example is

β̂1 ± t18,0.975SE(β̂1)

=31.26± 2.101(21.47)

=31.26± 45.11⇒ (−13.85, 76.37)

since the CI encompasses 0, we conclude there is no significant relationship of size with respect to overhead after
accounting for other covariates.

5.6 Hypothesis testing in MLR

The null hypothesis for testing if a covariate is related to the response is

H0 : βj = 0

where we have the test statistic

t =
β̂j − 0

SE(β̂j)
∼ tn−(p+1)

under H0.

Example 5.2. For β1 (size), we have

t =
31.26

21.47
= 1.46

From the t-distribution table for n = 18, we see that this corresponds to a p-value between 0.1 and 0.2 (0.1625 to
be exact).
We therefore do not reject H0 (p-value > 0.05) i.e. there is no significant relationship between overhead and size,
after accounting for the other variates.

11
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6 January 25, 2018

6.1 Scatter plot matrix

For a given set of explanatory variates and a response variate, we can plot a matrix of 2D scatter plots of each
variate against all the other variates.

Figure 6.1: Size, employees, and clients are all correlated with overhead. Note however that size, employees, and
clients are all correlated with each other therefore it would probably suffice to only include one of these explanatory
variates without losing much information in our model.

From this matrix, we can visually see which explanatory variates are correlated to the explanatory variate but also
which explanatory variates are correlated with each other.

6.2 Multicollinearity

When strong (linear) relationships are present among two or more explanatory variates, we say the variates exhibit
multicollinearity.
Intuitively, multicollinearity means some explanatory variates are dependent and it would not be required to
have all the extraneous dependent variates in model since they do not introduce much additional explained
variance/information.
In fact, multicollinear is detrimental: it leads to inflated variances of the associated parameter estimates ((XTX)−1

has inflated diagonal entries, thus SE(β̂j) = σ̂
√

(XTX)−1jj is inflated), resulting in inaccurate conclusions from

hypothesis tests and confidence intervals (which depend on SE(β̂j)) (intuitively, our estimate of the impact of
one unit change of xj , β̂j , while controlling for the others tend to be less precise since there is some dependency
happening when “changing” xj with another correlated xk).

6.3 Variance inflation factor (VIF)

To assess whether a variate xj is a problem in terms of multicollinearity, we can regress xj onto all other explanatory
variates. We can then caclulate the variance inflation factor for xj

VIFj =
1

1−R2
j

12
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The VIFj can be interpreted as the factor by which the variance of β̂j is increased relative to the ideal case in which
all explanatory variates are uncorrelated (i.e. columns of X are orthogonal).

Example 6.1. Suppose we do this for xj = x3: we regress the number of employees on all other explanatory
variates (see scatter plot matrix above).
We have R2

3 = 0.9855, thus we have a VIF of 1
1−R2

3
= 68.97. So the variance is inflated ≈ 69x because of

multicollinearity (compared to the case where we just have x3).

As a general rule of thumb: multicollinearity is a serious problem if VIF > 10 (or thereabouts), which corresponds
to an R2

j > 0.9.

7 January 30, 2018

7.1 Maximum likelihood estimation (MLE)

A remark on least squares estimation of β: for a model with normal errors, maximum likelihood estimation (MLE)
and least squares estimation (LSE) are equivalent.
The maximum likelihood estimation is defined as

L(β0, β1, . . . , βp | y1, . . . , yn) =

n∏
i=1

P (yi)

=

n∏
i=1

1√
2πσ2

e
−(yi−µi)

2

2σ2

= (2πσ2)
−n
2 e

−
∑

(yi−µi)
2

2σ2 µi = β0 + β1xi1 + · · ·+ βpxip

Taking the log likelihood function

l = log(L) = c−
∑

[yi − (β0 + β1xi1 + . . .+ βpxip]
2

2σ2
= S(β0, β1, . . . , βp) =

∑
ε2i from LSE

7.2 Gauss-Markov theorem

Consider the model given by Y = Xβ + ε where E(ε) = 0, V ar(ε) = σ2I. The G-M theorem states that among
all unbiased linear estimators β̂∗ = M∗Y , the LSE given by β̂ = MY (where M = (XTX)−1XT in LSE) has the
smallest variance.
That is

V ar(β̂∗) = V ar(β̂) + σ2(M∗ −M)(M∗ −M)T

where (M∗ −M)(M∗ −M)T is a positive semidefinite matrix (a matrix A is positive semidefinite if aTAa ≥ 0 for
any vector a).

7.3 Confidence interval for µnew

Example 7.1. Provide an interval in which the mean overhead of a 1000 sq ft office that is 12 years old, has a
col = 1.02 and 1300 clients lies.

Note we can find the confidence interval for µnew or a new mean response.

µ̂new = β̂0 + β̂1xnew,1 + . . .+ β̂pxnew,p

13
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which is in vector form: xTnewβ̂ where xTnew = (1, xnew,1, . . . , xnew,p).
The distribution of µ̂new can be derived. Recall that

β̂ ∼ N(β, σ2(XTX)−1)

so we know that µ̂new ∼ Normal. Furthermore

E[µ̂new] = µnew = xTnewβ

V ar(µ̂new) = V ar(xTnewβ̂)

= xTnewV ar(β̂)xnew

= σ2xTnew(XTX)−1xnew

Thus we have
µ̂new ∼ N(µnew, σ

2xTnew(XTX)−1xnew)

which has the corresponding pivotal distribution

µ̂new − µnew
σ̂
√
xTnew(XTX)−1xnew

∼ tn−(p+1)

Thus the (1− α)100% CI for µnew is

µ̂new ± tn−(p+1),1−α
2
σ̂
√
xTnew(XTX)−1xnew

Example 7.2. In the overhead model, we have xTnew = (1, 1000, 12, 1.02, 1300).
So the 95% CI for µnew is

(97460.07, 112202.30)

where µ̂new = 104831.2 and the margin of error is 7371.1.

Remark 7.1. A confidence interval only establishes an estimate interval for a population parameter, but not a
particular random variable. We would need to use a prediction interval to establish an estimate for Ynew.

7.4 Prediction interval for Ynew

Example 7.3. An office is 1000 sq ft, 12 years old, with 1300 clients and a col = 1.02. Provide an interval for the
overhead of this (particular) office.

Remark 7.2. This question is different than the previous one since it asks for an interval for a particular office
rather than the mean overhead of an office of this characteristic in the population.

Consider the prediction error given by Ynew − µ̂new. Thus we have

V ar(Ynew − µ̂new) = V ar(Ynew) + V ar(µ̂new) independence

= σ2 + σ2xTnew(XTX)−1xnew

= σ2(1 + xTnew(XTX)−1xnew)

where Ynew, µ̂new are independent since any new observations do not depend on our estimate.

14
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Thus the (1− α)100% prediction interval for Ynew is

µ̂new ± tn−(p+1),1−α
2
σ̂
√

1 + xTnew(XTX)−1xnew

Example 7.4. In the overhead model, we still have the same xTnew so we get for the 95% prediction interval

(73946.20, 135715.70)

where µ̂new = 104831.2 (same as CI) and the margin of the error is 30884.5 (much larger than the MoE in the CI).

Note that for the SLR model, the confidence interval and the prediction interval standard errors reduce to

σ̂

√
1

n
+

(xnew − x̄)2

Sxx

and

σ̂

√
1 +

1

n
+

(xnew − x̄)2

Sxx

respectively. Note that the errors are smaller as xnew is closer to the mean/centre x̄ as we can see in the prediction
and confidence bands.

Figure 7.1: The confidence and prediction bands are smaller in closer to the centre of the x’s or closer to x̄.
Furthermore, the prediction bands lie further out from the confidence bands.

8 February 1, 2018

8.1 Modelling categorical variates

Example 8.1. Promotion study: does a wing promotion have any effect on sales? Do different types of promotion
affect sales differently?
The sampling protocol is as follows:

• 30 stores randomly selected from population

• 10 stores are randomly assigned to one of three promotion types: promo1, promo2, no promotion (control)

15
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• response variate: change (%) in sales over two-week period of study

One inappropriate approach may be:

Yi = β0 + β1xi + εi εi ∼ N(0, σ2) ind.

where

xi =


1 if ith store uses promo1
2 if ith store uses promo2
3 if ith store has no promo

There may be no linear relationship depending on the way we assign xi (e.g. promo 1 has a higher mean response,
promo 2 has a lower mean response, no promo has a higher mean response). This model is too restrictive.
A more flexible model :

Yi = β0 + β1xi1 + β2xi2 + εi εi ∼ N(0, σ2)

where xi1 = 1 if ith store uses promo1 (0 otherwise) and xi2 = 1 if ith store uses promo2.
This is similar to one-hot encoding and these are called indicator or dummy variates.
Our data might look like

store(i) xi1 xi2
1 0 0
2 0 0
...

