
UNRAVELLING THE QUASI-PERIODIC DYNAMICS OF GLOBAL
INFLUENZA OUTBREAKS

Tsz Chai Fung*
University of Toronto

tszchai.fung@mail.utoronto.ca

Ryan J. Kinnear*
University of Waterloo
ryan@Kinnear.ca

Lei Sun*
University of Toronto

sunlei181@gmail.com

Richard Wu*
University of Waterloo
me@richardwu.ca

∗

EXECUTIVE SUMMARY

This report seeks to understand and reveal the dynamics of global influenza outbreaks. The complicated patterns
of shifted periodicity and significant reporting inconsistencies are the primary difficulties that we address. We
perform a careful variable analysis which reveals firstly that countries in higher latitudes tend to be afflicted with
earlier and more intense flu outbreaks; and secondly that flu outbreaks, while shifted in time each season, tend to
shift together across different countries. We leverage these insights into a sophisticated time-series model capable
of capturing the salient patterns in the observed flu reporting data. Significant hurdles regarding missing data are, at
the same time, overcome with a rigorous supplementary imputation strategy. Ultimately, despite the inter-country
and time-dependent heterogeneity in flu activity reportings as well as significant problems with missing data,
our model is able to capture the outbreak dynamics and even provide plausible activity level estimates in cases
where stretches of reporting data are entirely absent. This is a significant technical contribution, but we stress that
countries, particularly less developed nations, need to improve influenza surveillance.

1 Background and Motivation

Throughout much of human history life has been "solitary, poor, nasty, brutish, and short" [2], and one of the most significant
contributors to its nastiness has been infectious disease. Though modern man is largely spared from the most pernicious of these
diseases, many underdeveloped areas of the world still suffer a terrible burden from widespread infectious disease, where lower
respiratory tract infections (flu and pneumonia), Diarrhoeal diseases (e.g. Cholera and largely waterborne infections), and HIV/AIDS
occupy three of the four leading causes of death (see [5], as well as Figure 7). We focus on infectious diseases specifically, even
though cardiac diseases overall kill far more people worldwide, since more can be done in the immediate future to quarantine the
spread of diseases.

Our primary analysis will focus on influenza, since (1) flu and pneumonia remain primary causes of death from infectious disease
in all areas of the world (Figure 7); (2) flu can lead to more serious complications like pneumonia which claims lives of people
suffering immunodeficiencies (e.g. cancer patients, or HIV sufferers); (3) a deeper understanding of influenza outbreaks can lead to
a more thorough understanding of disease outbreaks in general; and (4) influenza benefits from the most complete (though still quite
limited) reporting.

2 Exploratory Data Analysis

This section briefly describes the basic patterns we have observed in the available datasets, as well as outlining the supplementary and
external datasets we have used in the subsequent sections. A number of exploratory figures originally generated for this section have
been relegated to the Appendix due to space constraints. Given that this report focuses on understanding flu outbreak intensities and
patterns, the main dataset under consideration is the influenza activity dataset (influenza_activity.csv). This data consists of
weekly data points (from year 2000 to 2018) and our focus is on the number of confirmed influenza cases, as well as the reports
of "influenza-like-illness activity" levels (i.e. "No Report", “Sporadic", etc.) for each country. We do not account for different flu
strains, seeking only to understand flu outbreak dynamics more broadly.

Preliminary analysis immediately reveals (consistent with everyone’s experience) that the numbers of influenza cases reported
exhibit strong seasonal patterns (Figure 1a). Influenza activity is in general the most prevalent between October to April. On the
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Figure 1: Worldwide Reporting Trends and Seasonality Patterns

other hand, when we extract countries from the southern hemisphere only, different patterns are observed: flu outbreaks usually
occur from June to October instead. Globally, this simply indicates that flu outbreaks are more common in the winter months.

Apart from the regular seasonality patterns, the flu outbreaks also exhibit quasi-periodicity. By quasi-periodicity we mean that
although the flu is typically prevalent in the winter, the beginning and end of major outbreaks are shifted in time by weeks or months,
this can be seen in Figure 1b. We believe that this is one of the most salient features of flu activity dynamics, therefore a detailed
analysis of this phenomenon is conducted in Section 4.1, and the methods by which we attempt to capture this phenomenon in our
models is discussed in Sections 5.1 and 5.2.

One very undesirable characteristics of the influenza dataset is the reporting inconsistencies among countries. Most flu cases are
reported from developed countries such as the US. In contrast, very few cases are detected in African countries, even if we have
normalized the number of flu reported to the country populations. Obviously, it is not because developed countries are more prone to
flu outbreak, but instead many developing countries do not posses the requisite resources and medical infrastructure to adequately
identify cases of the flu. As a result, under-reporting (and missing data in general) is more prevalent in developing nations. We
attempt to treat these issues rigorously (in particular, see Section 4.2).

Worse still, reporting inconsistencies are also heterogeneous over time. Figure 1a shows that the reporting of flu activity increased
dramatically during and following the H1N1 (a "descendent" of the Spanish flu) pandemic of 2009. In fact, one can observe that
the number of reported flu cases and outbreak activity levels in 2009 were abnormally high across all continents and regions as
observed in Figure 1a. This data is important for developing flu forecasting models and to understand the spread of disease (Section
), however, it is useless to provide reports only during the midst of pandemic outbreak. We can see from Figure 9 that the number of
countries reporting flu activities declines sharply after 2014, which is an unsettling trend. It is critical for governments to continue
consistent flu reporting in order to preempt outbreaks.

