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Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone
interested in the material. The goal is to provide an end-to-end resource that covers all material discussed
in the course displayed in an organized manner. These notes are my interpretation and transcription of the
content covered in lectures. The instructor has not verified or confirmed the accuracy of these notes, and any
discrepancies, misunderstandings, typos, etc. as these notes relate to course’s content is not the responsibility of
the instructor. If you spot any errors or would like to contribute, please contact me directly.

1 January 8, 2019

1.1 What is a function?

Suppose we have some measured response variate y and we have one or more explanatory variables x1, . . . , xp.
The response and explanatory ariables are approximately related through an unknown function µ(x) (to be
estimated/learned) where

y = µ(x) + r

where r is residual that cannot be explained by µ(x).
Some other names for response and explanatory variables include:

response explanatory
response predictor
response design
output input

dependent independent
endogenous exogenous

1.2 Advertising data example

Suppose we want to predict Sales (response) from how much companies spend on TV, Radio, and Newspaper
advertising (explanatory).
The dataset is

if we plot sales against TV

1
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we see there is some positive correlation.
Similarly against Newspaper and Radio

What if we tried a simple linear model where µ̂(x1) = α̂+ β̂x1 where x1 is the TV advertising? We obtain estimates
α̂ = 7.03 and β̂ = 0.05 which are interpretable. However if we take a look at the residuals

2
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we see that the residuals are not independently distributed accordingly to x1, which violates our Markov-Gaussian
assumptions.
The residuals of the model with Newspaper and Radio are

we observe that we do not observe constant variance across the explanatory variables.
Therefore a linear model does not seem to work (we could of course introduce scaling e.g. log-scaling for the Radio
variate or polynomial terms).

1.3 Notation

Some notes on notation:

• Capital letters are matrices or vectors: A,X,Σ

• Lower letters are scalars: a, x, σ

3
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• Arrows on letters are vectors: ~a, ~x

• All vectors are column vectors

• The transpose of any matrix A is AT (ocassionally A′)

1.4 Definitions and properties

Quadratic form Suppose A = (aij)n×n is symmetric i.e. aij = aji ∀i, j. Then

f = Y TAY

=
∑
i

∑
j

aijyiyj

is called a quadratic form.

Trace For a matrix, the trace is defined as

tr(Am×m) =
m∑
i=1

aii

Note that tr(BC) = tr(CB).

Rank The rank of a matrix denoted rank(A) is the maximum number of linearly independent columns (or rows)
of A.

Note that vectors Y1, . . . , Yn are linearly independent iff

c1Y1 + . . .+ cnYn = 0

implies c1 = . . . = cn = 0 (i.e. no non-trivial solution).

Eigenvector and eigenvalue A non-zero vector ~vi is an eigenvector of Am×m if

A~vi = λi~vi i = 1, 2, . . . ,m

where λi is the corresponding ith eigenvalue.

Idempotent A matrix A is idempotent if AA = A.

Some notable results:

1. If A is idempotent, then all its eigenvalues are either 0 or 1.

2. If A is idempotent, there exists an orthogonal matrix P such that A = PΛP T where

Λ =



1 . . . 0 0 0 0

0
. . . 0 0 0 0

0 . . . 1 0 0 0
0 0 0 0 . . . 0

0 0 0 0
. . . 0

0 0 0 0 . . . 0


and tr(A) = rank(A) = tr(Λ) which is equivalent to the number of eigenvalues being 1.

4
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2 January 10, 2019

2.1 Linear models

A linear model is generally in the form of

yi = β0 + β1xi1 + . . .+ βpxip + εi i = 1, . . . , n

which holds under the assumptions that

• E(εi) = 0

• V ar(εi) = σ2 (constant variance)

• ε1, . . . , εn are independent

• ε1, . . . , εn
iid∼ N(0, σ2)

In matrix form we have y1...
yn


n×1

=

1 x11 . . . x1p
...

...
. . .

...
1 xn1 . . . xnp


n×(p+1)


β0
β1
...
βp


(p+1)×1

+

ε1...
εn


n×1

or in short matrix form Y = X~β + ~ε.
The Least Squares Estimator (LSE) of ~β minimizing the discrepancy function

S(~β) = (Y −X~β)T (Y −X~β)

has a closed form solution
~̂β = (XTX)−1XTY

The fitted values are thus

Ŷ = X~̂β = X(XTX)−1XTY

= HY

where H = X(XTX)−1XT (hat matrix). Note that H is idempotent and symmetric.
Geometric interpretation of LSE : Ŷ is the projection of Y onto C(X), the column space of X (we can thus see that
the fitted errors should be orthogonal to our fitted values in LSE).
The degrees of freedom of our model is n− (p+ 1) where p+ 1 is the number of free parameteres in our model.
This is equivalent to n− tr(H) i.e. tr(H) = p+ 1.
Under normality

• ~̂β = MVN(~β, σ2(XTX)−1)

• ~̂β and σ̂2 are independent (Note σ̂2 = SSE
df ).

• (n−p−1)σ̂2

σ2 ∼ χ2
n−p−1

5
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Let ~ap = (1, x1, . . . , xp)
T (observation ~x extended with intercept term). The (1− α) prediction interval at ~ap is

~aTp
~̂β ± tn−p−1,α/2σ̂

√
1 + ~aTp (XTX)−1~ap

We can also estimate confidence intervals as well (drop 1 + . . . term above).

2.2 Piecewise linear

We can specify the following piecewise linear function (with discontinuity at a)

as two linear functions

y =

{
β0 + β1x x ≤ a
β2 + β3x x ≥ a

subject to β0 + β1a = β2 + β3a.
A more convenient way to express the above

y = β0 + β1x+ β2(x− a)I(x ≥ a)

where I is the indicator function. Note the above is linear in terms of ~β BUT NOT in terms of x. However we can
simply construct a new variate (x− a)I(x ≥ a) from x.
Note that β2 is the change in slope right of a for samples where x ≥ a.
Extension to more than one interesting point (knot) is straightforward.

6
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2.3 Piecewise quadratic

Similar to piecewise linear models, we can specify

y =

{
β0 + β1x+ β2x

2 x ≤ a
β3 + β4x+ β5x

2 x ≥ a

subject to β0 + β1a+ β2a
2 = β3 + β4a+ β5a

2 (continuity) and β1 + 2β2a = β4 + 2β5a (differentiable at a).
Alternatively we can express this as one linear function

y = β0 + β1x+ β2x
2 + β3(x− a)2I(x ≥ a)

continuity is trivially satisfied. Note the 1st derivative is

dy

dx
= β1 + β2x+ 2β3(x− a)I(x ≥ a)

where the last term is 0 when x = a, thus our additional indicator term does not affect the derivative.

Remark 2.1. We choose to omit the (x− a)I(x ≥ a) term to ensure y is differentiable at x = a.