...
...

10 1 0
11 1 0
...

...
...

21 0 1
22 0 1
...

...
...

30 0 1

Suppose we consider adding xi3 = 1 when the ith store has no promo and 0 otherwise. Then we have our X matrix
as 

1 0 0 1
1 0 0 1
...

...
...

...
1 1 0 0
1 1 0 0
...

...
...

...
1 0 1 0
1 0 1 0
...

...
...

...
1 0 1 0



(8.1)

note that xi3 = 1− (xi1 + xi2) so we have a linear dependent column.
This implies rank(X) = 3 which is not of full rank, thus XTX is not invertible.

16
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To interpret/inference our parameters, note that the estimate response or estimated change of sales (in %) is given
by

µ̂ = β̂0 + β̂1x1 + β̂2x2

So for a store that does not have any promos

µ̂ = β̂0 + β̂1(0) + β̂2(0) = β̂0

Similarly for promo 1 stores
µ̂ = β̂0 + β̂1

and for the promo 2 stores
µ̂ = β̂0 + β̂2

From our data, we may get the regression summary

1 Coefficients:
2 Estimate Std. Error t value Pr(>|t|)
3 (Intercept) -0.870 1.665 -0.523 0.60552
4 x1 8.350 2.354 3.547 0.00145 **
5 x2 2.970 2.354 1.261 0.21792

We can’t conclude anything about the control case (no promo) and the promo 2 group, but we can conclude that
the estimated increase in sales (relative to the control) using promo1 is 8.35% (p-value < 0.05).
More formally, is there a difference in mean increase in sales between no promo and promo1 stores? We can
assume the null hypothesis H0 : β1 = 0 (no change in promo1 sales) and alternative hypothesis Ha : β1 6= 0.
Thus we have the test statistic

t =
β̂1 − β1
SE(β̂1)

=
β̂1 − 0

SE(β̂1)

= 3.547

We can look up the T-distribution with 30− 3 = 27 degrees of freedom to figure out that the p-value is 0.00145. We
reject H0: so using promo1 is associated with a significantly higher mean sales than no wing promotion.
A more nuanced question: is there a difference in mean sales between promo1 and promo2? This is not quite clear
from our regression summary. Thus we use hypothesis testing with null hypothesis H0 : β1 − β2 = 0. What about
our test statistic?
One approach is

t =
(β̂1 − β̂2)− 0

SE(β̂1 − β̂2)
∼ t27

under H0. But what is the standard error? We need to take the variance of β̂1 − β̂2. Recall that the variances of β̂
are

β̂ ∼ N(β, σ2(XTX)−1)

β̂j ∼ N(βj , σ
2(XTX)−1jj )

⇒ Cov(β̂j , β̂k) = σ2(XTX)−1jk

17
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so we have

V ar(β̂1 − β̂2) = V ar(β̂1) + V ar(β̂2)− 2Cov(β̂1, β̂2)

= σ2(XTX)−111 + σ2(XTX)−122 − 2σ2(XTX)−112

= σ2[(XTX)−111 + (XTX)−122 − 2(XTX)−112 ]

Thus our standard error is

SE(β̂1 − β̂2) = σ̂

√
(XTX)−111 + (XTX)−122 − 2(XTX)−112

Another more general approach is the F-test (ANOVA).

9 February 6, 2018

9.1 X matrices with orthogonal columns

Y = Xβ + ε. Suppose we are designing an experiment where the response is the shrinkage of a part (%) during
molding process. There are 3 factors: Temp(L,H), Pressure(L,H), Speed(L,H). We thus have 23 unique experimental
runs

run T P S
1 L L L
2 L L H
3 L H L
4 L H H
5 H L L
6 H L H
7 H H L
8 H H H

Therefore we have as our model
Yi = β0 + β1xi1 + β2xi2 + β3xi3 + ε

where

xi1 =

{
1 if ith run uses H temp
0 otherwise (L temp)

xi2 =

{
1 if ith run uses H pressure
0 otherwise (L pressure)

xi3 =

{
1 if ith run uses H speed
0 otherwise (L speed)

18
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There is an alternative coding scheme where we use −1 instead of 0

xi1 =

{
1 if ith run uses H temp
−1 otherwise (L temp)

xi2 =

{
1 if ith run uses H pressure
−1 otherwise (L pressure)

xi3 =

{
1 if ith run uses H speed
−1 otherwise (L speed)

So our X matrix becomes

X =



1 −1 −1 −1
1 −1 −1 1
1 −1 1 −1
1 −1 1 1
1 1 −1 −1
1 1 −1 1
1 1 1 −1
1 1 1 1



Remark 9.1. All the columns in X are orthogonal.

By noting columns i, j where i 6= j are orthogonal, we can easily see that

XTX =


8 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8


Taking the inverse, we get

(XTX)−1 =


1
8 0 0 0
0 1

8 0 0
0 0 1

8 0
0 0 0 1

8


10 February 8, 2018

10.1 Interpretation of parameters for categorical −1, 1 variates

Previously we chose −1, 1 as values for our indicator variates as opposed to 0, 1. How do we interpret the parameter
estimates now that xik ∈ {1,−1} (how do we interpret 1 unit of change which is now halved on this scale)?
Taking a look at the previous example we have for two different trials where Tep is toggled between L and H

{L,L,L} : µ̂ = β̂0 − β̂1 − β̂2 − β̂3
{H,L,L} : µ̂ = β̂0 + β̂1 − β̂2 − β̂3

= (β̂0 − β̂1 − β̂2 − β̂3) + 2β̂1

So we have µ̂HLL = µ̂LLL + 2β̂1.
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Suppose we get β̂1 = −0.2875 in the MLR. Then we have

2β̂1 = −0.5750

So holding all other factors constant running temperature at a high level is associated with an estimated decrease of
0.5750% in shrinkage compared to running at low temp (since the p-value is ≥ 0.05, there is no statistical significant
relationship).

10.2 Independence of indicator variates

Note from our XTX matrix, we see that Cov(β̂j , β̂k) = σ2(XTX)−1jk = 0 for j 6= k.
So if we were to take out an explanatory variate, the parameter estimates will not change (no linear dependency
between them). However, it’s possible for the p-value to change.
For example, in a sample dataset we see that the p-value for pressure was 0.0978 (not significant) after correcting
for temperature and speed, but was 0.0421 (significant) with just an SLR (just pressure regressed onto shrinkage).
Why is this the case? Well when we removed some variates, we increased our degrees of freedom. Algebraically
we had

σ̂ =

√∑
e2i
df

and for our standard errors for our parameter we had

SE(β̂j) = σ̂ ·
√

(XTX)−1jj

thus in our reduced model, as the degrees of freedom increases as we take away parameters, our residual standard
error decreases hence SE(β̂j) decreases. This is especially true for small samples with low degrees of freedom.

Example 10.1. In our shrinkage vs temperature, pressure and speed we originally had in the “full” model

Y = β0 + β1x1 + β2x2 + β3x3 + ε ε ∼ N(0, σ2) independent

This corresponds to

σ̂ =

√∑
e2i

4
= 3.271⇒ SE(β̂j) = σ̂

√
(XTX)−1jj = 1.1563

By reducing our model down to only one explanatory variate pressure, we have

Y = β0 + β2x2 + ε ε ∼ N(0, σ2) independent

σ̂ =

√∑
e2i

6
= 2.733⇒ SE(β̂j) = 0.9662

Note however the p-value does not decrease in general when removing variates. This only happens when the
explained variance/variation (see ANOVA) of the removed variates is relatively small compared to the increase in
the degrees of freedom when those variates are removed. If we had repeated the above experiment many times (to
have a larger df) then the p-value will differ less.