After identifying several basic features of the main influenza activity dataset, we explore several of the provided datasets that may
reveal crucial information pertaining to flu outbreak intensities and patterns. We primarily draw upon the following datasets as a
source of modelling covariates:

1. Water quality (water_quality.csv) provides for each country the yearly information (up to year 2015) of the percentage
of the population using, respectively, at least basic water facilities, safely managed water facilities, and hand washing
facilities (with soap). Due to the severity of the missing data problem and to align with the structure of the influenza dataset,
which provides information up to year 2018, we have imputed additional values (see 4.2 for a detailed analysis).

2. Sanitation (sanitation.csv) provides the population (%) using at least basic and safely managed sanitation services
respectively. The data structure and missing-value issue are similar to the water quality dataset with missing values imputed.
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3. Health indicators (health_indicators.csv) includes basic yearly (up to 2017) demographic features. We find “popu-
lation" to be useful information for normalizing the number of flu reports of each country to the number of flu reported.
Population in 2018 is imputed based on a simple linear regression.

We further employ several external datasets which we believe are highly relevant to influenza, these datasets will be used alongside
the aforementioned datasets without further explanation:

1. Geographic information (country_info.csv) from Google Map Geocoding summarizes the latitude and longitude for
each country, as well as the continent each country belongs to.

2. Human Development Index (HDI) (HDI.csv) data is drawn from the primary source [6], useful for quantifying a general
category of "rich" and "poor" beyond what is possible from the provided consumption data (consumption.csv). The few
missing values in the HDI data were filled in by simple linear regression. HDI is typically used as a control variable that
can absorb, for example, the impact of the development progress of a country to the under-reporting issue of the flu cases.

3. Temperature (country_tmax.csv) from National Oceanic and Atmospheric Administration (NOAA) records daily
maximum temperature for each country. This allows us analyze how flu outbreaks are impacted by weather conditions, and
to incorporate what we hypothesize as a key driving factor into our complete time-series model. Moreover, we are motivated
by the fact that weather can be effectively forecast (at least relatively, by direct physical simulation), and therefore, if flu
and weather are connected, flu outbreaks can be forecast as well.

3 Primary Hypotheses and Objectives

While the exploratory data analysis gives insights on the patterns of seasonal flu outbreaks, it still falls short on finding any underlying
drivers of the pattern. For example, how are the flu outbreak patterns affected by various characteristics of a country? How does
the quasi-periodicity of flu outbreaks interact among countries? Are there exogenous variables that would enable us to effectively
forecast the outbreak of flu? Answers to these questions will help us build a more complete understanding of flu outbreak dynamics,
and provide sound justification for the use of particular covariates in our final model. We formalize three questions of interest below:

1. Flu outbreaks are connected to lower air temperature, as observed in Section 2 that influenza outbreaks usually occur
in winter. Based on this hypothesis, we expect that countries with higher latitudes are likely to have more severe flu
outbreaks. Furthermore, we expect that higher latitudes will be associated with earlier seasonal outbreaks.

2. Seasonal outbreak times are correlated across countries. We have seen that the major outbreaks can be shifted in time
by weeks or months between seasons, and we further hypothesize that the outbreaks across different countries are more
likely to be shifted in same direction. This would indicate that the flu is either spread between countries, or that outbreaks
are initiated by a common cause.

3. Countries with poorer water facilities tend to have more severe flu outbreaks. This is motivated by the common
knowledge that hand-washing is the key means by which we can avoid contracting the flu. In particular, we hypothesize
that the impact of water still exists after controlling the fact that richer countries tend to have better water facilities.

We begin in section 4.1 with a detailed analysis of covariate data, paying particular attention to the impact on the above hypotheses
in order to understand and identify some underlying features that impact the intensities and patterns of flu outbreaks. This not only
provides insights for policy makers to adopt measures to mitigate the severity of flu outbreaks, but also serves as a detailed covariate
selection step. This detailed analysis is leveraged in the sequel in a more complete time-series model of flu activity and provides
country-wide predictions and characterizations of future influenza outbreak characteristics (see Section 5.1).

Primary Modelling Objective The bulk of our modelling is focused on understanding the occurrence and intensity of influenza
outbreaks. We emphasize that our ultimate aim is to construct a probabilistic model capable of capturing the salient features in the flu
seasonal data, and that we are not necessarily driven to attempt to forecast the available time series, or achieve high cross-validation
accuracy. Indeed, the data is marred so badly by missing data and under-reporting, that models designed purely to forecast the
available data have little practical value. Instead, we seek a generative process which can be used to plausibly estimate what the
actual (rather than reported) flu prevalence is over the reporting period, and to generate plausible future characteristics of influenza
outbreaks. This estimation is necessarily extremely rough, and our model should accurately report on the uncertainty.

4 Detailed Auxiliary Modelling

In this section we describe in depth two of our important stepping stones. Firstly, Section 4.1 provides detailed analysis in support of
our primary objectives, addresses the three main hypotheses proposed in Section 3 and justifies the use of particular covariates in
our ultimate time series model of Section 5.1. Secondly, Section 4.2 details our approach to dealing with and correcting issues of
missing data, which are pervasive in the given dataset, and indeed, a pertinent issue for global health data.
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4.1 Covariate Analysis

To enable comprehensive covariates analysis that is useful in addressing the research hypotheses, we first need to quantify two
qualitative technical terms mentioned in the research hypotheses: “(seasonal) flu outbreak severity/intensity” and “(seasonal) flu
outbreak time”. This is very challenging, especially since the reporting of flu activities are inconsistent across time and country, so
we need to quantify them in a way such that we can normalize the reporting impacts. To draw appropriate conclusions, we then
need to identify, justify, and fit statistical models to investigate the effects of several covariates (latitude, water facility, etc.) to the
seasonal flu outbreak intensity and time.