2.4 Weighted least squares

Sometimes we would like to give more importance to some observations than others.
Instead of minimizing (Y −X~β)T (Y −X~β) we can minimize

(Y −X~β)TW (Y −X~β)

where

W =


w1 0 . . . 0
0 w2 . . . 0

0 0
. . . 0

0 0 . . . wn


n×n

a diagonal matrix. wi corresponds to the weight assigned to observation i (a higher wi the more important that
observation is).

Claim. The closed form solution is
~̂βWLS = (XTWX)−1XTWY

Proof. Note that

S(~β) = (Y −X~β)TW (Y −X~β)

= Y TWY − Y TWX~β − ~βTXTWY + ~βTXTWX~β

Note that Y TWX~β = (~βTXTWY )T which is a scalar, so Y TWX~β = ~βTXTWY (transposes of scalars are
equivalent). thus

S(~β) = Y TWY − 2Y TWX~β + ~βTXTWX~β

where −2Y TWX~β is the “linear term” and ~βTXTWX~β is of quadratic form.

7
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Recall that

d~cTY

dY
= ~cT

dY TAY

dY
= 2Y TA

so

dS(~β)

d~β
= −2Y TWX + 2~βTXTWX

⇒~βTXTWX = Y TWX
dS(~β)

d~β
= 0

⇒(XTWX)~β = XTWY W T = W

⇒~β = (XTWX)−1XTWY

as claimed.

Here is an alternative proof:

Proof. Let Y ∗ = W
1
2Y and X∗ = W

1
2X.

Note that minimizing (Y −X~β)TW (Y −X~β) is equivalent to minimizing (Y ∗ −X∗~β)T (Y ∗ −X∗~β) (simply expand
out X∗ and Y ∗).
Thus the LSE of ~β with X∗, Y ∗ is

~β = (X∗
T
X)−1X∗

T
Y ∗

= ((XTW
1
2 )(W

1
2X))−1(XTW

1
2 )(W

1
2Y )

= (XTWX)−1XTWY

which is equivalent to our previous derivation.

3 January 15, 2019

3.1 Weight least squares applications

Example 3.1. We can apply weighted least squares to do local regression where we downweight observations
farther away from a given observation.

Example 3.2. Suppose that V ar(εi) = σ2i (i.e. not all observations are drawn with the same variance). If we want
to overweight observations that have lower variance, we can set wi = 1

σ2
i
to obtain an unbiased estimator of ~β

with the smallest variance (Best Linear Unbiased Estimator or BLUE).

3.2 Types of errors

We will use the example of 790 Facebook posts published by a comestics company to illusrate.
The population being examined is called the study population (the 790 posts). The analysis of these posts may
be applied to a larger population (whether it’s future Facebook posts for this company or Facebook posts for any
company) which we call the targt population.
The difference between the study and target population is called the study error.

8
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In a paper by Soros et al., they ended up using a sample of only 500 posts for confidentiality reasons.
The difference between the sample and study population is called sample error.

4 January 17, 2019

4.1 Notes on terminology and lm in R

• When using lm the intercept term is included by default. To remove it simply specify Y ∼ X - 1.

• Factors are like categorical variables in R: there are a finite number of categories (called factor levels).

• In lm almost any function of variates may appear in the formula e.g. Y ∼ X + sin(X) or Y ∼ X + sin(X ?
Y).

To specify Y = X · Z, we need to use Y ∼ I(X ? Z) or Y ∼ X:Z instead of X ? Z since X ? Z represents
interaction in lm and translates to the model y = αx+ βz + γxz + r.

• Some arithmetic operations e.g. +,−, ∗, ˆ are interpreted as formula operators rather than arithmetic operators
in lm. One should wrap them in I(·).

4.2 Notes on model selection

Figure 4.1: Quadratic and cubic polynomial linear models on Facebook data.

In the above figure we see that while both quadratic and cubic models are global (predict any value of x) the
quadratic model seems to predict likes returning to 0 as impressions approach infinity.
The cubic function on the contrary continues to increase: this makes more sense intuitively, thus examining a model
often requires human understanding of the data and problem.

9



Winter 2019 STAT 444/844 Course Notes 5 JANUARY 24, 2019

4.3 Geometric interpretation of linear models

A linear model is a linear combination of functions called generators e.g.

µ(x) = β1g1(x) + β2g2(x) + β3g3(x) + β4g4(x)

where g1, . . . , g4 could be arbitrary continuous functions of x.
All possible linear combinations of the generators forms a subspace (the functions generate the subspace). The
functions are a basis for this subspace. µ(x) lies in the subspace whose dimension equals to the number of basis
functions.
The functions should be linearly independent of each other: otherwise the solution to parameters will be ill-defined.

5 January 24, 2019

5.1 Discrepancy function

Let the discrepancy function for a fit of parameters ~β be denoted

S(~β) =
n∑
i=1

ρ(yi − ~xTi ~β) =
n∑
i=1

ρ(ri)

where ρ is a real-valued loss function (in the OLS case, this was simply the square function). ri is our residual for
observation i.
Taking the derivative

dS(~β)

d~β
=

n∑
i=1

ρ′(yi − ~xTi ~β)(−1)~xTi

= −
n∑
i=1

ρ′(ri)~x
T
i

Solving for the extremum we have
n∑
i=1

ψ(ri)~x
T
i = ~0T

where ψ(r) = ρ′(r) (derivative with respect to ~β).

Remark 5.1 (LSE). If ρ(r) = r2 we get LSE, that is (ψ(r) = 2r)

~0 =
n∑
i=1

2r~xi

= 2
n∑
i=1

(~xiyi − ~xTi ~xi~β)

= 2(XTY −XTX~β)

which exactly solves to our LSE closed form solution.

10
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5.2 Discrepancy function and log-likelihood

Let us compare our discrepancy function with the log-likelihood for linear models:

l(~β) =

n∑
i=1

li(~β)

=

n∑
i=1

l(ri)

where l(ri) =
−r2i
2σ2 , a function only of ri.

The second equality follows from the following remark:

Remark 5.2. Note li(~β) is the ith observation’s contribution to l(~β) i.e.

li(~β) = log f(yi | ~xTi ~β, σ2)

For a linear model we have
f(yi | ~xTi ~β, σ2) ∼ N(~xTi

~β, σ2)

so li(~β) = − r2i
2σ2 + C where C = −1

2 log(2π)− log σ a constant.

We let l(ri) = − r2i
2σ2 . Since the constant does not change with respect to β we can omit it from our objective

function.

From above we observe that minimizing the discrepancy function is the same as maximizing the log likelihood where
ρ(r) = −l(r) in the discrepancy function.

Definition 5.1 (M-estimator). We call the estimator ~β that minimizes
∑n

i=1 ρ(ri) the M-estimator or the
maximum-likelihood type estimator.

5.3 Iteratively re-weighted least squares (IRLS)

Note that the solution turns out to be a WLS estimator :

~0 =

n∑
i=1

ψ(ri)~xi

=
n∑
i=1

ψ(ri)

ri
ri~xi

=
n∑
i=1

w(ri)(yi − ~xTi ~β)~xi

=

n∑
i=1

wi(yi − ~xTi ~β)~xi

where we let wi = w(ri) = ψ(ri)
ri

. If we solve this we see that the solution is WLS where

~̂β = (XTWX)−1XTWY

with W = diag(w1, . . . , wn).