10.3 Analysis of Variance (ANOVA) and additional sum of squares

Recall that the sample variance is given by

s2 =

∑
(yi − ȳ)2

n− 1
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We want to decompose the sum of squares into two parts: one for the variance we can explain with our model and
one for the variance we cannot explain. Doing this algebraically

n∑
i=1

(yi − ȳ)2 =
∑

(yi − µ̂i + µ̂i − ȳ)2

=
∑

(yi − µ̂i)2 +
∑

(µ̂i − ȳ)2 + 2
∑

(yi − µ̂i)(µ̂i − ȳ)

For the last term we have∑
(yi − µ̂i)(µ̂i − ȳ) =

∑
µ̂i(yi − µ̂i)− ȳ

∑
(yi − µ̂i)

=
∑

µ̂iei − ȳ
∑

ei

= µ̂T e
∑

ei = 0

= 0 µ̂, e is orthogonal

Remark 10.1. e and µ̂ are orthogonal because we have

µ̂T e =
∑

µ̂iei

=
∑

(β̂0 + β̂1xi)ei

= β̂0
∑

ei + β̂1
∑

xiei

= 0
∑

ei = 0 and
∑

xiei = 0 from derivation of β̂i (see Fitted residuals)

Thus we have
n∑
i=1

(yi − ȳ)2 =
∑

(yi − µ̂i)2 +
∑

(µ̂i − ȳ)2

SS(Tot) = SS(Res) + SS(Reg)

where SS(Reg) is the variation our regression model accounts for (or explained sum of squares), and SS(Res)
is the residual sum of squares.

10.4 Coefficient of determination R2

For the SLR case, R2 is exactly the square of the coefficient of correlation r.
For the MLR case (and in general), it is equivalent to

R2 =
SS(Reg)

SS(Tot)

or the proportion of variation explained by our model. Rewriting in terms of SS(Res) or the sum of squares
not explained by our model

R2 =
SS(Tot)− SS(Res)

SS(Tot)
= 1− SS(Res)

SS(Tot)
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10.5 Testing if any variates are related to response

The F-test will check if there is, for example, a relationship between overhead (response variate) and at least one
of size, age, col, or clients (explanatory variates). That is: its null hypothesis is (note that β0 is not included)

H0 : β1 = β2 = β3 = β4 = 0

Ha : at least one of βj 6= 0 j = 1, 2, 3, 4

What would be the test statistic we use for this? Obviously we cannot use a T distribution and T-statistic like
before. We want our statistic to be large when our model explains a lot of variation relative to the variation we
cannot explain. We would also like to correct for the degrees of freedom, thus we have

F =
MS(Reg)

MS(Res)
=

SS(Reg)
p

SS(Res)
(n−(p+1))

where MS(·) is the mean squared error (we will later see that this is a special case of the more general F-statistic).
Under H0 : F ∼ Fp,n−(p+1). Under H0, we expect F = 1.
Note that F ≥ 0, so the F-distribution looks something like

Example 10.2. For our overhead study, our H0 : β1 = β2 = β3 = β4 = 0. We got from our regression summary in
R

F =
MS(Reg)

MS(Res)
= 100.5

Note that the p-value = P (F > 100.5) = 1.661× 10−12 (one-tailed!). So we reject H0 so at least one of size, age,
col or clients is significantly related to overhead.

11 February 13, 2018

11.1 ANOVA table in R

A sample output from R for the ANOVA table

1 Response: y
2 Df Sum Sq Mean Sq F value Pr(>F)
3 x 1 0.0049 0.004897 0.0574 0.8112
4 Residuals 98 8.3654 0.085361

The fields correspond to

22



Winter 2018 STAT 331 Course Notes 11 FEBRUARY 13, 2018

Source df SS MS F p-value
Reg p SS(Reg) SS(Reg)

p
MS(Reg)
MS(Res) P (F > Fp,n−(p+1))

Res n− (p+ 1) SS(Res) SS(Res)
n−(p+1)

Tot n− 1 SS(Tot) n− 1

11.2 F-test and ANOVA

After accounting for col index and # of clients, does either size or age account for significant variation in overhead?
So in our “full model” we have

Y = β0 + (β1x1 + β2x2) + β3x3 + β4x4 + ε ε ∼ N(0, σ2)

in our “reduced” model with just col index and # of clients we have

Y = β0 + β3x3 + β4x4 + ε ε ∼ N(0, σ2)

(where we take away size and age β1, β2). For the reduced model we have H0 : β1 = β2 = 0 and Ha is at least one
of β1, β2 6= 0.
We want to see how much more variation our full model explains vs our reduced model.
We can use the F-statistic

F =

SS(Res)red−SS(Res)full
dfred−dffull
SS(Res)full

dffull

where under H0 : F ∼ Fdfred−dffull,dffull , where dffull = n− (p+ 1) and p is the total number of parameters in the
full model.
Note that SS(Res)red − SS(Res)full is called the additional sum of squares (additional variance explained by
full model). Also remark the denominator is simply MS(Res)full = σ̂2.

Example 11.1. Recall that

σ̂ =

√ ∑
e2i

n− (p+ 1)

So we can calculate it as
SS(Res)full =

∑
e2i = σ̂2(n− (p+ 1))

so we have
SS(Res)full = 143302(19)

and similarly
SS(Res)red = 153602(21)

So our F-statistic value is

F =
(153602(21)− 143302(19))/2

143302
= 2.564

So the p-value is the value of P (F2,19 > 2.564). From the F-table we see that P (F2,19 > 3.52) = 0.05 which implies
our p-value is > 0.05. So we do not reject H0. The reduced model is thus preferred: that is age and size together
do not account for significant variation in overhead after acconting for col and clients.

In R, we can accomplish this via

1 > anova(audit.red.lm , audit.full.lm)
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where audit.red.lm and audit.full.lm are the reduced and full models, respectively. This gives us a p-value of
0.1033 in R for the example.

11.3 F-test special case: testing significance of all parameters of a model

Consider again the case where we wanted to test H0 : β1 = β2 = . . . = βp = 0 and Ha at least one of βj 6= 0 for
j = 1, 2, . . . , p. This is simply the F-test but with a 0 parameter reduced model.
Note that if we are testing for the significance of a single model, our “full” model is our model

Y = β0 + β1x1 + . . . βpxp + ε ε ∼ N(0, σ2)

and the “reduced” model is
Y = β0 + ε ε ∼ N(0, σ2)

First note that the LSE (least square estimate) of β0 for the reduced model is∑
(yi − β̂0)2

⇒− 2
∑

(yi − β̂0) = 0 first-order condition

⇒− nβ̂0 +
∑

yi = 0

⇒β̂0 =

∑
yi
n

= ȳ = µ̂

So we end up with

SS(Res)red =
∑

e2i =
∑

(yi − µ̂i)2

=
∑

(yi − β̂0)2 Y = β0 + ε⇒ µ̂ = β̂0

=
∑

(yi − ȳ)2

= SS(Tot)

Thus we have

F =
(SS(Tot)− SS(Res)full)/p

MS(Res)full

=
SS(Reg)full/p

MS(Res)full

=
MS(Reg)

MS(Res)

as we had previously used.

11.4 F-test special case: testing significance of one additional parameter

Remember we previously tested for the significance of a parameter using the T-test where H0 : βj = 0 for some
j = 1, . . . , p.

Example 11.2. After accounting for size, col, and clients, is age significant related to overhead?
Our full model is thus

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε
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and our reduced model (with age removed)

Y = β0 + β1x1 + β3x3 + β4x4 + ε

We thus want to test for H0 : β2 = 0 and H0 : β2 6= 0. Instead of using the T-statistic

t =
β̂2

SE(β̂2)

we can instead use the F-statistic
F =

(SS(Res)red − SS(Res)full)/1

MS(Res)full

or concretely with our example

F =
142102(20)− 143302(19)

143302

= 0.666

Which gives us a p-value > 0.05. We do not reject H0, so after accounting for size, col, and clients, age is not
significantly related to overhead (reduced model is preferred).

Remark 11.1. For the p-values, note that

P (F1,df > C) = P (|tdf | > C2) C > 0

(our F-statistic value is the square of the t-statistic value). That is: for comparing two models with a difference of
one df we have F = t2 (The F-test statistic and t-statistic will yield identical p-values).