In order to avoid unnecessary complication, we will focus this section’s analysis only upon the northern hemisphere since
northern/southern hemisphere flu seasons are complementary. Given that the seasonal flu starts around October and ends around
March, in this particular analysis we will define study period t to be 1st September of year (t− 1) up to 31st August of year t.

Intensity measure via the Gini-Index For each country c and each year t, we will use the Gini-index as a measure of outbreak
intensity. Since the influenza activity dataset provides weekly number of flu cases reported yct = (y

(1)
ct , . . . , y

(W )
ct ) each c and t, the

Gini-index is defined as

Gct =

∑W
w=1

∑W
k=1 |y

(w)
ct − y

(k)
ct |

2W
∑W
w=1 y

(w)
ct

(1)

where W is the number of recorded weeks. The statistic Gct measures the concentration of the weekly number of flus reported in
country c during study period t. A larger Gini-index represents a greater concentration, meaning that the majority of flus occur
within the span of a few weeks, and therefore Gct is a strong signal of flu outbreak severity. One of the principle advantages of using
the Gini-index is that under-reporting issues are partially mitigated since Gct ∈ [0, 1], and is a relative measure within countries and
within study periods.

Defining Outbreak Times The outbreak time Hct will be quantified by a simple average weighted by the weekly number of flus
reported, which also has the advantage of normalizing some under-reporting effects:

Hct =

∑W
w=1 wy

(w)
ct∑W

w=1 y
(w)
ct

(2)

To assess the impacts of latitude, year, and water resource availability on flu intensities and outbreak times, we model the outbreak
intensity Gct and outbreak time Hct respectively through two models: Firstly, a linear random effects model for intensity Gct:

Gct = βTg xct + Ut +Wct

Ut ∼ N (0, σ2) Wct ∼ N (0, τ2)
(3)

and secondly a separate random slope model for Hct:

Hct = βTh xct + Ut1 + Ut2Lc +Wct

(Ut1, Ut2)T ∼ N (0,Γ2) Wct ∼ N (0, τ2)
(4)

where xct represents the covariates containing the latitude, continent, HDI, and water resource availability; Lc in the second model is
the latitude of country c and we will see in the sequel why this is separated. The random effects are included to align with hypothesis
2: we want to investigate if there is a significant shift in the seasonal outbreak time shared across countries.

The seasonal flu outbreak intensity (Gini-index) and the outbreak time versus countries’ latitudes are first presented, respectively, in
Figure 2 and 3. In general, except for the European region, the positive relations between latitude and flu outbreak intensity as well
as the negative correlation between latitude and outbreak time supports the first hypothesis of Section 3, that is, that outbreaks go
hand in hand with lower temperatures. To gain more insight, we also provide similar plots including data points for the year 2009
alone since there was an outlier H1N1 outbreak that year. During this year, the flu intensities are particularly high and the outbreaks
are particularly late. The anomalies are especially significant for countries nearer to the equator. This can be accounted for by the
fact that the H1N1 flu originated from Mexico (latitude ∼ 23N) [1] during the summer (close to the end of study period) and spread
globally including the countries on low latitudes. Although removing such data points yields slightly better fitting results, it does not
lead to different conclusions, and so we do not present the additional results for lack of space.
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Figure 2: Influenza outbreak intensity vs latitude classified by continents.
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Figure 3: Influenza outbreak time vs latitude classified by continents.

4.1.1 Covariate Analysis Conclusions

Firstly, the results derived from the model of Equation (3) for the flu outbreak intensity are displayed in the left panel of Table 1.
The observations are as follows:

1. Countries on a relatively high latitude are more prone to severe, high intensity flu outbreak, after allowing for some variables
that are related to the latitudes of countries, such as the continent and the HDI. This can be seen from the positive, highly
significant regression coefficient for the covariate “latitude”.

2. Countries without high coverage of basic water facilities are more susceptible to severe flu outbreak, as indicated by two
significant positive regression coefficients for “basic water facility”.

3. The impact of the latitude to the outbreak intensity is greatly dependent on the continent. In particular, latitude has an
opposite effect to the flu outbreak intensities for European countries. This is evidenced by the significant interaction
coefficients.

And secondly, in the right panel of Table 1 shows the results of the model in Equation (4), flu outbreak time. Notable observations:

1. The outbreak times of seasonal flu are earlier for countries on high latitudes, as evidenced by the negative coefficient for
“latitude".

2. The interactive effects between latitude and continent are significant, especially the relation between latitude and flu
outbreak time, which is positive for European countries.
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3. The variation in outbreaks time across years (SD = 4.40 for the shared random effect Ut) is comparable to those among
countries (SD = 5.00 for Wct). As a result we conclude that for each year there is a significant shift in the seasonal
outbreak time that is shared across countries.

4. The magnitude of the shift in seasonal flu outbreak time increases with latitude. In other words, we are less certain about
the flu outbreak time for countries in higher latitudes.

