
University of Waterloo
Faculty of Mathematics

SQL Joins with Interleaved Tables: A Natural Extension of NewSQL Databases

Cockroach Labs
New York, New York, USA

Prepared by
Richard Wu

2B Computer Science
December 2017

Memorandum

To: Vivek Menezes

From: Richard Wu

Date: December 16, 2017

RE: Work Report: SQL Joins with Interleaved Tables: A Natural Extension of

NewSQL Databases

Herein I have enclosed the technical report SQL Joins with Interleaved Tables: A Natural
Extension of NewSQL Databases for my 2B work report and for the distributed SQL
execution engine team at Cockroach Labs. This is the third of four work reports that I
must successfully draft and complete as part of my BCS Co-op degree requirements
mandated by the Co-operative Education Program.

The distributed SQL execution engine (DistSQL) team, for which you are one of the
engineering managers, works on the distributed batch processing framework that underlies
CockroachDB’s SQL layer. My role as a Software Engineering Intern was to implement
outstanding features outlined in project manifestos on the company’s issues board for the
DistSQL project. Additionally, I designed and drafted an RFC for improved SQL joins
with interleaved tables, a special variant of SQL tables that CockroachDB provides. This
report discusses the evolution of large-scale and distributed data applications, and how
interleaved tables are a natural extension of the DistSQL framework. It also highlights
the implementation of “interleaved table joins” in CockroachDB, for which I was
responsible.

The Faculty of Mathematics requests that you evaluate this report for coverage and
precision of the technical content and analysis. Following your assessment of this report,
a performance evaluation of my work will also need to be completed. The two evaluations
will be used to determine whether I receive credit for my co-op term.

I thank you for your assistance in preparing this report.

Richard Wu

ii

Table of Contents

Memorandum ... i	

List of Figures .. iii	

Executive Summary ... iv	

1.0 Introduction .. 1	

1.1 The History of Data Applications .. 1	
1.2 SQL at Scale: CockroachDB .. 4	

2.0 Analysis .. 7	

2.1 Distributed Execution Engine .. 8	
2.2 Interleaved Tables .. 10	
2.3 Interleaved Table Joins .. 14	
2.4 Performance of Interleaved Table Joins ... 16	

3.0 Conclusions ... 19	

References ... 20	

iii

List of Figures

Figure 1 – Org charts as hierarchies ... 1	

Figure 2 – Microsoft SQL code snippet .. 3	

Figure 3 – Deployment of CockroachDB node ... 7	

Figure 4 – Logical SQL plan ... 8	

Figure 5 – DistSQL execution/physical plan. ... 10	

Figure 6 – SQL table example. ... 10	

Figure 7 – Two non-interleaved tables. .. 11	

Figure 8 – Non-interleaved table partitioning in CockroachDB. 12	

Figure 9 – Two interleaved tables in CockroachDB ... 13	

Figure 10 – Interleaved hierarchy and arborescence ... 14	

Figure 11 – Complex interleaved table join. ... 15	

Figure 12 – Before and after DistSQL plan with interleaved table joins 16	

Figure 13 – Performance benchmark results ... 18	

iv

Executive Summary

This report first introduces the business and technical motivations of distributed data

applications. The motivations underpin the genesis of CockroachDB, a distributed SQL

database that provides distributed Structured Query Language (SQL) transactions. This

report introduces properties of the distributed batch processing framework (DistSQL) as

well as interleaved tables¾a variant of SQL tables. Finally, the analysis highlights a more

efficient implementation of SQL joins specific to interleaved tables.

Distributed databases need to be tolerant to Byzantine failures and serve an crucial role

in addressing an organization’s need for a scalable solution to organizing data.

CockroachDB is one such horizontally-scalable databases that supports SQL semantics.