12 February 15, 2018

12.1 Difference in response from reduced model

In the promo example, we had

x1 =

{
1 if promo1 used
0 otherwise

x2 =

{
1 if promo2 used
0 otherwise

where our model is Y = β0 + β1x1 + β2x2 + ε, ε ∼ N(0, σ2I).
Is there a difference in sales between promo1 and promo2 stores?
One way is to do the following hypothesis test

H0 : β1 − β2 = 0

Ha : β1 − β2 6= 0

thus we have the T-statistic

t =
(β̂1 − β̂2)− 0

SE(β̂1 − β̂2)
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Another approach: additional sum of squares. We have the full model

Y = β0 + β1x1 + β2x2 + ε

and reduced model

Y = β0 + β∗x1 + β∗x2 + ε β∗ = β1 = β2

= β0 + β∗(x1 + x2) + ε

= β0 + β∗x3 + ε x3 = x1 + x2

where we can interpret x3 as

x3 =

{
1 if either promotion 1 or 2 used
0 otherwise

So we have the F-statistic
F =

(SS(Res)red − SS(Res)full)/1

MS(Res)full

where we get F = 5.2218 and p-value 0.03038 in our example for a F1,27 distribution.
We therefore reject H0, therefore mean sales is significantly greater for promo1 than for promo2.

12.2 General linear hypothesis

Consider the hypotheses tested so far using additional sum of squares (p is the number of total parameters in our
full model)

1. H0 : β1 = β2 = . . . = βp = 0

2. H0 : β1 = β2 = 0 (p = 4)

3. H0 : β1 = 0 (p = 3)

4. H0 : β1 − β2 = 0

The additional sum of squares test can be used to test any set of linear constraints that can be expressed in the form

H0 = Aβ = 0

where A is an l × (p+ 1) matrix of l linear constraints.
For the hypothesis (1) we have

H0 :


0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
...
0 0 0 . . . 0 0 1




β0
β1
β2
...
βp

 =


0
0
0
...
0


where the left matrix is A and the right matrix is β. Similarly for (2)

A =

[
0 1 0 0 0
0 0 1 0 0

]
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And for (3)
A =

[
0 1 0 0

]
and for (4)

A =
[
0 1 −1

]
12.3 Residual analysis and model assumptions

Residual analysis lets us assess our model assumptions. Recall our model assumptions of Y = Xβ + ε where
ε ∼ N(0, σ2I):

• The “function form” of the relationship is correctly specified (i.e. µ = Xβ)

Figure 12.1: The linear function form is correctly specified for the left plot but not for the right plot where
although the line fits well, it is not really linear (but rather quadratic).

We want to make sure we’re not fitting a linear regression model to data that is actually quadratic or some
other nonlinear fit (the significance of our parameters in the regression summary in say R tells us nothing
about this: we can get really significant parameter estimates but the data may not actually be linear).

• Errors are normal (specified as ε ∼ N(·)).

Remark 12.1. Normality of errors is not too important: although we assumed Y is normal (which depends
on ε being normal) to derive β and β̂, since β is the linear combination of Y normal variables it approaches a
normal distribution regardless of Y ’s distribution for large sample sizes by the Central Limit theorem.

• Errors have constant variance i.e. homoskedastic (specified as σ2i = c some constant c for all βi).

It is possible for data to not have non-constant variance that is a function of X
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Figure 12.2: Non-constant variance would imply that we have variance as a function of X. For example, if the
variance increases linearly as X increases, then we need to transform our data (e.g. square root it or log it) or fit
another function to it (e.g. log in GLMs?).

• Errors are independent (specified as variance is σ2I, where the identity matrix has 0 off-diagonal entries).

This is typically violated for time-series data.

13 February 27, 2018

13.1 Residual plots

One way we can assess our model assumptions is with residual plots (where ei is always on the y-axis):

ei vs µ̂i Recall under the model Y = Xβ + ε, we have eT µ̂ = 0 (orthogonal vectors) so Cov(ei, µ̂i) = 0. Thus they
are independent.

A plot of ei vs µ̂i should always reveal no observable pattern or relationship between the residuals and the
fitted values. No pattern implies that our function form is specified correctly and our variance is constant.

Figure 13.1: Residual plot of ei vs µ̂i.

QQ plots These are used to assess assumption of normal errors. It plots ordered (standardized) residuals vs
expected quantiles from N(0, 1).
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A straight line relationship is an indication that the assumption of normal errors has been reasonably met.

Figure 13.2: The non-standardized residuals (i.e. the residual values are plotted as) are ordered based on their
corresponding quantile in the standard normal distribution (e.g. a residual of ≈ −80 corresponds to the theoretical
standard normal quantile of −1.96).

We do not currently have a plot to check if the errors are independent (this will be discussed more during time-series).

13.2 Methods to address violated model assumptions

To address perceived violations of model assumptions:

• Transformation of response (and/or one or more explanatory variates). For example, there are variance-
stabilizing transformations we can use:

– log y

–
√
y

– 1
y

(these may also be used for explanatory variates). These can be used if either the errors (variance) is not
normal or if the function form is not linear. We can apply each of these transformations and see if it produces
a better fit and produces a “better” fit of our model assumptions.

Remark 13.1. After transforming our data, the residual standard error may seemingly decrease (or even
increase) dramatically. Note that the RSE is relative to our response values: since the scale of those change
based on the transformation we must take care when interpreting the change in the RSE.

Remark 13.2. We will need to modify our intepretation of our parameter estimates since they are now
estimated with respect to the transformed response values, not the original values.

• Inclusion of higher order terms (e.g. quadratic (x2), cubic (x3) of our explanatory variates (x)). This is
sometimes called polynomial regression.
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This does not violate multicollinearity since these terms are not linearly dependent.

Figure 13.3: We initially have a linear model with a linear explanatory x and response y. We see the relationship
between x and y is more quadratic. We then add x2 as a term to our model which can allow us to fit a quadratic
using linear regression with variates x and x2 (our parameters are then the coefficients A,B,C in the quadratic
y = A+Bx+ Cx2).

• Inclusion of interaction terms.

When the relationship between an explanatory variate, xk, and the response depends on the value of another
explanatory variate, xm, we say there is an interaction between xk and xm (i.e. when other variates have a
magnifying/diminishing effect on the relationship between another variate and the response).

For example, the effect of size on overhead of an office may be magnified if the age of the office is larger (and
vice versa).

May require the inclusion of an interaction term xk ∗ xm (where the explicit asterisk ∗ denotes interaction). It
is coincidentally often the pairwise product of the variates.

Remark 13.3. One must be careful introducing too many interaction terms since that will decrease our
degrees of freedom.

Example 13.1. In our overhead model, we had

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε
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if we want an interaction term between age (x1) and size (x2) then we use the model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5(x1 ∗ x2) + ε

= β0 + (β1 + β5x2)x1 + β2x2 + β3x3 + β4x4 + ε

We can then interpret β5 as the magnifying effect of x2 on x1.

14 March 1, 2018

14.1 Fitted residuals e vs errors ε

We can derive an expression that relates our fitted residuals (e, a distribution) and our assumed random errors (ε)
Recall that (below are vectors)

e = Y − µ̂
= Y −Xβ̂
= Y −X(XTX)−1XT y

= Y −HY
= (I −H)Y

= (I −H)(Xβ + ε)

= Xβ −X(XTX)−1XTXβ + ε−Hε
= Xβ −Xβ + ε−Hε
= (I −H)ε

So we end up with

e = (I −H)Y

= (I −H)ε

One might assume Y = ε since

(I −H)−1(I −H)Y = (I −H)−1(I −H)ε

⇒Y = ε

but this is not necessarily true since I −H need not be invertible (it is invertible iff its rank is n)! Note that

rank(I −H) = n− rank(H) = n− rank(X) = n− (p+ 1)

Since n− (p+ 1) < n, I −H is not of full rank so it is not invertible. If we had the null model, then Y = ε trivially.
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14.2 Distribution of fitted residuals e

Since e = (I −H)ε and ε ∼ N then e ∼ N , and we can derive the normal distribution of e

E[e] = (I −H)E(ε) = 0

V ar(e) = (I −H)V ar(ε)(I −H)T

= σ2(I −H)(I −H)T

= σ2(I −H)

So we have
e ∼ N(0, σ2(I −H))

then we get
Cov(ej , ek) = −hjk j 6= k

where all entries of H are strictly positive (recall H is idempotent so this immediately follows). This makes sense
intuitively: since all residuals must sum to 0 in LSE, some positive residual should coerce other residuals to be
negative hence the negative covariance.
If our variates are all mutually independent then hjk = 0⇒ Cov(ej , ek) = 0 for j 6= k).
Another way to express this

ei = N(0, σ2(I − hii))

14.3 Studentized residuals

Analogous to standardizing with respect to the normal distribution, we can do the same with the T-distribution.
As before (remember ēi = 0), the studentized residuals di is defined as

di =
ei

σ̂
√

1− hii

where we subtract the mean and divide by the standard error.
This looks very similar to, when β̂i = N(βi, σ

2(XTX)−1ii )

β̂i − βi
σ2
√

(XTX)−1ii

∼ tn−(p+1)

di does not exactly follow a T-distribution since ei and σ̂ are not independent. Thus it follows a distribution roughly
that of the T-distribution.