To further our analysis, we attempt to include yearly average winter temperature as a covariate in the above models, but we also
realize a nearly perfect negative correlation between latitude and temperature. Hence, temperature and latitude produce similar
impacts to the outbreak intensity and time, and it is difficult to include both covariates at once. Note that the temperature data for this
analysis is condensed (the original data contains weekly temperatures instead of yearly aggregations), so the weather information
may still be a useful predictor for our complete time series model, which uses the full weekly activity data (see Section 5.2).

Overall, this analysis supports the three aforementioned research hypotheses proposed in Section 3, except that the effects of latitude
to the seasonal flu outbreak intensity and time for European countries are contrary to those suggested by hypothesis 1. It is therefore
legitimate for high latitude countries to pay additional attentions to flu outbreaks and devote extra resources for mitigation
measures such as vaccines. Further, governments should be aware of any early outbreaks from other countries - this can be
a signal of early flu outbreak for your own country! We also realize the importance of including latitude (and/ or temperature
information), water facility, continent and HDI to the predictive powers of seasonal flu activities and patterns.

Influenza Outbreak Intensity G Influenza Outbreak Time H
Coefficient Std.Error t-value p-value Coefficient Std.Error t-value p-value

Intercept 0.5509 0.0455 12.1152 0.0000 29.6208 2.3959 12.3633 0.0000
Latitude 0.0043 0.0011 3.8619 0.0001 -0.1153 0.0569 -2.0277 0.0429
Continent (ref: Africa)
- America 0.0431 0.0319 1.3513 0.1769 2.8331 1.4720 1.9247 0.0546
- Asia -0.1065 0.0318 -3.3479 0.0008 4.2806 1.4718 2.9085 0.0037
- Europe 0.3138 0.0461 6.8001 0.0000 -3.9309 2.1364 -1.8399 0.0661
HDI -0.0677 0.0563 -1.2018 0.2297 -6.2843 2.6015 -2.4157 0.0159
Basic water facility (ref: high)
- no information -0.0193 0.0248 -0.7768 0.4375 5.7715 1.1535 5.0034 0.0000
- low 0.0492 0.0191 2.5844 0.0099 -1.1015 0.8767 -1.2564 0.2093
- medium 0.0295 0.0107 2.7560 0.0060 0.5378 0.4903 1.0969 0.2730
Interaction (ref: Africa)
- lat/Americas -0.0012 0.0013 -0.9752 0.3297 0.0149 0.0578 0.2575 0.7969
- lat/Asia 0.0030 0.0012 2.4337 0.0151 -0.0400 0.0575 -0.6956 0.4868
- lat/Europe -0.0058 0.0013 -4.4151 0.0000 0.1789 0.0606 2.9516 0.0032
Random effects Ut Stddev Stddev
- Intercept 0.0210 4.3984
- Latitude – 0.0904
- Residual Wct 0.1086 4.9991

Table 1: Model fitting results for the influenza outbreak intensity (LEFT) and the influenza outbreak time (RIGHT).

4.2 Estimating (imputing) Missing Data

While the previous subsection performs covariates analysis that is useful to thoroughly reveal the underlying patterns of flu outbreak
and the importance of the covariates, such analysis does not include rigorous methodology in imputing missing covariates to avoid
unnecessary complications. Since missing data is such a difficult issue, particularly in poor regions of the world, we follow a rigorous
methodology for filling in missing data for some meaningful covariates: water_basic, water_safe, water_soap, san_basic,
san_safe. These correspond to access statistics available from sanitation.csv and water_quality.csv. These covariates
were explored in Section 4.1, and their use are also well motivated by medical considerations. The carefully imputed covariates are
further incorporated in Section 5 and 6, which present a full time-series modeling of the flu patterns across countries.

Let C be the number of countries,R the number of WHO regions, and T be the number of years (in this case, 2000-2018). Ultimately,
we view the missing data problem as a matrix completion problem for P ∈ [0, 1]C×T , and in addition leverage some additional
"side-information" provided by the HDI (denoted hdict, for country c and time t). Note that we are not concerned with missing data
in the HDI itself, as it is complete for almost all countries in our dataset. The natural region-based structure motivates us to employ a
Bayesian hierarchical logistic regression model. Hierarchical models are effective for limited-data problems since each variable is
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able to "borrow information" from the nearby regions. In the end, we fill in missing values for each covariate with the posterior mean
from the model. We admit that each covariate is modelled separately for simplicity. Mathematically, our model can be described as

top level coefs: µ0 ∼ N (µ̂0, σ
2
µ0

), β0 ∼ N (β̂0, σ
2
β0

),

coef uncertainty: σβ ∼ N+(σ̂β), σµ ∼ N+(σ̂µ),

region coefs and uncertainty: βr ∼ N (β0, σ
2
β), µr ∼ N (µ0, σµ), σr ∼ N+(σ̂r),

observation model: Pct ∼ logit−1N (µr + βrhdict, σ
2
r), c ∈ Cr.

(5)

Where N+ is a half-normal distribution (an intentionally light-tailed prior), and hatted variables (e.g. σ̂µ) indicate that we have
used a weakly informative data-dependent prior (e.g. the mean of some crude estimates, 10× the data’s standard deviation, etc.).
The number of WHO regions is denoted by R, and the number of countries in each region is denoted by Cr. That the subscripts
above range over all values is to be understood. Some of the variables Pct are observed (which are what we condition on to obtain a
posterior) and some of which are not (since the data is missing).