11
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However, the weights of this WLS depend on the residuals which in turn depends on ~β. If we are given an initial
estimate of ~β(0), we could iteratively update residuals and ~β to converge to a solution. We proceed as follows:

Initialization Initialization: set j = 0

Step 1 Compute residuals
r̂i

(j) = yi − ~xTi ~̂β(j) i = 1, . . . , n

Step 2 Update weights

w
(j)
i =

ψ(r̂
(j)
i )

r̂
(j)
i

and let W (j) = diag(w
(j)
1 , . . . , w

(j)
n ).

Step 3 WLS to estimate next set of ~̂β(j+1)

~̂β(j+1) = (XTW (j)X)−1XTW (j)Y

Step 4 Set j = j + 1 and return to Step 1 if convergence criterion is not met.

We can this procedure iteratively re-weighted least squares (IRLS).
The convergence criterion is typically

‖~̂β(j+1) − ~̂β(j)‖ ≤ ε

with the L2/Euclidean norm and for some small positive constant ε.

5.4 Why IRLS?

Question 5.1. Why do we need to use iteratively re-weighted least squares?
In ordinary least squares with Gaussian response and loss function r2i , there is no reason to use IRLS since OLS
and IRLS are equivalent (the loss function r2i simplifies IRLS to OLS).
However in generalized linear models (GLMs) (STAT 431/831) we may have a different type of response (e.g.
Bernoulli 0/1 or categorical) and thus we may define our loss function ρ(ri) differently.
We may also want to modify our ρ(ri) to de-emphasize huge outliers (see next section).

5.5 Robust regression

Robust regression tries to de-emphasize the influence of large outliers.

Question 5.2. What loss function ρ (and ψ) should we use?
In ordinary least squares (OLS) we can use

ρ(r) =
1

2
r2

ψ(r) = r

w(r) =
ψ(r)

r
= 1

so we essentially have W = In×n which devolves into OLS as expected.

12
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Remark 5.3. The residual function for OLS is unbounded and so extreme outliers with large residuals have
significantly more influence.
Huber (1964) proposed a modified loss function (Huber loss) which de-emphasizes outliers:

ρ(r) =

{
1
2r

2 if |r| ≤ c
c(|r| − 1

2c) if |r| > c

The modified loss function essentially makes the loss function linear after a certain threshold c:

We also let

ψ(r) =

{
r if |r| ≤ c
csign(r) if |r| > c

and thus

w(r) =

{
1 if |r| ≤ c
c
|r| if |r| > c

The ψ and weight w functions look like

Figure 5.1: Left: ψ(r). Right: w(r) for Huber’s loss function.

How do we decide c? Huber suggested c = 1.345 and showed it achieved 95% of LSE asymptotically when the true
distribution is normal (95% efficiency essentially means the the variance of the betas from OLS is 95% that of the
variance of the betas using Huber’s loss).

13
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Question 5.3. Since c is fixed, what if our residuals are scaled to very large or small values (e.g. O(1e5) or
O(1e− 4))? We would have to scale our data beforehand to make it within a sensible range so that c = 1.345 makes
sense.

Sometimes we prefer the ψ function to “redescend” i.e. ψ(r)→ 0 when |r| is large (that is: we fully de-emphasize
outliers). Other ψ functions include

Redescending M-estimator (Hampel)

ψ(r) =


r if 0 ≤ |r| ≤ a
asign(r) if a ≤ |r| ≤ b
a c−|r|c−b sign(r) if b ≤ |r| ≤ c
0 if |r| > c

The recommended settings are a = 2, b = 4, c = 8 (with appropriately scaled data and residuals).

Tukey’s biweight

ψ(r) =

r
(

1−
(
r
c

)2)2

if |r| ≤ c

0 if |r| > c

where c = 4.685 is typically used. This is designed to have 95% efficiency as well for a true normal distribution.

6 January 29, 2019

6.1 Remark on robust regression and constants

Remark 6.1. All recommended constants in the various robust regression methods (Huber, Hampel, Tukey) are
based on the assumption that V ar(r) = 1. Therefore in practice we typically need to scale the residuals i.e. r′i = ri

s
where s is a scale parameter.
One simple solution is to estimate the median absolute deviation (MAD):

MAD = median(|ri|)

and let ŝ = MAD
0.6745 . For the standard normal distribution we note that MAD = 0.6745.

6.2 Sensitivity curve and breakdown point

Let Tn(y1, . . . , yn) be a population attribute (that is a function of the same points). To see how sensitive Tn is to
an individual data point, define

SC(y) =
Tn(y1, . . . , yn−1, y)− Tn−1(y1, . . . , yn−1)

1
n

which is the difference between Tn(·) (with all n points) and Tn−1(·) (with one point y omitted) compare to the
contamination size 1

n .

Example 6.1. Let Tn(y1, . . . , yn) = 1
n

∑n
i=1 yi = ȳn (sample mean).

Note that

Tn =

n−1∑
i=1

yi + y =
n− 1

n
ȳn−1 + y

14
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Note that SC(y) is simply

SC(y) = n(Tn − Tn−1) = (n− 1)ȳn−1 + y − nȳn−1
= y − ȳn−1

Definition 6.1 (Breakdown point). Informally, the breakdown point of a statistic is the largest proportion of
contamination before the statistic breaks down.
Formally, let ~zi = (xi1, xi2, . . . , xip, yi)

T for i = 1, . . . , n be the ith data vector.
Let Z = (~z1, . . . , ~zn) be the whole set. Let T be the statistic of interest. The worst error for swapping m zi’s is

e(m;T,Z) = sup
Z∗
m

‖T (Z∗m)− T (Z)‖

where Z∗m is Z with any of its m data vectors replaced.
The breakdown point is then defined as

min

{
m

n
| e(m;T,Z) =∞

}
Remark 6.2. That is: the breakdown point measures the minimum proportion of points required to influence
the statistic significantly.

Some breakdown point examples:

Sample mean Note we can simply swap out m = 1 point arbitrarily such that e(1;T,Z)→∞ thus the breakdown
point is 1

n → 0 as n→∞.

Median The breakdown point is 1
2 as n→∞: we need to change at least half of them to aribitrarily influence the

median e.g. make it go to infinity.

k% trimmed mean The k% trimmed mean is defined as the mean after discarding the lowest k% and highest k%
of yi’s.

Breakdown point is k% (we swap out the top k% + 1 points).

6.3 Least median squares (LMS)

Recall for regression, the LSE of ~β is

argmin~β

n∑
i=1

(yi − ~xTi ~β)2

or equivalently
argmin~β average(yi − ~xTi ~β)2

To make it robust for “outliers” or contaminations i.e. to ensure we have a high breakdown point we could consider
the least median squares (LMS) estimator:

~βLMS = argmin~β median(yi − ~xTi ~β)2

which has a breakdown point of 1
2 (compared to a breakdown point of 1

n for OLS).