Remark 14.1. There are two types of studentized residuals: internalized and externalized. They differ in σ̂
where the internalized uses the biased estimate of σ2 (whereby sum of squared residuals divided by n − p) and
externalized removes the ith residual suspected of being improbably large since it may skew the distribution (takes
sum of residuals square except ith residual and divide by n− (p+ 1)).
See the Wikipedia page for more details.

14.4 Outliers

These can be:

extreme values of the response variate How do we define one formally?
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An observation is considered an “outlier” if its studentized residual di satisfies

|di| > 2.5

or thereabouts.

Why might an observation be an outlier?

1. Typo or human error

2. Missing interacting variate (e.g. type of company may be important to consider overhead of the company:
not including such may result in outliers)

extreme values in the explanatory variate space These are extreme values of (x1, x2, . . . , xp). Suppose we
have one such outlier.

Figure 14.1: An outlier can have a huge effect on the fit and goodness of fit.

Think about the effect of fitting a LSE with and without the outlier. If the outlier lands roughly in the fit
without the outlier, then there will be little difference between the two fits (the fit without the outlier will
“move away” from where the outlier was before).

If the outlier lands far away from the fit without the outlier, then including it in the fit will skew it dramatically.

We can identify these outliers based on the residual i’s hii (as we derived for its variance in its distribution).
hii is also called leverage.

15 March 6, 2018

15.1 Additional variation required for more precise parameter estimates in ANOVA

Quick note about ANOVA:
Recall that a (full) model with additional variates will account for more variation than its reduced model.
The additional variation explained is given as

SS(Res)red − SS(Res)full

However, it’s possible that in the full model our parameter estimates become less precise. This is defined as the
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residual standard error possibly increasing. Note that

σ̂red =

√
SS(Res)red

dfred

σ̂full =

√
SS(Res)full

dffull

In the full model as we introduce more variates to the reduced model, while SS(Res)full decreases, dffull also
decreases. Therefore if the ratio of dffull decreases more dramatically than SS(Res)full, then σ̂full will increase
relative to σ̂red. This implies less precise parameter estimates.
To figure out the additional variation we required, we solve

σ̂full < σ̂red

⇐⇒

√
SS(Res)full

dffull
<

√
SS(Res)red

dfred

for the additional variation.

15.2 Leverage

As discussed previously, outliers can be problematic (they can skew our regression). In a multiple variate regression
(at least with two explanatory variate), we can identify them visually

Figure 15.1: For a model with two explanatory variate, outliers show up as points that are not clustered around
the cloud where most other points in the 2D plot of the two variates are. These outliers have high leverage since
they deviate greatly in terms of their explanatory variates.

This can extend arbitrarily to some p-dimensional cloud.
Recall that µ̂ = Hy. So we get

µ̂i = hiiyi +
∑
j 6=i

hijyj
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The leverage of the ith observation is defined as hii, the ith diagonal element of H. Intuitively hij ’s may skew
our µ̂i based on their magnitudes (they add some influence from the jth observation yj).

Remark 15.1. When we say an observation has high leverage, we refer to it deviating from the mean of the
explanatory variate space and not (most of the time) the response variate (see Influential observations).

Note that:

• 1
n ≤ hii ≤ 1

• the greater the distance between (xi1, xi2, . . . , xip) and (x̄1, x̄2, . . . , x̄p), the larger the leverage.

For example in SLR, we have

hii =
1

n
+

(xi − x̄)2

SSx

(where SSx = SSxx =
∑

(xi − x̄)2).

This is why leverage is such a good measure for identifying these outliers (i.e. observations that deviate greatly
in their explanatory variates).

•
tr(H) = rank(H) = rank(X) = p+ 1

• Recall that we have e ∼ N(0, σ2(I −H)). Thus

ei ∼ N(0, σ2(1− hii))

Note that as hii → 1 (i.e. leverage goes up), the variance of the distribution of the fitted residuals of that ith
observation goes towards 0 (thus the fitted residuals are distributed around 0 more closely).

So in theory the residuals of outliers are small.

Remark 15.2. We cannot therefore tell if an observation is an outlier just by the residual plot since small
residual values do not mean it’s an outlier.

So a case (observation) i is considered to have high leverage if

hii > 2h̄ =
2(p+ 1)

n

or thereabouts.

Example 15.1. In the overhead example, we have

2h̄ =
2(5)

24
=

10

24
≈ 0.4

If we plot our hii’s we can see none of our observations have high leverage.

15.3 Influential observations

An observation is considered influential if omission of this point has a considerable effect (not significant, since that
implies some statistical/hypothesis testing) on the fitted line (i.e. changes the parameter estimates considerably).
Only high leverage cases have the potential to be influential.
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How do we identify these influential observations? One measure: Cook’s distance.

Di =
hii

1− hii
· d2i
p+ 1

where di =
ei

σ̂
√

1− hii

Di anywhere near 1 (or greater) suggests a strongly influential case.

Remark 15.3. Cook’s distance and influential observations combine both outliers in the response values (factored
in by di) and in their explanatory variate values (factored in by hii

1−hii ).

16 March 8, 2018

16.1 Model selection

We cannot simply use R2 (multiple R-squared) to compare models (this will always increase (or stay the same) as
you introduce parameters). Remember we previously saw that introducing additional variates may actually make
our model produce less precise paramter estimates.
We saw residual standard error (RSE) would be a better metric since it highlights how precise our estimates are by
also taking into account degrees of freedom. There is also the adjusted R-squared value (see below) that we can use,
which is equivalent to selection based on RSE.

Sequential methods

Backward elimination

• Fit all p variates
• Remove the variate with the largest p-value if p-value > α (where α = 0.10 or higher, typically e.g.

R uses something closer to 0.15).
• Fit p− 1 variate model with removed variate excluded
• Continue removing one variate at a time until no variates can be removed (all p-values < α)

Forward selection

• Fit p SLR models (a model for each variate)
• Select the variate associated with smallest p-value, if p-value < α (α typically the same as above)
• Fit p− 1 two-variate models that all include the variate selected
• Continue adding one variate at a time to your set of models until no models can be added (all

p-values > α)

Stepwise selection Begin with forward selection, and alternate between forward and backward at each step
to determine whether any variates added in previous steps can be removed.

Selection from all possible subsets

• With p potential variates, there are 2p − 1 possible models. That is, for models with k ≤ p variates

k # of possible models
1

(
p
1

)
2

(
p
2

)
...

...
p

(
p
p

)
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So the total number of model subsets is
p∑

k=1

(
p

k

)
=

p∑
k=0

(
p

k

)
− 1 = 2p − 1

which follows from the Binomial theorem
n∑
x=0

(
n

x

)
anbn−x = (a+ b)n

(plug in a = b = 1).
For example if p = 8, we have 255 possible model subsets.
• Select a suitable model based on a reasonable measure of fit. Two such measures are the R2

adj

(adjusted R-squared) or Mallows’s Cp (see below).
• One can use the leaps package and command in R to do this.

16.2 Adjusted R-squared R2
adj

Recall that
R2 = 1− SS(Res)

SS(Tot)

which always goes up as we introduce more variates and SS(Res) decreases.
The adjusted R-squared R2

adj uses the mean squared instead of the sum of squares

R2
adj = 1−

SS(Res)
n−(p+1)

SS(Tot)
n−1

so we correct for the degrees of freedom as we introduce/remove variates in our models. Note that R2
adj < R2 since

n−1
n−(p+1) > 1 for all p ≥ 1.
Note that we can also write

R2
adj = 1− σ̂2

SS(Tot)
n−1

so the selection based on R2
adj is equivalent to selection based on residual standard error σ̂.