Weakly informative priors, light-tailed priors, and a limited number of variance parameters have been used partially for expedience,
but also to aid with computation. We note that Automatic Differentiation Variational Inference (ADVI [4]) produced poor results
for covariates with very little data (e.g. water_soap), but this problem disappeared when using Hamiltonian Monte Carlo (HMC
[3]). We can also report that HMC sampling converged with only minor issues, as verified by checking the number of symplectic
integration divergences (figure 4d), as well as computing Gelman-Rubin statistics with multiple MCMC chains – these diagnostics
are included with pymc3 (see [8]) and are reported automatically. Posterior predictive checks, as well as convergence diagnostics for
ADVI and HMC generated during development are shown in Figure 4, where particular attention should be given to figure 4b which
is representative of our final results (the similar figure in 4a is entirely preliminary and close inspection will admittedly reveal some
oddities).

Our practical application of this model on the available data is somewhat crude, as we have not attempted to share data across
covariates. However, highly accurate results from the covariate imputing stage are not critical to our overall model, particularly
since the HDI is colinear with many of these variables. However, we continue to stress that missing data is a non-trivial problem
and is important overall for the current application; we do not think it is acceptable to simply drop countries with under-reported
statistics, or to fill values in with trivial estimates as the countries suffering from poor reporting are often the ones that need
the greatest consideration for mitigating infectious disease. That is to say, social and health data is not missing at random.

5 Influenza Time-Series Modelling Methodology

With exploratory and technical issues out of the way, we are now able to describe our principle contributions.

5.1 Bayesian Generalized Linear Count Regression with Quasi-Periodic Seasonality

Given influenza count data fc(t) ∈ N for country c and time t, we consider a model in which fc(t) ∼ Poi(λc(t)), that is, count data
arises from a Poisson random variable with time-varying rate parameter. The (random) rate parameter itself is formed via a function
of a linear combination of fixed covariates (e.g. sanitation availability), fixed but time varying covariates (sinusoids, weather data),
random effects (simple random walk), and random state-based offsets. That is,

fc(t) ∼ Poi(λc(t))

lnλc(t) = 〈β(f)
c , x(f)c 〉+ 〈β(T )

c , xc(t)〉+ σcwc(t) + S
(c)
Rc(t)

σ ∼ Γ(a, b), S
(c)
k ∼ exp(φS); k = 1, . . . , 6

Rc(t)|Lc(t) ∼MC(PLc(t)), Lc(t) ∼ CTMC(Q)

(6)

where β(f)
c and β(T )

c are coefficients for non-random fixed and time varying covariates, wc(t) is a random walk (with jumps in
weekly/monthly/yearly periods) having variance σ2

c which provides in some sense a measure of how well the fixed effects model
the data, and S(c)

Rc(t)
is an intensity level depending on the state of a Markov Chain Rc(t). That c ranges over C, the collection of

countries, is to be understood, and we will often drop the subscript in the sequel. Moreover, some hierarchical sharing, similarly to
Section 4.2 can be deployed in this model as well, but we do not spell out the details.

The notation L(t) ∼ CTMC(Q) and R(t)|L(t) ∼ MC(PL(t)) is used to mean that L(t) (for "intensity level") is a stationary
continuous time Markov Chain with rate matrix Q, and that R(t) is a conditionally (on L) stationary discrete time markov chain with
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(a) ADVI Diagnostics
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(b) Posterior Predictive Checks and Estimates of missing data.
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(c) HMC Diagnostic Traceplots
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(d) HMC Diagnostic Pairplots with Integrator Divergences

Figure 4: Missing Data: Posterior Predictive Checks, Estimates, and Convergence Diagnostics
(UPPER-LEFT) model diagnostics and preliminary results on the target covariate water_basic. (UPPER-RIGHT) logit-scale

proportion of individuals having access to safe water. Large black X markers in the left of the figure denote the means (across time
and country) of known data points, we emphasize that a lack of a black X indicates that the country has zero observed data,

and box plots denote posterior distributions (averaged on the time axis) sampled via HMC from our hierarchical model.
(LOWER-LEFT) Illustrative traceplots for variables in water_safe model. We can see that the chain does not get "stuck" or

meander inefficiently. (LOWER-RIGHT) Illustrative pairplot; divergences are marked red and do not concentrate in any one region –
indicating robust results.
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transistion matrix PL(t), which depends on L(t). This encodes the random but quasi-periodic beginning and end times of each year’s
flu season, and is described in greater detail in Section 5.2. The reason that R(t) is discrete is simply because our data is sampled on
a weekly basis. The purpose of the Markov Chain is to drive the quasi-periodic "spikes" in the flu outbreak data: we believe that this
is one of the principle innovations of our approach and overcomes significant difficulties of stability in autoregressive or other
non-linear recursive models.

The linear component for the rate parameter λc(t) is a fairly standard generalized linear model with fixed and random effects.
Unfortunately, the use of a Poisson output is slightly restrictive as it is only a single parameter model (the mean and variance
cannot be controlled separately). A fairly standard extension to this model is to instead use the two-parameter Negative-Binomial
output distribution. However, we have chosen to avoid this modest complication for computational reasons: approximate inferences
schemes including INLA [7] and ADVI had difficulties fitting the Negative Binomial model. We had some success using HMC for
fitting simple Negative-Binomial models, but concluded the additional computational burden was not worth the benefits.

Dealing with Multi-Modality The attentive reader may notice that the likelihood of the above model is multimodal due to
label-switching symmetries on Sk; this is a classic latent-variable headache and can cause serious computational problems for
posterior inference, as well as rendering the posterior mean nearly meaningless. However, in our case this symmetry is naturally
broken by enforcing an ordering on the variables, i.e. forcing the constraint S1 < S2 < · · · < S6, where now the state interpretation
is natural: No Activity < Sporadic, etc. In practice, this can be achieved with pm.distributions.transforms.Ordered in
the case of pymc3, and an analogous transform in stan.