15
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6.4 Least trimmed average sum of squares (LTS)

Similar to how we made our objective function for OLS more robust by considering the median in LMS, we can also
consider the (least) trimmed average sum of squares (LTS) estimator:

~βLTS = argmin~β

k∑
i=1

r2(i)

where r2(i) is the ith smallest squared residual.
Note the breakdown point for LTS is n−k+1

n (compared to a breakdown point of 1
n for OLS).

7 January 31, 2019

7.1 Local linear regression with k-nearest neighbours

Instead of fitting one linear regression model with all points, we can instead fit local linear regression models for
neighbourhoods of points. In essence we are fitting piecewise linear functions.
We first look at piecewise polynomials and splines.

7.2 Piecewise polynomials (splines)

Definition 7.1 (Spline). We collectively call functions that aim to interpolate and smooth over some distribution
splines. Piecewise polynomials are a common choice for splines.

For continuous piecewise polynomial functions, the simplest form is piecewise linear (as seen before):

which can be specified as a single linear model

f(x) = β0 + β1x+ β2(x− a)I(x ≥ a)

16
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Remark 7.1. Piecewise linear is also called the broken stick method.

For notation simplicity let us define (x)+ = max(x, 0) such that we have

f(x) = β0 + β1x+ β2(x− a)+

Thus our basis functions are 1, x, (x− a)+. Here is plot of the basis:

This is an example of the truncated power series. We can easily generalize this model to accomodate many
break points or knots.
However, picewise linear functions are not differentiable at their break points since f ′(x) is not continuous.
Recall that for a piecewise quadratic function we have

f(x) = β0 + β1x+ β2x
2 + β3(x− a)2+

where our basis functions are 1, x, x2, (x− a)2+. Note that a piecewise quadratic model f(x) is indeed differentiable
at the break points.

7.3 Cubic splines

Remark 7.2. The most commmonly used spline is the cubic spline, which is piecewise cubic where f(x), f ′(x), f ′′(x)
are all continuous.

Let t1 < t2 < . . . , tk be fixed and known knots, where t1 and tk are boundary knots and t2, . . . , tk−1 are interior
knots.
Then the basis consists of the functions 1, x, x2, x3, (x − t1)3+, . . . , (x − tk)3+. That is any cubic spline with the
above k knots can be expressed as

f(x) = β0 + β1x+ β2x
2 + β3x

3 +
k∑
j=1

βj+3(x− tj)3+

Remark 7.3. 1. There are k + 4 parameters.

2. f(x) is continuous up to the 2nd derivative.

17
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Proof. This is obviously true between knots. We verify at x = ti:

f(ti) = β0 + β1ti + β2t
2
i + β3t

3
i +

i−1∑
j=1

βj+3(ti − tj)3+

note that (x− tj)3+ = 0 for x < ti+1 and j = i+ 1, . . . , k.

Note that limx→t−i
f(x) = f(ti) since (x− ti)+ = 0 if x < ti so limx→t−i

(x− ti)3+ = 0.

Also limx→t+i
f(x) = f(ti) since limx→t+i

(x− ti)3+ = 0.

Therefore limx→t−i
f(x) = limx→t+i

f(x) = f(ti) so f is continuous at ti for all i = 1, . . . , k.

Similarly we can show this for f ′(x) and f ′′(x).

8 February 5, 2019

8.1 Natural cubic splines (NCS)

A cubic spline is called a natural cubic spline with knots {t1, . . . , tk} if f(x) is linear when x 6∈ [t1, tk], that is

f(x) =

{
t0(x) = a0 + b0x if x < t1

tk(x) = ak + bkx if x > tk

Question 8.1. How many free parameters are there in the natural cubic spline?

Answer. Note that in general cubic splines, we have k + 4 parameters. If we constrain our spline to be linear at
both ends (x < t1 and x > tk) then we essentially remove the quadratic and cubic terms and thus parameters at
each end. So we remove 4 parameters and thus we have k free parameters.

To express an NCS, note that for a regular cubic spline we have

f(x) = β0 + β1x+ β2x
2 + β3x

3 +

k∑
j=1

βj+3(x− tj)3+

Secondly our constraints are:

f(x) is linear when x < t1 We know that β4, . . . , βk + 3 are already 0 when x < t1.

Thus we need only specify that β2 = β3 = 0.

f(x) is linear when x > tk We require that

k∑
j=1

βj+3 = 0

k∑
j=1

βj+3tj = 0

since we we expand out the cubic terms

k∑
j=1

βj+3(x
3 − 3tjx

2 + 3t2jx− t3j )

18
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we want all the x3 terms to have 0 coefficients (first term of expansion) and all x2 terms to also have 0
coefficients (second term of expansion).

These conditions are necessary and sufficient.

Claim. We claim N1(x) = 1, N2(x) = x, and Nj(x) = dj−1(x)− d1(x) for j = 3, . . . , k where

dj(x) =
(x− tj)3+ − (x− tk)3+

tk − tj

is a basis for NCS.

Proof. From
∑k

j=1 βj+3 = 0 we have βk+3 = −
∑k−1

j=1 βj+3.

Thus from the second equation we have

k−1∑
j=1

βj+3tj + βk+3tk =
k−1∑
j=1

βj+3(tj − tk)

i.e.

β4(tk − t1) = −
k−1∑
j=2

βj+3(tk − tj)

Thus from our original equation (where β2 = β3 = 0)

f(x) = β0 + β1x+

k∑
j=1

βj+3(x− tj)3+

= β0 + β1x+

k−1∑
j=1

βj+3(x− tj)3+ + βk+3(x− tk)3+

= β0 + β1x+

k−1∑
j=1

βj+3

[
(x− tj)3+ − (x− tk)3+

]
= β0 + β1x+ β4

[
(x− t1)3+ − (x− tk)3+

]
+

k−1∑
j=2

βj+3

[
(x− tj)3+ − (x− tk)3+

]
= β0 + β1x+

k−1∑
j=2

βj+3

[
(x− tj)3+ − (x− tk)3+ −

(tk − tj)((x− t1)3+ − (x− tk)3+)

tk − t1

]

= β0 + β1x+

k−1∑
j=2

βj+3(tk − tj)
[

(x− tj)3+ − (x− tk)3+
tk − tj

−
(x− t1)3+ − (x− tk)3+

tk − t1

]

= β0 + β1x+

k∑
j=3

β′j+2(dj−1(x)− d1(x))

as desired.

Note that we have 4 separate (linearly independent) constraints on the parameters hence why we lose 4 degrees of
freedom.
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Let dj(x) =
(x−tj)3+−(x−tk)3+

tk−tj , then NCS can be expressed as linear combination of the basis functions

N0(x) = 1

N1(x) = x

Nj(x) = (tk − tj)
[
dj(x)− d1(x)

]
j = 2, . . . , k − 1

More conveniently we can express the NCS as

f(x) =

k∑
j=1

βjNj(x)

where N1(x) = 1, N2(x) = x and Nj(x) = dj−1(x)− d1(x) for j = 3, . . . , k.