16.3 Mallows’s Cp

For a k variate model (k = 1, 2, . . . , p) then Mallows’s Cp is defined as

Cp =
SS(Res)k
MS(Res)p

+ 2(k + 1)− n

Intuitively, we want our k variate model to have a lower SS(Res)k and we want to use as few k variates as possible.
Thus we want lower Mallows’s Cp values.
A model is considered suitable if Cp ≤ k + 1.
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Caution: in the full model (k = p) we have

Cp =
SS(Res)p
SS(Res)p
n−(p+1)

+ 2(p+ 1)− n

= p+ 1

so Mallows’s Cp doesn’t tell us anything about the full model.

17 March 13, 2018

17.1 leaps in R for model selection

We can use the leaps package/command to quickly find the best models for each # of variates used in the model.
We specify the nbest number of models to show in the output for each k in the k variate models.
For example

1 > leaps(house[,-9],value , nbest=2, names=names(house[,-9]))
2 $which
3 size stories baths rooms age lotsize basement garage
4 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
5 1 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
6 2 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
7 2 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
8 3 TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
9 3 TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
10 4 TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
11 4 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
12 5 TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
13 5 TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
14 6 TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
15 6 TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
16 7 TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
17 7 TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
18 8 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
19
20 $label
21 [1] "(Intercept)" "size" "stories" "baths" "rooms"
22 [6] "age" "lotsize" "basement" "garage"
23
24 $size
25 [1] 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9
26
27 $Cp
28 [1] 27.150656 90.632218 21.556807 25.009540 10.144146 16.866082 4.137270
29 [8] 9.322945 3.327332 6.091166 5.096306 5.216045 7.027277 7.067730
30 [15] 9.000000

The two best models for each k are show in the list of TRUE/FALSE (which specifies which variates were included in
the model). The correspond Mallows’s Cp values are shown below. Remember we’d like Cp ≤ k + 1 for a reasonable
model.
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17.2 Interacting terms

Previously we talked about interacting terms to address model violations. For example, in the overhead example
the effect of size on the house value may depend on the age of the house (e.g. size may have a stronger/lesser effect
on house value for older/younger houses).
We denote two interacting terms by xi ∗ xj . For example we might have the model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5(x2 ∗ x4) + ε

where x2 represents age and x4 represents whether the house has a garage.
The interaction term x2 ∗ x4 poses: does the effect of age on value depend on whether the house has a garage?
We can rewrite our model as

Y = β0 + β1x1 + (β2 + β5x4)x2 + β3x3 + β4x4 + ε

The interpretation of β2 changes: β2 is the effect of size if the house has no garage (i.e. when x4 = 0). β2 + β5 (i.e.
x4 = 1) is the effect of size if the house has a garage.
This supports the claim that we can simply take the pairwise product to introduce an interacting term.

17.3 Forecasting time series data using linear regression models

Consider a dataset of wine sales. Previously we regressed on a response variate (total sales) on some explanatory
variates (e.g. store, location, etc.).
What if we had data on just the total sales across time? We generally denote time series with one response variate
as

{yt} = {y1, y2, . . . , yn} = 1954, 2302, . . . , 4365, 4290}

where yt represents the monthly wine sales (1000L) in month t where t = 1, 2, . . . , 187.

Figure 17.1: Monthly wine sales plotted against time (hence this is a time series).

What is ŷ188 or the predicted sales for August 1995 (the 188th month since epoch)? (Note that we use ŷ instead
of µ̂: it does not make sense to think of a time series as a mean response anymore since there could be seasonal
variations. Denoting it as ŷt is more semantically correct).
We notice that there are spikes in the total sales that correspond to every 12 months. There is a strong correlation
between sales every 12 months.
Can we assess the strength of lag k auto-correlation by calculating the auto-correlation function (acf)?

Remark 17.1. This is called auto-correlation since it’s like correlation but there are no other variates we are
considering: rather, it is the correlation of the response variate to itself.

39



Winter 2018 STAT 331 Course Notes 18 MARCH 15, 2018

17.4 Auto-correlation function

Definition 17.1. The auto-correlation funtion (acf) for some lag k is defined as

rk =

∑n
t=k+1(yt − ȳ)(yt−k − ȳ)∑n

t=1(yt − ȳ)2

This tells us how correlated the response values are to response values k time units behind.
For example, when k = 12

yt−12 yt
y1 (Jan) y13 (Jan)
y2 (Feb) y14 (Feb)

...
...

We can produce an auto-correlation plot or correlogram (e.g. in R) that maps the acf (rk) against lag k’s (e.g.
from 0 to 25). Note that for k = 1, rk = 1 always (obviously). We look for spikes (positive or negative) in the plot
to find reasonable lag k for our models.

Figure 17.2: ACF against lag k i.e. a correlogram of the wine sales dataset. There is a significant spike in ACF
at lag 12. Note there are significance lines drawn to distinguish significant acfs at some lag k (more below in
section 18.2).

18 March 15, 2018

18.1 Fitting linear regression to account for seasonality in time series

In our example with wine sales above, we noticed that there was a significant r12 ≈ 0.7 acf value that corresponds
to a high auto-correlation between every twelve months. Months like December see spikes in wine sales and January
see dips in sales.
How do we fit a linear regression model to account for this correlation between months?

Very restrictive and bad approach Consider the model

yt = β0 + β1xt + εt εt ∼ N(0, σ2) independent

where xt = 1, 2, . . . , 12 for each corresponding month January,February, . . ., December.

This however restricts up to have a linear relationship between months (e.g. the difference in wine sale between
January and February is restricted to that between February and March, etc.).
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A more appropriate model Consider the model

yt = β0 + β1xt1 + β2xt2 + . . .+ β11xt11 + εt εt ∼ N(0, σ2) indepdendent

where xt1 = 1 if the t-th month is January, xt2 = 1 if February, etc. (indicator variables for each month up to
November since December is known if we know all others are 0).

In our regression summary, each βi, i = 1, . . . , 11 are estimates of how wine sales differ with respect to
December (since β0 or intercept is the estimate for December sales when all xti are 0).

Note for all ŷDec = β̂0 = 4536.1 litres. Similarly ŷJan = β̂0 + β̂1 = 2288.5. We also see that

ŷJan = β̂0 + β̂1 ⇒ β̂1 = ŷJan − ŷDec
which supports our earlier claim that the βi is the estimated difference between a given month’s wine sale and
December’s.

Using this model, we can create a seasonally-adjusted wine sales dataset. If we plot the residuals from our
model against time, it will show the variation caused by other factors that are not due to seasonality.

Figure 18.1: Residuals plotted against time (residual plot) from our regression model with indicator variables for
each month.

As we see in the residual plot, there is an upward trend in the residuals hence our linear regression model with
the assumption constant variance for the given model is violated (there is some trend we have not accounted
for).

The residual plot also forms a different time series {et} with ēt = 0. Consider its acf

rk =

∑n
t=k+1 etet−k∑n

t=1 e
2
t

And consider r1 (where we have etet−1 as terms in the numerator). Since there is an overall positive trend,
the sum of etet−1 will be overall positive and thus r1 > 0. Similarly, r2 > 0, etc. We can assess assumption of
independent errors by a plot of the acf of the residuals
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Figure 18.2: ACF plot for the time series data of the residuals from our above model.

Upshot: We clearly have dependent error/residual terms.

18.2 (Sample) acf rk vs process auto-correlation ρk

The (sample) acf rk is an estimate of the process auto-correlation ρk, that is

rk = ρ̂k

This distinction comes from the fact that we are only taking a snapshot/sample/window of the overall time series of
our process {Yt}. We then use this sample to produce rk which is an estimate of ρk.
The significance lines on the acf plot in R allows a crude assessment of the significance of rk at lag k (i.e. assesses
whether ρk = 0 at lag k).
It can be shown that for large n (under the null hypothesis ρk = 0), E[rk] = 0 and V ar(rk) = 1

n , thus

0± 2√
n

yields approximately the 95% confidence limits for ρk, assuming ρk = 0.
E.g. in the wine example, we have n = 187 thus the significance lines are at ±0.146 acf in the correlogram.