Fitting the Model The above described model is relatively complex, and we have resorted to an ad-hoc two stage estimation
process. Firstly, the Markov chain component is estimated separately (see Section 5.2 and 5.3), and samples Rn(t), n = 1, . . . N
are drawn from the estimate. These samples are then fed into our software for fitting the Poisson regression component, obtaining
samples λ(c,n)t ; n = 1, . . . , N a final point estimate can produced via λ(c)t = 1

N

∑N
n=1 λ

(c,n)
t , but it is generally preferable to plot

each series in order to illustrate the model’s uncertainty.

We also admit that some other model simplifications or minor modifications are occasionally deployed. In particular, we have
actually used βsRs(t) with Rs(t) ∈ 0, 1 providing a 1-hot state encoding for state s instead of the literal random variables SR(t),
though this is essentially equivalent to the above formulation.

5.2 Hierarchical Markov Model (R(t), L(t))

In reference to Section 5.1, L(t) is a continuous-time Markov Chain (CTMC) with 2 states: flu-season and off-season, whereby
the transition rate from flu-season to off-season should be faster than the reverse transition (i.e. flu seasons are shorter than
off seasons). The discrete-time Markov Chain (DTMC) R(t), conditionally stationary for each state in L(t), models the week by
week transitions between influenza-like-illness (ILI) activity levels reported by each country, specifically: No Activity, Sporadic,
Local Outbreak, Regional Outbreak, Widespread Outbreak, and No Report. During flu seasons (L(t) = flu-season)
the chain R(t) is intended to transition in some way through the higher intensity levels, while remaining at No Activity or
Sporadic during the off season (L(t) = off-season).

The Markov model serves two purposes: firstly as a generative process to fill in missing data (No Report) for countries that have
never reported or stopped reporting ILI activity levels. Secondly, to drive the quasi-seasonality in the Poisson count regression
model (Section 5.1). In regards missing data, see for example Figure 5a (left) we see that the USA stopped reporting activity levels
after the week of November 9, 2015. Some countries do not report ILI activity levels at all (e.g. France, Ukraine, Guyana, etc.); We
will see shortly that our Markov model is indeed capable of filling in plausible values for flu reports.

For our implementation, we admit that the Markov model is fit separately2 from the Poisson regression model (see the bottom
paragraph of Section 5.1) due to the complexity the latent variables. Computational techniques tailored to joint estimation of our
model is an interesting topic for further work.

We first report initial results using maximum likelihood estimation (MLE) on a stationary DTMC Rc(t) for every country c without
regard for seasonality. That is, we estimated a single Transition Probability Matrix (TPM) Π̂c for each country. We plot a sample
trace generated from RUSA(t) and RSpain(t) (where Rc(0) is bootstrapped from the original data) in Figure 5a and 5c (middle). We
observe that for RUSA(t) the trace is able to generate plausible ILI activity levels for both the cross-validation period (2000-2015)
and out-of-sample period (post-2015) (region in green: No Report). The trace from RSpain(t) is able to capture the No Activity
(red) status in the valleys where flu cases are minimal and some of Outbreak statuses during the peaks. We note however that the
more common No Activity status bleeds into actual outbreak spikes, a result of using a single stationary chain RSpain(t) for the
entire series.

2this also helps with the distribution of labour
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Figure 5: (a) and (c): Original vs. Markov chain traces generated for the USA (TOP) and Spain (BOTTOM) from 2000-2018 on
a weekly basis. The vertical axis is the log number of influenza cases whereby activity levels are broken down by colours. The
USA is one example where reporting stops after a particular year. Spain is one of the countries with the most consistent ILI activity
reporting. (LEFT) The original data for each country. (MIDDLE) A Markov Chain trace for each country c from a single DTMC
Rc(t). (RIGHT) A Markov Chain trace for each country c generated from monthly DTMCs R′c,j(t), j = 1, . . . , 12.
(b): Trace lines representing learned importance weights as described in Section 5.3 between countries in the South West Europe
WHO flu region. Smaller weights and larger weights correspond to lighter and darker shades of red, respectively. We observe that
there is some cascading effect between adjacent countries.

In order to expand upon the single stationary model, we have replaced the originally intended continuous time component L(t)

of Section 5.1 and instead used a cyclo-stationary DTMC R′(t) with a deterministic sequence of transition matrices P̂c(t) ∈
{1, 2, . . . , 12} where each TPM corresponds to activity levels in a calendar month, and we calculate the MLE from data for each
country c. Sample traces for R′USA(t) and R′Spain(t) are shown in Figure 5c (right). We observe that for R′Spain(t) the additional
parameterization allows us to capture more No Activity levels during valleys and more Outbreak levels at the peaks compared to
the completely stationary chain RSpain(t).

Traces from these Markov simulations are generated offline and fed into the Poisson Regression described in Section 5.1.