Remark 8.1. 1. If x < t1, then dj(x) = 0⇒ Nj(x) = 0 for j = 3, . . . , k.

2. If x > tk, then dj(x) =
(x−tj)3−(x−tk)3

tk−tj reduces to a quadratic function of x where the coefficient of x2 term is
3.

Since Nj(x) = dj−1(x)− d1(x) then it is a linear function of x if x > tk for j = 3, . . . , k.

Definition 8.1 (Regression splines). The fixed-knot splines, such as cubic splines and NCS, are called regression
splines.

8.2 Fitting NCS

Let yi = f(xi) + εi for some response yi and explanatory variates xi and some arbitrary continuous function f(·).
We can approximate/regress f(x) by

∑k
j=1 βjNj(x) (NCS) i.e.

yi ≈
k∑
j=1

βjNj(xi) + εi

Now we simply fit the following linear model with design matrix

X =

N1(x1) . . . Nk(x1)
...

. . .
...

N1(xn) . . . Nk(xn)


where

β =

β1...
βk


Y =

y1...
yn


Remark 8.2. The problem becomes a regular regression problem with design matrix generated from the basis
functions Nj ’s.
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8.3 General function fitting with basis funcitons

We extend our method for fitting NCS: more generally for a p-dimensional input vector ~x, we can consider the
following appproximation to f(~x)

f(~x) =

k∑
j=1

βjhj(~x)

where {hj} are a series of basis functions.

That is: we approximate f(~x) as a linear basis expansion. Then we form the design matrix X =

[
hj(~xi)

]
where i

indexes the row (ith sample) and j indexes the column (jth basis function).
Some examples:

1. hj(~x) = xj for j = 1, . . . , p is the original linear model where basis functions are the jth component

2. hj(~x) = log(xj) are arbitrary transformations

3. hj(~x) = xkj for k ∈ N is polynomial regression

4. hj(~x) = Nj(~x) is NCS

9 February 7, 2019

9.1 Choosing k for NCS

Recall that the basis functions for NCS are

N0(x) = 1

N1(x) = x

Ni(x) = dj−1(x)− d1(x) j = 3, . . . , k

We still need to choose a k and our knots t1, . . . , tk.
Some examples of how to choose k and knots:

Equal-distance knots We choose k first arbitrarily e.g. k = 5, then we use an equal-distance grid between the
min and max of xi’s.

Quantiles Quantiles are also a popular choice e.g. i
k−1 quantiles for each xi, i = 0, . . . , k − 1.

Degrees of freedom Alternatively we can instead specify the degrees of freedom for an NCS i.e. the number of
free parameters. For df = k, we would have k − 2 knots (if intercept term is also included). Usually knots are
placed at equal distance quantiles.

9.2 Smoothing splines

Consider the following penalized regression problem

f̂λ(x) = argminf
n∑
i=1

[yi − f(xi)]
2 + λ

∫ ∞
−∞

[f ′′(x)]2 dx

Remark 9.1. 1.
∑n

i=1[yi − f(xi)]
2 is the sum of squared residuals which measures the goodness of fit.
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2.
∫∞
−∞[f ′′(x)]2 dx measures the “roughness” of f(x).

Remark 9.2. Note that we try to minimize the integral over the f ′′(x) (squared), which is essentially
minimizing f ′′(x) so that it is close to 0.

For example, if f(x) = β0 + β1x (OLS) then f ′′(x) = 0 thus
∫∞
−∞[f ′′(x)]2 = 0 i.e. no penalty for OLS.

3. The role of λ: if λ = 0 then we have no roughness penalty and we will minimize the SSR over all functions
and f̂λ(x) is the interpolating line.

If λ =∞ then we will force
∫∞
−∞[f ′′(x)]2 dx = 0 thus f̂λ(x) is the ordinary least square fit.

4. Remarkably we can show that f̂λ(x) is just the natural cubic spline with knots at distinct values of {xi}ni=1.

5. NCS is the “smoothest” interpolator.

For any complex function f(x) if we only know the value of k points {f(ti)}ki=1 then we can use {ti, f(ti)}ki=1

to determine an NCS s(x) such that s(ti) = f(ti) for i = 1, . . . , k.

Claim. ∫ ∞
−∞

[s′′(x)]2 dx ≤
∫ ∞
−∞

[f ′′(x)]2 dx

Proof. Left as exercise in assignment.

Definition 9.1 (Smoothing spline). We call the function fitted by the penalized regression a smoothing spline.

We determine the β for the NCS smoothing spline. Note that

f̂λ(x) =
k∑
j=1

βjNj(x)

that is

β̂λ = argminf
n∑
i=1

[yi −
k∑
j=1

βjNj(x)]2 + λ

∫ ∞
−∞

[

k∑
j=1

βjN
′′
j (x)]2 dx

Note that we can re-express this in matrix notation where

n∑
i=1

[yi −
k∑
j=1

βjNj(x)]2 = (Y −X~β)T (Y −X~β)

where

X =

N1(x1) . . . Nk(x1)
...

. . .
...

N1(xn) . . . Nk(xn)
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Also ∫ ∞
−∞

[
k∑
j=1

βjN
′′
j (x)]2 dx =

∫ ∞
−∞

[
k∑
j=1

βjN
′′
j (x)][

k∑
l=1

βlN
′′
l (x)] dx

=

∫ ∞
−∞

[
k∑
j=1

k∑
l=1

βjβlN
′′
j (x)N ′′l (x)] dx

=
k∑
j=1

k∑
l=1

βjβl
( ∫ ∞
−∞

N ′′j (x)N ′′l (x) dx
)

= ~βTN~β

where N = (Njl) =
∫∞
−∞N

′′
j (x)N ′′l (x) dx (i, j-th entry is Njl).

Therefore we can let

S(~β) = (Y −X~β)T (Y −X~β) + λ~βTN~β

= Y TY − ~βTXTY − Y TX~β + ~βTXTX~β + λ~βTN~β

= Y TY − 2Y TX~β + ~βT (XTX + λN)~β

and ~̂βλ = argminS(~β).
Recall that for matrix Y,A and vector ~c

∂~cTY

∂Y
= ~cT

∂Y TAY

∂Y
= 2Y TAT

thus we have

∂S(~β)

∂~β
= 0 = −2Y TX + 2~βT (XTX + λN)T

⇒(XTX + λN)~̂βλ = XTY

⇒~̂βλ = (XTX + λN)−1XTY

To calculate the effective number of parameters or effective df (edf): recall for NCS we have k knots and in OLS
with Xn×p

Ŷ = HY = X(XTX)−1XTY

where the number of parameters is df = tr(H).
Now in the smoothing spline, we have

Ŷλ = X(XTX + λN)−1XTY = AλY

where the effective number of parameters is dfλ = tr(Aλ).