18.3 Durbin-Watson test statistic

We can test for lag 1 auto-correlation in errors using the Durbin-Watson test statistic

D =

∑n
t=2(et − et−1)2∑n

t=1 e
2
t

where et is the residual at time t. We can rewrite this for large n’s

D ≈
∑
e2t +

∑
e2t−1 − 2

∑
etet−1∑

e2t
≈ 2− 2r1

= 2(1− r1)

(this is r1 for {et}, not {yt}). Since −1 < r1 < 1, then 0 < D < 4. We can thus relate the value of D to r1
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D < 2 (close to 0) Suggests ρ1 > 0 (positive lag 1 auto-correlation)

D > 2 (close to 4) Suggests ρ1 < 0 (negative lag 1 auto-correlation)

D ≈ 2 Suggests no auto-correlation (ρ1 = 0)

So to test for positive auto-correlation at lag 1 using the Durbin-Watson test statistic, we have H0 : ρ1 = 0 and
Ha : ρ1 > 0 and our test statistic D.
We then compare D to critical values DL and DU from Durbin-Watson (DW) tables (or use a computer):

D < DL Reject H0 (conclude ρ1 > 0)

D > DU Do not reject H0 (conclude ρ1 = 0)

DL < D < DU inconclusive

Similarly to test for negative auto-correlation at lag 1 we have H0 : ρ = 0 and Ha : ρ1 < 0, we use 4−D instead:

4−D < DL Reject H0 (conclude ρ1 < 0)

4−D > DU Do not reject H0 (conclude ρ1 = 0)

DL < 4−D < DU inconclusive

19 March 20, 2018

19.1 Trend component in time series

As noted in Fitting linear regression to account for seasonality in time series we see that there is still some trend
component we have not accounted for (though we have indeed accounted for seasonality components with the
indicator variables for the months).
We thus include additional terms to our model to account for trend

yt = β0 + β1xt1 + . . .+ β11xt11 + β12t+ β13t
2 + εt

where εt ∼ N(0, σ2) independent. Note that our β1, . . . , β11 remain the same (our seasonality component) and we’ve
introduced a trend component with β12t + β13t

2 (we have a quadratic trend component since the time series
appears to have a quadratic trend).
Including this trend component we see that our R2 (proportion of variance) increased from 0.6155 to 0.7963! If we
naively plot our residuals against the fitted values µ̂, we get the plot

Figure 19.1: Residuals ei plotted against fitted values µ̂i after accounting for the trend in a linear regresion model
of time series wine sales data.
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However, this doesn’t really tell us how our residuals varies over time (we may notice that January has lower values
so it might be the group of residuals to the left, but in general this is difficult to do for all months).
We thus instead plot residuals against time (i.e. month)

Figure 19.2: Residuals ei plotted against time t after accounting for the trend in a linear regresion model of time
series wine sales data.

We see that the residuals look much better than before after accounting for trend (they look much more randomly
distributed about 0 than before). If we plot the acf for {et} we get

Figure 19.3: ACF plot for residuals {et} from our linear model that includes seasonality and trend components.

It appears that there is no statistically significant ρk 6= 0 in our residuals. Therefore, our model assumptions (for
residuals) appear to be satisfied.
If we calculated the Durbin-Watson statistic for the above residuals {et}, we get D = 2.0093 (p-value of 0.4923) so
we do no reject H0 so we conclude there is no significant lag-1 autocorrelation (ρ1 = 0).
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19.2 Predictions with time series

Suppose we wanted to predict the next month’s wine sales for the example wine sales dataset. From our model we
have

ŷAug1998 = ŷ188

= β̂0 + β̂8 + β̂12(188) + β̂13(1882)

= 4, 369, 053 litres

20 March 22, 2018

20.1 Faculty salary study: regression model example

The working group used regression modelling to identify anomalies in salary and correct these anomalies.
The response variate to test for is the salary of full-time Faculty ($).
The regression model and questions asked along the way may look something like this:

1. Suppose the model was fitted to identify anomalies in pay in gender. A regression model was fitted and it
was identified that males were being paid more than females by about $2100. Someone hypothesizes that this
is due to male Faculty tending to have more experience than female.

2. We need to account for experience in our model by introducing it into our regression model. There is still
a statistical difference between gender groups. Someone notices that different Faculties have different pay
grades.

3. We introduce the academic unit variate (i.e. Department/Faculty). We may also want to introduce the
degree of the Faculty member.

4. This process continues until we account for as many variates as we can. We can then make a stronger argument
for any statistical differences in pay between gender groups.

The sequence of models used in the study is as follows:

First model Fit without gender variate to detect anomalies that were non-gender based.

One notable higher order term introduced is “years since hire squared”. This makes sense since salary increases
are compounding so a linear term would not be fully adequate (they could have even fit an exponential term
or log transformed years).

Interaction terms were introduced between academic group (department/faculty) and rank (professor, associate
processor, lecturer, etc.): rank differences may differ among faculties (one term per combination).

Similarly interaction terms were introduced between lag (time between highest degree and year of hire) and
rank.

One key point: the group did not employ model selection to remove insignificant variates. Since the target
audience is the public, they want to avoid the audience questioning why they did not include certain variates
(and making the argument that the hypothetical removed variates could affect salary).

In the report, the mean salary of a hypothetical Faculty member was predicted using the model by calculated
µ̂ with the hypothetical set of attributes.

To identify anamolies, we can look at obserations with large residuals (specifically those with extreme
negative residuals since the group would not want to fix people being paid more: they could be paid
substantially more because of some other unaccounted variate such as prestigious publications).
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How do they define an “anomaly”? They used both the absolute difference (between actual and fitted) and
proportional difference (actual − fitted

fitted ). Why proportional? A $20,000 difference is much more substantial
for someone who has an actual salary of $180,000 than someone who has an actual salary of $1,000,000.

The actual crtierion for anomalies they used was

• actual < 90% fitted ( |ei|µ̂i > 0.1 for ei < 0) AND actual $> 5000 below fitted (ei < −5000).

They found 88 initial anomalies. After further investigation, they concluded that 59 were indeed anomalies
and 12 required even further investigation (some anomalies were explained by other factors like sabbaticals
or incorrect rank and year of hire). They also broken down the anomaly proportion by gender and faculty
(female Faculty had higher proportion of anomalies).

Revised model The group then included the gender variate and found that the parameter estimate revealed that
males were being paid more on average by $2904.69 (β̂gender = 2904.69) where xgender = 1 if male and 0
otherwise. The p-value was significant.

A summary of some techniques the group used:

1. identified response and explanatory variates

2. fit regression model

3. interpreted parmaeter estimates

4. included higher order terms

5. included interaction terms

6. discussed log transformation of response

7. compared models (additional sum of squares or R2
adj , Cp)

8. residual plot

9. identified outliers

10. prediction

11. addressed model assumptions

21 March 27, 2018

21.1 Logistic regression

So far we have considered on the normal linear model where we have

Yi = β0 + β1xi1 + . . .+ βpxip + εi

where εi ∼ N(0, σ2) independent, Yi ∼ N(µi, σ
2) independent, and

µi = β0 + β1xi1 + . . .+ βpxip = xTi β

where xTi = (1, xi1, . . . , xip). xTi β is our linear predictor.
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Now consider a binary response variate where

Yi =

{
1 if ith case is a success
0 otherwise

Also we have P (Yi = 1) = πi and P (Yi = 0) = 1− πi where πi is the probability that the ith case is a success.
Then we can model Yi as a Bernoulli random variable with probability function

f(yi) = πyii (1− πi)1−yi yi = 0, 1

Note that

E[Yi] = µi =

1∑
yi=0

yif(yi)

= 1(πi) + 0(1− πi)
= πi

Also

V ar(Yi) = E[Y 2
i ]− E[Yi]

2

=
∑

y2i f(yi)−
(∑

yif(yi)
)2

= πi − π2i
= πi(1− πi)

So V ar(Yi) is a function of µi = πi. Note also that

εi = yi − πi =

{
−πi yi = 0

1− πi yi = 1

In logistic regression, we model the mean of the ith response, πi, as a nonlinear function of the parameters
β0, β1, . . . , βp. The most common function we use is the sigmoid function

πi =
ex

T
i β

1 + ex
T
i β

(note that this contains our linear predictor xTi β).
If we solve for our linear equation we get

xTi β = log

(
πi

1− πi

)
(natural log). This is called the logit link or log odds. Recall that odds for an event measure

P (A)

P (Ac)
=

P (A)

1− P (A)

It’s called a link function because it links our mean µi to our linear predictor (the link function for a normal
linear model is just the identity function).
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21.2 Parameter estimation in logistic regression

Based on the method of maximum likelihood. Requires iterative procedure (e.g. Newton’s/Newton-Rhapson
method or gradient descent).