5.3 Neighbourhood Markov Model for ILI Outbreak Levels

We propose a Neighbourhood Markov Model to (1) impute traces for countries with completely missing ILI outbreak data (e.g.
France) and (2) estimate the shared behavior of flu outbreaks between countries in a neighbourhood as observed in Section 4.1.1.
Given n countries and r disjoint neighbourhoods N = {Nj : Nj ⊆ {1, . . . , n}, j = 1, . . . , r}, let xc,t denote the outbreak level
reported by country c at time t, and Πc as the 1-step transition probability matrix (TPM) for the DTMC Rc(t) defined in Section 5.2,
where [Πc]a,· = πc,a is the transition probability vector out of activity level a. Then we infer xc,t+1 the activity level at time t+ 1
as a function of its neighbours’ outbreak levels in neighbourhood Nj where c ∈ Nj , that is

αc,a,k ∼ N+(σ̂2
c,a,k) k = 1, . . . , 6

πc,a ∼ Dir(αc,a,1, . . . , αc,a,k)

wc,j` ∼ N+(σ̂2
c,j`

) ` = 1, . . . , |Nj |

xc,t+1 | xc,t, xj1,t, . . . , xj|Nj |,t
∼ Cat

( 1

Z
(πc,xc,t

+

|Nj |∑
`=1

wc,j` × 1xj`
)
) (7)
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where 1k is the one-hot vector v where vk = 1 and Z is some normalization constant such that the above parameterizes a valid Cat(·)
distribution. Note that for each country c we also infer positive weights wc,j` for each neighbour j` that measures the contribution of
the neighbours’ outbreak levels to the country’s outbreak levels at the next time step. We can simultaneously fit the DTMC Rc(t)
as a direct result of the posterior of πc,a. Considering the overwhelming amount of missing data, the high parameterization space
makes this computationally infeasible. Instead we fix Πc as the MLE TPMs we estimated in Section 5.2.

We choose to implement the model in Equation 7 as a shallow neural network in PyTorch which will allow us iterate through
hundreds of epochs to convergence in a couple of minutes. The cost function is the categorical cross-entropy between the predicted
transition probabilities π̂c,xc,t,· for xc,t+1 and the actual activity level at t+ 1, augmented with an `1 norm on the weights assigned
for its neighbours, that is

L(π̂c,xc,t
, xc,t+1;wc) = −

6∑
k=1

1[xc,t+1=k] log π̂c,xc,t,k + λ‖wc‖1 (8)

where 1[a=b] is the indicator function. We minimize Equation 8 for each neighbourhood, which we defined for simplicity as the
WHO flu regions, with λ adjusted accordingly for each region to identify the salient neighbour weights. To illustrate the learned
weights, we trace lines between countries in the South West Europe flu region in 5b where a higher weight corresponds to a darker
shade of red.

Due to Equation 8 it does not make sense to minimize xc,t+1 = No Report for the countries that have mostly (or all) No Report
outbreak levels since we want to impute the probable outbreak levels commensurate to the number of flu cases. During training
we introduce a slight bias that outbreak levels of the No Report countries follow the distribution of its neighbours by sampling
from neighbours’ outbreak levels in the previous time step for our new target x̃c,t+1. We are then able to produce Markov traces for
countries with entirely No Report outbreak activities from the weighted effects of neighbours for our Poisson Regression model
described in Section 5.1.

6 Analysis and Results

The estimation of our Poisson regression model of Section 5.1 is carried out via Integrated Nested Laplace Approximations (INLA)
[7], a method capable of providing reasonable approximate inference quickly enough to iterate on our model. However, such
estimates are known to underestimate the posterior variability, which is likely part of the reason we will see fairly thin credible
intervals in our results. In order to incorporate traces from our Markov chain model, we are fitting one Poisson regression model for
each (of 30) Markov traces, and drawing 100 posterior samples in each case. The visualizations in this section overlay each of these
traces on top of the actual observed data in order to help visualize the variability in the posterior.

We estimate first a single observed data series (the USA) since this region has the highest data quality. Country specific fixed
effects (water quality, HDI, etc.) are excluded in this first case, therefore the Poisson output intensity λUSA(t) is formed from a
linear combination of (1) weather data (tmax), (2) Markov Chain samples RUSA(t), (3) sinusoidal components, (4) (logarithm of) the
population series and finally (5) a random effect: random walk with 1-year period. We assign simple Normal priors to each of the
fixed-effect coefficients. The results are given in Figure 6a and Table 2.

From the figure, we can draw the qualitative conclusion that our model has the capacity to capture the complex flu activity dynamics.
A more careful analysis of the tabulated results allows us to attempt to quantify these observations. Firstly, none of the posterior
credible intervals contain the null hypothesis β = 0, leading us to conclude that each of our covariates is useful for explaining at least
a portion of the variability of the output. Secondly, we believe our Markov model is correctly driving quasi-periodic state switching
behaviour due to the ordering of the coefficients on the 1-hot state encodings conforming to intuition. Finally, the coefficient on tmax
is positive, contrary to our initial expectations as guided by Section 4.1. There are many reasons why this may be the case, and
we would consider it a topic for further exploration. We note that in Section 4.1 we observed a significant relationship between
latitude, temperature and flu intensity as measured by the Gini-index, which is a subtly different measure than the actual counts of flu
cases. In addition, since the incubation period for flu is at least a week long, we believe that there may be a time-lag effect relating to
temperature which would be captured in the Gini-index statistic (since it evaluates the whole period) but not contemporaneously by
our Poisson regression. Finally, and perhaps most obviously, a single temperature statistic for the entire US (a geographically diverse
region) may simply not be enough to infer meaningful results.