Remark 9.3. When λ→∞, dfλ → 2.
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10 February 14, 2019

10.1 B-splines

A comptutationally efficient alternative to cubic splines and NCS is the B-spline.
The basis functions of B-splines are strictly local. For a degree d B-spline (e.g. d = 3 for a cubic B-spline), each
basis function is non-zero over the interval of d+ 2 adjacent knots (and zero everywhere else) i.e. d+ 1 intervals.
Advantages of B-spline:

1. Numerically stable: recall cubic splines have x3 terms which grows fast as x→∞. B-splines are fitted to a
restriction of x (the d+ 5 knots).

2. Computationally efficient: when # of knots k is large. More specifically least squares estimation with n
observations and k variables takes O(nk2 + k3) operations. If k → n then this becomes O(n3). B-splines
reduces this cost to O(n) (since k ∈ O(d)) becomes constant.

We define the 0-degree B-spline basis:

Bi,0(x) =

{
1 if ti ≤ x < ti+1

0 otherwise

where Bi,0(x) is the interval indicator function. It is also known as the Haar basis function.
In general for a d-degree B-spline, we define its basis as:

Bi,d(x) =
x− ti
ti+d − ti

Bi,d−1(x) +
ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d+1(x)

After we compute the basis functions given our x, we can fit the model as an OLS or robust LR model. In R, we can
use the function bs in the package splines to generate the B-spline basis functions (note there are no intercepts
included). This will give us a design matrix with d+ k basis functions (so d+ k degrees of freedom) where d is the
degree and k is the number of knots (d starts at 0 for the constant function).
Then we simply feed this to lm or rlm as usual (which will subsequently introduce the bias term). Note that lm will
add one more degree of freedom with the intercept for (d+ 1) + k degrees of freedom.
Similarly we can generate NCS basis functions with ns in splines.

10.2 Smoothing splines in R

To fit smoothing splines (penalized splines), we can use the smooth.spline function.
First specify an appropriate degrees of freedom df.
Let nx be the number of distinct values of x. We use nx knots if nx ≤ 49 and O(nx0.2) knots if nx > 49.
Although it is not strictly a smoothing spline when nx > 49 it is very close to one.

Remark 10.1. Since smoothing splines are penalized for their “smoothness” this allows us to choose a high number
of knots.

11 February 26, 2019

11.1 KNN local linear regression

An alternative to fitting splines with prespecified knots is to fit the data more locally by considering a neighbourhood
at each point x.
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We take the k nearest neighbours for every x and compute the mean response value of the neighbours. This then
becomes the fitted value at xi and we may linearly interpolate or even quadratically interpolate (or even higher
order polynomial interpolation) between points.
This can be accomplished in R with knn.reg from the FNN package.

Remark 11.1. As the neighbourhood size (k) increases, the smoother the function becomes.

Instead of taking the mean response based on the k neighbours, we can instead use the value from any fitted model
based on those k neighbours (e.g. lm, rlm with Huber, Tukey’s, etc., ltsreg).

Remark 11.2. We can think of KNN local linear regression as weighted linear regression where wj = 0 if xj is
outside the neighbourhood of xi.

11.2 Kernel local linear regression

In the KNN case, we essentially assign equal weighting amongst all k neighbours. Instead we can use some kernel to
assign higher weights to points closer to xi and lower weight to points farther away from xi.
A kernel K(t) must satisfy the following∫

K(t) dt = 1

∫
tK(t) dt = 0

∫
t2K(t) dt <∞

where the first two standardize K(t) and the last constraint ensures weights are spread along the real line but not
too much weight are in the extremes.
Some examples of kernels:

Epanechinikov K(t) = 3
4(1− t2)I(|t| ≤ 1)

Tukey’s tri-cube K(t) = (1− |t|3)3I(|t| ≤ 1)

Gaussian K(t) = 1√
2πe−t2/2

Figure 11.1: Graph of kernels used in kernel local linear regression.

Thus for a bandwidth parameter h the weight function for neighbour xi for current point x is defined as:

wi = w(x, xi) =
K
(
xi−x
h

)∑N
j=1K

(xj−x
h

)
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For the mean response µ̂(x) we take the weighted average or the Nadaraya-Watson estimator:

µ̂(x) =

N∑
i=1

wiyi

Remark 11.3. The boundary effect occurs when no points lie on one side of the kernel and thus the weights are
distributed in a biased way to the points on the other side. This occurs at the extremes of the explanatory variate
space.

Figure 11.2: The boundary effect causes the kernel fitted line (green) at the left end to bias the fitted value higher
since most the available points are on the right of the kernel and have a higher response value.

To avoid the boundary effect, local regression is typically used.
Local linear is simply and good at boundaries and local quadratic is good at interior points.
Higher order regression is rarely used.

In R we can use the loess function where span defines the proportion of points in the local neighbourhood. The
kernel used is Tukey’s tri-cube.

11.3 Linear smoother

A smoothing spline with for fixed λ is an example of a linear smoother where

Ŷλ = X(XTX + λN)−1XTY

= SλY

A linear smoother is a linear combination of the yi’s with Sλ being the smoother matrix.
Consider a regression with a small number p of basis functions. That is for basis functions b1, . . . , bp (e.g. the NCS
basis) let the matrix [

Bn×p
]
i,j

= bj(xi)
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That is: the i, j-th element is bj(xi).
Then the ordinary least squares (OLS) solution for the fitted values are

Ŷ = B(BTB)−1BTY

where HB = B(BTB)−1BT (the hat matrix).

Claim. It can be shown (for any hat matrix) that the column space of B satisfies C(B) = C(HB). Note however
B has p columns whereas HB has n columns, so there is some redundancy.

Proof. Since HB is symmetric we take its eigendecomposition

HB = UPUT

=
[
~u1 . . . ~un

] ρ1 . . . 0
...

. . .
...

0 . . . ρn


~u1...
~un


=

n∑
j=1

ρi~ui~u
T
i

where ρ1 ≥ . . . ≥ ρn ≥ 0 are the eigenvalues and ~u1, . . . , ~un are the corresponding orthonormal eigenvectors.
Then

Ŷ = HBY

=

n∑
i=1

ρi~ui~u
T
i Y

=

n∑
i=1

ρi〈~ui, Y 〉~ui 〈·, ·〉 inner product

Thus Y is first projected to the orthonormal basis {~u1, . . . , ~un} then modulated by {ρ1, . . . , ρn}.
Because HB is idempotent and assuming B is full rank (i.e. rank(B) = p) then Pn = P for all n ∈ N thus

ρi =

{
1 if i = 1, . . . , p

0 if i = p+ 1, . . . , n

12 February 28, 2019

12.1 Reinsh form of smoother matrix

For a smoothing spline and assuming the n xi values are distinct, then[
Xn×n

]
i,j

= hj(xi)

where hj is the jth NCS basis function.