21.3 Binomial count data and logistic regression

The logistic model can also be fit to binomial count data where Yi is the nubmer of successes in ni independent
trials, i.e.

Yi ∼ BIN(ni, πi)

Example 21.1. For example, consider a study done on the death penalty vs. race of victim (not defendant). Data
was collected on 362 dealth peanlty cases where the response was Yi = 1 if the ith case resulted in the dealth penalty
and 0 otherwise.
The explanatory variates are

1. x1 - aggravation level (crime severity) where x1 = 1, 2, . . . , 6 (1 is low, 6 is high)

2. x2 - race of victim (1 if white, 0 otherwise (e.g. black)).

Note that there are a total of 12 distinct constellations (number of different groupings with identical sets of
explanatory variates i.e. combinations of explanatory variate values).
Let m be the number of constellations. Then we define a new response variate Yj the number of successes of the
jth constellation, which can be modelled by the binomial distribution Yj ∼ BIN(nj , πj) where j = 1, . . . ,m.

21.4 Interpretation of logistic regression parameter estimates β̂j

Consider the parameter estimates from our logistic regression fit

log

(
πi

1− πi

)
= β0 + β1x1 + β2x2

and consider β1. What if we increased it by 1? i.e. we have x1th and x1 + 1th observations where x1 + 1th has its
x1 increased by 1. Then we have

log

(
πx1

1− πx1

)
= β0 + β1x1 + β2x2

log

(
πx1+1

1− πx1+1

)
= β0 + β1(x1 + 1) + β2x2

So we have

β1 = log

(
πx1+1

1− πx1+1

)
− log

(
πx1

1− πx1

)
= log

( πx1+1

1−πx1+1

πx1
1−πx1

)
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called the log odds ratio. We can also write

eβ1 =

πx1+1

1−πx1+1

πx1
1−πx1

called the odds ratio.
Thus for every 1 unit increase in a given variate xi, we observe a eβi multiplicative increase in the odds of the
response variate being 1 (e.g if eβi = 2, then 1 unit increase sees a two-fold increase (two times) the odds of the
response variate being 1).

Example 21.2. In the death penalty study above, we end up with β̂2 = 1.8106 or eβ̂2 = 6.11 (parameter estimate
for the race variate).
So after accounting for aggravation level or severity of crime, the odds of a death penalty sentence is 6.11 times
higher if the victim is White compared to a Black victim (i.e. odds increased by a factor of 6.11 i.e. odds increase
by 511%).

22 March 29, 2018

22.1 Inference for βj logistic regression parameters and Wald statistic

For sufficiently large sample sizes, note that (
β̂j − βj
SE(β̂j)

)2

∼ X2
n−(p+1)

i.e. the above has the distribution of the chi-squared distribution on n− (p+ 1) degrees of freedom.
To test H0 : βj = 0, we have the Wald statistic

z =

(
β̂j

SE(β̂j)

)
∼ N(0, 1) under H0

22.2 Model deviance (aka residual deviance in R)

The deviance is the difference between the likelihood of our fitted model and the likelihood of a perfectly fitted
model (the saturated model i.e. model with parameters such that the data are fitted exactly). It is used for assessing
goodness of fit for models that use maximum likelihood estimation (MLE) for its parameters. It is defined as

D = 2 (l(saturated)− l(fitted))

where l(π | y) = log(L(π | y)) is the log-likelihood function. Recall that the likelihood function is defined as

L(π | y) =
m∏
i=1

f(yi)
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For Yi ∼ Bin(ni, πi) for i = 1, . . . ,m (m different categories) we have

L(π | y) =
m∏
i=1

(
ni
yi

)
πyii (1− πi)ni−yi

l(π | y) =
m∑
i=1

log

(
ni
yi

)
+ yi log(πi) + (ni − yi) log(1− πi)

=
m∑
i=1

yi log(πi) + (ni − yi) log(1− πi) + C

Figure 22.1: Examples of saturated and non-saturated fitted models for a dataset.

For the saturated/perfect model, MLE gives us
π̂i =

yi
ni

i.e. when we fit with p+ 1 = n parameters so we get a perfect fit.

For the fitted model, π̂i is the MLE (found iteratively) where πi = ex
T
i β̂

1+ex
T
i
β̂
.

22.3 Assessing model adequacy using model deviance

If the model provides an adequate fit, then D ∼ X2
n−(p+1) for sufficient large n− (p+ 1).

We assume that model is adequate if D
n−(p+1) ≈ 1 or less.

Example 22.1. For the death penalty vs race of the victim model, we have

D

n− (p+ 1)
=

3.8816

9
< 1

so our model is adequate.
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22.4 Comparison of models (reduced vs. full) using model deviance

Under the assumption that the reduced model provides a better fit

Dred −Dfull ∼ X2
dfred−dffull

for sufficiently large sample sizes.
Note that

Dred −Dfull = 2 (l(fitted)full − l(fitted)red)

= 2 log

(
L(fitted)full
L(fitted)red

)
this is exactly the likelihood ratio test statistic.

Example 22.2. Suppose we wanted to see if the reduced model with just the race of the victim (aggravation level
removed) is a better model.
We thus have for our full model

xTi β = β0 + β1xi1 + β2xi2

and the reduced model
xTi β = β0 + β2xi2

We will be testing H0 : β1 = 0 (i.e. reduced model is preferred) and Ha : β1 6= 0.
Note that from R, we get Dred −Dfull = 163.87− 3.8816 ≈ 160.
Our test statistics distribution is X2

1 , so our p-value is P (X2
1 > 160) << 0.05 so we reject H0 so the full model is

better.
We can also test for our fitted model as the null model i.e. reduced model is xTi β = β0, so we test for
H0 : β1 = . . . = βp = 0.
From the R output, Dred is the “null deviance” so Dred −Dfull = 212.28238− 3.8816 ≈ 203 so we reject H0 so the
full model is preferred.

23 April 3, 2018

23.1 Akaike information criterion (AIC)

Another way to compare models derived from MLE is using the Akiake information criterion (AIC). It is given
as

AIC = 2(p+ 1)− 2l(fitted)

we prefer models with the smallest AIC.

23.2 Interaction terms in logistic regression

Similary to linear regression, we can also introduce interaction terms in our logistic regression model.

Example 23.1. For example, we had xi1 = 1, . . . , 6 denote the crime severity and xi2 = 1 iff the victim was White.
Suppose we introduce the interaction term xi1 ∗ xi2 i.e. our linear predictor becomes

xTi β = β0 = β1xi1 + β2xi2 + β3(xi1 ∗ xi2)
= β0 = β1xi1 + (β2 + β3xi1)xi2
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where if β3 > 0, then the more severe the crime is the more likely it is for the death penalty if the victim is White.
We see in our R output that β3 is indeed positive, but it is not significant and has even made β2 (parameter with
race variate) not significant.
To test for no interaction using deviance test, we have H0 : β3 = 0 and Ha : β3 6= 0. Thus we use

Dred −Dfull = 3.8816− 3.3438 = 0.5378

Remember that this statistic is distributed as X2
1 . Clearly P (X2

1 > 0.5378) > 0.05 so the interaction is not
significant.

23.3 Contingency tables vs logistic regression

A contingency table lists the number of occurrences of each variate group in a table. Logistic regression can introduce
and take into account other variates such as aggravation levels without much difficulty compared to contigency
tables.

Example 23.2. Recall that we had categorical variables with race (White or Black) and the death penalty (Yes or
No). The 2-by-2 contingency table for the example is


Yes No

White 45 85 130
Black 14 218 232

59 303 362


We can calculate our odds and odds ratios from contigency tables easily

π̂W =
45

130

π̂B =
14

232

So the odds of death penalty for White victims is

π̂W
1− π̂W

=
45/130

85/130
=

45

85

Similarly the odds of death penalty for Black victims is

π̂B
1− π̂B

=
14/232

218/232
=

14

218

Thus the odds ratio is
π̂W /(1− π̂W )

π̂B/(1− π̂B)
=

45/85

14/218
= 8.24

Note that when we fit the corresponding logistic regression model, we end up with eβ̂1 = e2.1094 = 8.24. So both
methods give us the same results.
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