The distributed batch processing framework in CockroachDB transforms a logical SQL

plan into “physical” components that carry out data operations on the nodes where each

piece of data lives. While it may be distributed, CockroachDB offers the familiar SQL

table interface for organizing data. An extension of distributed SQL tables are interleaved

tables, which improves performance for locality-sensitive SQL queries, like joins.

interleaved SQL tables in theory permit more efficient SQL joins due to data locality. An

initial implementation of improved SQL joins with interleaved tables are up to 74.3%

more performant than SQL joins between regular, non-interleaved tables.

1

1.0 Introduction

1.1 The History of Data Applications

The popularization of the Structured Query Language (SQL) and the evolution of

relational databases did not come to fruition until after numerous iterations of ineffective

data models and databases. In the 1960s and 1970s, large businesses handling enormous

amounts of data transitioned from the traditional pen and paper form of bookkeeping to

processing data on what we know today as mainframes (this was, of course, when IBM,

the purveyors of mainframes, formed as a corporation and became one of the trailblazers

of modern computing). Businesses demanded for more and more effective ways to organize

and retrieve data from computers, a still very novel concept at the time.

Figure 1 – A typical organization chart of a company. An org chart illustrates how data may be
organized in a hierarchy. ›

2

Cue hierarchal modelling, the method by which data is organized in hierarchies or “levels”.

The most familiar representation of hierarchies in our everyday lives is a company’s

organizational chart: the staggered tree of executives, managers, and employees. If

employee A reports to manager B, then the two have a one-to-one relationship with each

other in the hierarchy.

This kind of modelling can be extended to an unbounded number of applications and is

the basis for IBM’s Information Management System (IMS), the most popular database

for business data processing in the 1970s (Long, Harrington, Hain and Nicholls, 2000).

There were many problems uncovered with hierarchal modelling over the years: one such

problem is fitting in many-to-many relationships (where an employee C may have multiple

managers and the respective managers have multiple employees). Employee C’s data could

be copied under each of the managers, but that introduced the complexity of keeping

employee C’s data updated between the various copies (keeping multiple copies of the

“same” data is a process called “denormalization”).

To address this, network models became topically mainstream, mapping data in a

comparable way to hierarchal models, and solving the above issue as well as a subset of

other problems with hierarchal-models. These models were known as CODASYL models

because they were standardized by the Conference on Data Systems Language

3

(CODASYL) committee (Knowles and Bell, 1984). However, both these models had one

especially tragic flaw: to access the record of data for an arbitrary node in the model (in

our example, an employee of the organizational chart), one would have to traverse from

the root node (the CEO John Smith) all the way down to the desired record. This required

knowledge of which branch or “access path” would lead to the correct record and was a

huge burden on developers managing these systems.

Figure 2 – A code snippet of Microsoft’s SQL implementation. SQL (read: relational databases) was
originally described in Edgar Codd’s 1970 report on A Relational Model of Data for Large Shared
Data Banks.

In 1970 Edgar Codd, a researcher at IBM, published A Relational Model of Data for Large

Shared Data Banks that set the stage for the largest revolution of information retrieval

theory the industry has seen to date (Codd, 1970). The brief yet insightful 11-page report

introduced the concept of “relational models” built on the rigorous foundations of relation

4

algebra. In short, relational models map business queries down to a few simple operations

such as: selection (filtering data), projection (selecting only certain parts of data), and set

operations such as unions and differences of set (to combine and disassociate multiple sets

of data). This model of organizing and retrieving data was then mapped to actual

implementations of databases and was later formalized as the Structured Query Language

(SQL) standard. Since its inception forty years ago, relational databases and SQL can be

found in almost any data system and remains one of if not the most popular data querying

languages in the world.

1.2 SQL at Scale: CockroachDB

One of the finer nuances of the SQL standard is the notion of transactions. Much like the

financial transactions that occur when we purchase groceries from the store or order and

have them delivered through Amazon, a transaction guarantees that a set of actions occur

together and without overlapping with other transactions.1 For example, if my bank

account had $25 in it and I tried to buy $25 worth of goods from each of two separate

merchants, my bank would decline the second transaction. In the context of a database

managing both the bank account of the merchants and my own, the system would realize

that an update in the balance of my bank account is occurring in two transactions and

1 This is a rather partial and informal definition of SQL transactions: the more complete picture of transactions is
encapsulated as ACID-compliance.