Claim. Given the smooth spline
Ŷλ = X(XTX + λN)−1XTY = SλY
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we claim the smoother matrix Sλ in a linear smoother can be written in the Reinsch form

Sλ = (I + λK)−1

where K = (XT )−1NX−1 does not depend on λ and N is the roughness penalty matrix for NCS, that is
N =

(
Njl

)
n×n and

Njl =

∫ ∞
−∞

N ′′j (x)N ′′l (x) dx

Proof. First remark that X is a square matrix since we assume all xi values are distinct so

Sλ = X(XTX + λN)−1XT

=
[
(XT )−1(XTX + λN)X−1

]−1
=
(
I + λ(XT )−1NX−1

)−1
= (I + λK)−1

where K = (XT )−1NX−1.

12.2 Penalty form of linear smoother

It can be shown that Ŷλ = SλY is the solution to the minimization problem

min (Y − ~µ)T (Y − ~µ) + λ~µTK~µ

where K is known as the penalty matrix where K is symmetric and has eigendecomposition

K = V DV T

with D = diag(d1, . . . , dn) the eigenvalues where di ≥ 0 and V = (~v1, . . . , ~vn) is an orthonomal matrix (of
eigenvectors).

Remark 12.1. 1. K =
∑n

i=1 di~vi~v
T
i (sum of matrices) and ~µTK~µ =

∑n
i=1 di〈~vi, ~µ〉2.

This implies that ~µ is penalized more in the directions of vi’s with large di values.

2. It can be shown that dn−1 = dn = 0.

It is straightforward to show that
Sλ = V (I + λD)−1V T

is the eigendecomposition of Sλ with eigenvalues

ρi(λ) =
1

1 + λdn−i+1
i = 1, . . . , n

Remark 12.2. 1. Sλ and K share the same eigenvectors which do not depend on λ.

2. Large eigenvalues di of D leads to small eigenvalues ρi(λ) of Sλ.

3. Large λ leads to small eigenvalues ρi(λ).

4. ρ1(λ) = ρ2(λ) = 1 since dn−1 = dn = 0.

All other ρi(λ)’s are less than 1.
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Returning to our original fitted value ~µ

~µ = SλY

=

n∑
i=1

ρi(λ)~vi~v
T
i Y

=

n∑
i=1

ρi(λ)〈~vi, Y 〉~vi

that is: we project Y down to the every eigenvector ~vi and scale each projection by corresponding eigenvalue ρi(λ).
Note the first two vectors are not shrunk by ρi(λ) but the rest are shrunk towards 0 since ρi(λ) < 1.

12.3 Regression vs smoothing splines

How do smoothing splines compare to regresson splines (e.g. OLS)?
To draw a parallel with OLS, recall

Ŷ =
n∑
i=1

ρi〈~ui, Y 〉~ui

where

ρi =

{
1 if i = 1, . . . , p

0 if i = p+ 1, . . . , n

Comparing the two, OLS selects the eigenvector basis where eigenvalues are 1 and drops the other eigenvectors (hard
thresholding) whereas smoothing splines shirnk Y in the direction of eigenvectors according to their corresponding
eigenvalues ρi(λ).
For this reason OLS or regression splines are called projection smoothers and smoothing splines are shrinking
smoothers.

Remark 12.3. 1. The sequence of ~vi, ordered by decreasing eigenvalues ρi(λ), appear to increase in complexity
(i.e. roughness or “wiggleness”).

2. Recall the effective degrees of freedom is

dfλ = tr(Sλ) =
n∑
i=1

1

1 + λdi

thus if we want a specific dfλ we can simply linear search for the corresponding λ (since the di’s are also fixed).

13 March 5, 2019

13.1 Local linear regression as a linear smoother

We show that local linear regression is indeed a linear smoother.
For target value x (point we are doing local regression about), local linear regression is equivalent to solving the
weighted optimization problem

argminα,β
n∑
i=1

kh(x− xi)(yi − (α+ βxi))
2
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and our fitted value at x from local regression is f̂(x) = α(x) + β(x)x (kh is our kernel function used in local linear
regression).
Note the above optimization problem has an explicit solution. Let

B =


1 x1
1 x2
...

...
1 xn


W (x) = diag(kh(x− x1), . . . , kh(x− xn))

where B is n× 2 and W is n× n.
Then f̂(X) (n× 1 vector of fitted values) can be re-rewritten as

f̂(X) = (1, x)
(
BTW (X)B)−1BTW (X)Y

= lT (X)Y

where lT (X) = (1, x)
(
BTW (X)B)−1BTW (X).

Remark 13.1. 1. Local linear regression is a linear smoother i.e. f̂(x) is a linear combination of yi’s.

2. Recall in smoothing splines
Ŷλ = SλY

and we define dfλ = tr(Sλ).

If we let

Lh =


lT (x1)
lT (x2)

...
lT (xn)


where Lh is n× n, then Ŷh = LhY and we efine dfh = tr(Lh).

14 March 7, 2019

14.1 Multivariate local regression

We want to make a prediction at target value ~x = (x1, . . . , xp)
T . A simple kernel function we could use in local

regression in Rp

Kh(~x) =
1

h
K
(‖~x‖
h

)
where ‖·‖ is the Euclidean norm.

Remark 14.1. The issue with the Euclidean norm is we weight every coordinate/variate xi equally. If a variate
has less importance we should not give it the same weight as other variates in the kernel.
That is: the kernel we have above is equally-skewed about all variates xi and gives equal weight to each coordinate.

We use structured local regression instead. This is a more general approach where we use a positive semidefinite
matrix Ap×p to weight each coordinate, that is:

Kh,A(~x) =
1

h
K
(~xTA~x

h

)
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Typically A is chosen to be symmetric and there are p(p+1)
2 elements in A.

A popular choice is a diagonal matrix i.e. A = diag(a1, . . . , ap) where ai modulates the variance of the kernel along
the ith dimension (as ai →∞ then the larger and hence more smoothed out the kernel is along the ith dimension).

14.2 Multivariate regression splines with tensor products

An extension of regression splines to Rp are tensor products.

Example 14.1. Let p = 2 and ~x = (x1, x2)
T ∈ R2.

Let {h11, h12, . . . , h1k1} a set of spline basis functions on x1, and {h21, . . . , h2k2} a set of spline basis functions on
x2.
Consider the following tensor product basis with k1 × k2 functions where

gjk(~x) = h1j(x1)h2k(x2)

and
f(~x) =

∑
j,k

βjkgjk(x)

that is f is a multiplicative/interaction-based model.

We note that the number of parameters with a tensor product basis grows exponentially with p.

14.3 Multivariate smoothing splines with thin plates

An extension of smoothing splines to Rp are with thin plate splines.

Example 14.2. Let p = 2. We solve for

f̂λ = argminf{
n∑
i=1

[yi − f(~xi)
2]2 + λJ(f)}

where

J(f) =

∫
R

∫
R

(
∂2f

∂x21

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x22

)2

dx1 dx2

We can show the optimal solution has the form (at a given target ~x)

fλ(~x) = β0,λ + βTλ ~x+

n∑
i=1

αihi(~x)

where the generator function is the radial basis function hi(~x) = ‖~x− ~xi‖2 log‖~x− ~xi‖.
Note ~xi for i = 1, . . . , n are our control/knot points.