Having concluded our analysis of the simple USA-only model, we expand into a larger region: WHO Americas. Even after imputing
significant amounts of missing data, the influenza reporting in many countries is extremely limited, and we have only been able
to generate complete results for a model including 8 countries in North and South America. In this inter-country model, we are
including the same covariates as the USA only model (described above) as well as the additional water_safe, HDI, and latitude
covariates, and interaction terms between latitude and the fixed sinusoids which helps with the latitude dependent seasonality. We
have resorted to excluding a number of our other country-specific fixed effects (sanitation, etc.) due to constraints on computational
resources. Finally, we include an additional cross-country random effect which quantifies the variability between each country in the
model. m.Posterior samples are given in Figure 6b, and quantitative results in Table 3.
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(a) US Results from Single Country Model (b) Peru Results from Inter-Country (Americas) Model

Figure 6: Posterior Samples for Flu Count Data from the Model of Section 5.1
(LEFT) Posterior samples (100 samples for each of 30 Markov Chain traces) drawn for estimating our model on the US alone, i.e.
without any country specific covariates. Good data availability makes this a simple target series. (RIGHT) Posterior samples drawn

from Peru in an inter-country model for the America’s WHO region. We emphasize that this region suffers from a significant
number of missing data points that our model is attempting to correct, such as the imputed flu outbreak spikes from 2000 to 2002,

and the 2009 pandemic that was poorly reported in Peru.

height 0.025quant 0.5quant 0.975quant
(Intercept) -0.6737 -0.6522 -0.6308

tmax 0.0628 0.0639 0.0649
t_sin 0.9696 0.9748 0.9801
t_cos 1.8756 1.8895 1.9033

No Activity -4.8249 -4.2039 -3.5834
Sporadic -0.5572 -0.5379 -0.5186

Local 0.0762 0.0952 0.1142
Regional 0.2749 0.2937 0.3126

Widespread 1.0391 1.0568 1.0746
sd for year 0.5281 0.7007 0.9584

Table 2: US model posterior result

height 0.025quant 0.5quant 0.975quant
(Intercept) 33.8897 37.2264 40.5604

HDI -16.0203 -15.4009 -14.7819
water_safe -36.5779 -36.0238 -35.4703

tmax 0.0185 0.0194 0.0202
t_sin 0.0177 0.0231 0.0284

lat -0.1975 -0.0766 0.0441
t_cos -0.3311 -0.3243 -0.3175

No Activity -4.0417 -3.9165 -3.7914
Sporadic -0.6753 -0.6620 -0.6487

Local 0.1633 0.1760 0.1887
Regional 0.8820 0.8945 0.9069

Widespread 1.1928 1.2048 1.2167
t_sin:lat 0.0175 0.0177 0.0179
lat:t_cos 0.0412 0.0415 0.0418

sd for country code 3.6982 4.6137 5.8415
sd for year 0.5046 0.6654 0.9151

Table 3: Americas model posterior result

Similarly to the USA-only case the Figure 6b shows that the model is sufficiently expressive to model the flu dynamics. In addition,
Peru is a region with a significant number of missing observations, which our model fills in with plausible estimates. In regards
to the tabular results, we note that coefficients on HDI and water_safe are large in magnitude, but that this doesn’t necessarily
indicate that these features are extremely important, since we have not done any careful scaling of the covariate data. Instead, we
are to conclude simply (since the credible intervals do not contain zero) that these covariates have at least some use in explaining
inter-country variability. Similarly to the USA case, the ordering on the Markov Chain outbreak level state encodings corresponds to
our expectation, even considering the differing reporting tendencies of each country.

6.1 Concluding Remarks

The systematic inconsistent reporting of data on influenza outbreaks and cases pose a challenge to analyzing and predicting the
dynamics of the infectious disease. We have rigorously accounted for the uncertainty in the data and attempted to produce
meaningful insights into global influenza patterns. The Poisson Regression mixed-effects model with an intensity-level Markov
Chain component we’ve constructed is able to capture much of the nuances of global influenza outbreak patterns, such as the
quasi-periodicity of flu seasons. A key takeaway from our analysis is that we should support country-level reporting of influenza
data in order to develop a more complete picture of influenza, especially developing countries that have significant downsides when
it comes to mortality rates related to influenza (see Figure 7). Finally, our model can be propagated forward in time to produce
forecasts and therefore we have made an important technical contribution: our model can be leveraged by policy makers to
assist in preempting future flu epidemics, thereby mitigating the worldwide influenza disease burden.
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Figure 7: Cause of Death by HDI
(TOP) Total death rates per 1000 people in each HDI bucket. (BOTTOM) Similarly to the TOP figure, excluding cardiovascular
diseases and "remaining causes". Causes of death were collected from the available data (mortality.csv) and joined HDI. The
figure focuses in on infectious diseases, particularly ones which are relevant to our available dataset (i.e. Influenza, waterborne
diseases, STIs / HIV). We see that flu and pneumonia remain primary causes of death from infectious disease in all areas of the
world. A principle contributor to the "remaining causes" are cancers.

A Additional Figures

We cannot help but include here some additional figures, each of which has only minor or tangential importance to our main thesis.
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Figure 8: Exploratory Regression Plots: Flu, HDI and Access to Hygiene Resources
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Figure 9: World Wide Flu Reporting
Flu reports are highly sporadic, and the rapid downward trend is unsettling.
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NYC class attendance vs US positive influenza cases (2012-2018)

Figure 10: Potential Burden of Influenza on NYC Education
Flu outbreaks in the US (red) coincide with increased absentees from schools in New York City (blues). While causation conclusions
cannot be effectively made, it seems that wealthy countries may be impacted by influenza in various ways (disease burden).
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