14.4 Curse of dimensionality

Any dataset with in a large dimension Rp is sparse.

Example 14.3. Consider fixed-width neighbourhoods in e.g. local regression.
For p = 1, assume data points are uniformly distributed across the domain x ∈ [0, 1]. Suppose for a target x we
have a neighbourhood x± 0.05. Then we will capture ≈ 10% of points.
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For p = 2 again assume data points are uniformly distributed across [0, 1]× [0, 1]. Suppose we have a neighbourhood
x± 0.1: note that we capture an area of 0.2× 0.2 = 0.04 which only captures ≈ 4% of points!
As p increases, even as we increase the width of our neighbourhood along each dimension linearly our data becomes
so sparse our neighbourhood becomes relatively small.

14.5 Structured regression additive approach

For predictor values ~x = (x1, . . . , xp)
T , instead of modelling

µ(~x) = f(x1, . . . , xp)

which may be some arbitrary possibly interactive function of every variate we consider the additive model

µ(~x) = α+

p∑
j=1

fj(xj)

where fj ’s can be linear functions or any smooth function of xj .

Remark 14.2. We can extend the above model to allow a limited number of interactions.
For example if p is small we can consider additional pairwise interactions

f(~x) = α+

p∑
j=1

fj(xj) +

p∑
j=1

p∑
k=1

fjk(xj , xk)

We may also be more selective, e.g. for p = 5

f(~x) = α+ f1(x1) + f2(x2, x3) + f3(x4, x5)

15 March 12, 2019

Review of assignment 3 solutions and slides on generative additive model.

16 March 14, 2019

Review of assignment 4 solutions and more slides on generative additive model.

17 March 19, 2019

17.1 Tuning parameter selection

Suppose we are given the true model yi = f(xi) + εi where E(εi) = 0 and V ar(εi) = σ2, observations (xi, yi)
n
n=1

(training set T ), and prediction model f̂(x).
The methods considered so far typically involve some tuning parameter e.g. the # of knots in regression spline, λ in
smoothing spline, bandwidth h in local regression, etc.
These tuning parameters are considered “complexity parameters” that regulate the complexity (i.e. degrees of
freedom) of the prediction model.
In prediction we want f̂ to provide good estimates for future observations.
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Definition 17.1 (Test error). We define the test error as:

ErrT = E
(
(Y − f̂(X))2 | T

)
where the expectation is over the true joint distribution of (X,Y ) i.e. the population.

Definition 17.2 (Expected test error). We define the expected test error as:

Err = E
(
(Y − f̂(X))2) = E(ErrT )

where the distribution is over the distribution of (X,Y ) and the random generation of training sets.

Definition 17.3 (Training error). We define the training error as:

Err =
1

n

n∑
i=1

(yi − f̂(xi))
2 =

RSS

n

However Err uses the same data twice (once for producing f̂ and once for calculating the error) and does not track
Err well.

We note that as the model complexity grows, training error decreases while our test error will increase after the
optimal complexity:

Test error increases after a certain point due to overfitting to the training set.
To regularize our model for complexity, some solutions include:

Information criteria let d denote the number of parameters. We define the Akaike Information Criterion
(AIC) as:

AIC = 2d+ n log(RSS)

and the Bayesian Information Criterion (BIC), which has a larger regularization effect, as:

BIC = log(n)d+ n log(RSS)

Remark 17.1. The information criteria are only useful for comparing models for the same training sample.
Their absolute values are meaningless.
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Cross-validation (CV) Recall we can estimate the test error Err by repeatedly sampling test sets from the
population.

We hold out a part of the training set as our “population” (cross-validation set) and construct our model on
the remaining training set. We can then validate our complexity and model on the cross-validation set as an
estimate of the test error.

This error on the cross-validation set is called the cross-validation error.

k-fold CV 1. Given a training set T , randomly partition it into k disjoint equal-sized parts (“folds”) T1, . . . , Tk.

2. For every i = 1, . . . , k, we train our model on partitions T1, . . . , Ti−1, Ti+1, Tk to obtain f̂ (k), then we
evaluate f̂ (k) on Ti to get the cross-validation error for each Ti. Let i(j) be the fold Ti corresponding to
example j, then the overall cross-validation error is:

CV (f̂) =
1

n

n∑
j=1

(yj − f̂ (i(j))(xj))2

The choice of k = n is called the leave-one-out (LOO) CV. The justification for LOO CV: Let f̂−i(xi) be
the fitted value of xi without using (xi, yi) during training. Then

E(yi − f̂−i(xi))2 = E(yi − f(xi) + f(xi)− f̂−i(xi))2

= E(yi − f(xi))
2 + 2εiE(f(xi)− f̂−i(xi)) + E(f(xi)− f̂−i(xi))2

= σ2 + E(f(xi)− f̂−i(xi))2

≈ σ2 + E(f(xi)− f̂−i(xi))2

that is LOO CV provdies an approximate estimate of the test error Err (up to a constant σ2).

Thus minimizing the LOO CV error is essentially minimizing the test error.

Remark 17.2. Since LOO CV requires fitting the data n times, for large n then this is infeasible.

Remark 17.3. For most linear smoothers where Ŷ = SY where S is the smoother matrix it can be shown
that

CV (f̂) =
1

n

n∑
i=1

(yi − f̂−i(xi))2 =
1

n

n∑
i=1

(
yi − f̂(xi)

1− sii

)2

where sii is the ith diagonal element of S. We can thus simply fit the data once and weight the squared
residuals by 1

(1−sii)2 .

The above proof for OLS is in A2 Q2 part (d).

Generalized Cross Validation (GCV) For any linear smoother Ŷ = SY we define the GCV error as

GCV (f̂) =
1

n

n∑
i=1

(
yi − f̂(xi)

1− tr(S)
n

)2

where we use the average trace tr(S)/n instead of each individual sii.

Note that LOO CV is approximately unbiased for Err, but can have high variance due to the n training sets being
very similar to one another. On the other hand, a small k tends to have large bias but small variance. To balance
bias and variance, k = 5 or k = 10 is recommended.
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18 March 26, 2019

18.1 Tree-based methods

A decision tree is essentially local linear regression with K neighbourhoods, where at some iteration with i
neighbourhoods we partition some neighbourhood to get i+ 1 neighbourhoods. We aim to optimize the objective
function:

N∑
i=1

(yi −
K∑
k=1

IRk
(xi)µ̂k)

2 + λK

where IRk
(xi) = 1 if xi ∈ Rk neighbourhood k and µ̂k is the average of the points in the neighbourhood k. This is

equivalent to local average regression.
Optimizing the above is still computationally difficult (since there are a combinatorial number of different K ∈ N
neighbourhoods to consider for N points.
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