5

would only permit one to fully execute (or “commit”) to maintain the invariant of a non-

negative account balance.

There are several proprietary and open-sourced SQL databases that have widespread

adoption for production. Oracle SQL and Microsoft SQL Server are two of the largest

proprietary Relational Database Management Systems (RDBMS). Postgres and MySQL

are some the front-runners on the open-sourced side. Note that these are all “management

systems”: the value provided is the software and software license, although companies such

as Oracle offer some specialized hardware that work “better” with their systems.

Until the last decade or two, most businesses would vertically scale their databases to

handle increasing numbers of requests by running larger and more powerful machines. As

the industry matured, companies that simply out-scaled the largest possible machines had

to look for new ways to handle the exponential growth in user traffic. Google, the

enormous tech giant that has some of the highest number of daily-active users in the

world across all their products, initially used MySQL as the primary RDBMS for their

advertising backend (Corbett, Dean, Epstein et al., 2012). Once they could no longer

handle the sheer traffic with just one instance of MySQL running on one machine, they

had to “shard” their MySQL database onto multiple machines. This is referred to as

“horizontal scaling”.

6

Sharding is a common way to deal with scaling out a database that is designed to run on

single server machines: at a high level, the data is partitioned into multiple shards and

each shard lives on a separate instance of MySQL (or whichever RDBMS) running on

individual machines. This form of sharding, which can become a significant complexity

burder on developers, is implemented in the application’s code. Furthermore, transaction

semantics discussed previously will need to be implemented by the developers outside the

scope of the RDBMS. There is an endless list of inherent architectural problems

application-level sharding introduces that needless to say: very few if none have managed

to perfect it, including Google.

In Google’s 2012 seminal paper on Spanner: Google’s Globally-Distributed Database, the

researchers and engineers reveal to the industry their implementation of a database that

handles all the complexities of sharding, replication (for machine failures), and transaction

guarantees in a distributed environment (Corbett, Dean, Epstein et al., 2012). There is

also Google F1, which is a layer built on top of Spanner that permits distributed SQL

queries and joins. Together they are a robust solution to an ACID-transactional SQL

database (coined as “NewSQL”) that scales as a linear function of the hardware provided.

7

Figure 3 – One-line deployment of a CockroachDB instance with command output. Introducing
additional nodes to the cluster also consists of one-line shell commands.

While Google does offer a cloud-hosted version of Spanner and F1 (Cloud Spanner),

companies that wish to retain full control over their customers’ data in their own

datacenters have very few options. CockroachDB is an open-sourced distributed NewSQL

RDBMS that is heavily influenced by Spanner and F1 and supports the Postgres dialect

of SQL out of the box. Since distributed databases are inherently cumbersome,

CockroachDB puts heavy emphasis on the ease of deployment: CockroachDB is

encapsulated in a single executable binary whereby a cluster across multiple machines can

be started with a few simple shell commands.

2.0 Analysis

The remainder of this report and the primary content in the Analysis section will highlight

the distributed batch processing framework (the DistSQL engine) that allows SQL queries

8

to be efficiently parallelized onto the numerous machines that store individual “shards” of

the relevant data. An inherent property of the DistSQL engine is improved performance

from data locality at a cluster level: pieces of data that live together on the same machine

can be processed immediately. This is especially relevant for SQL joins, a fundamental

aspect of all SQL-compliant RDBMSes.

2.1 Distributed Execution Engine

A SQL query can be broken down into a logical plan: an abstraction of the query that

breaks it down into its fundamental components. These components include the relational

algebra operations discussed earlier (e.g. selection and projection) as well as other

semantics introduced over the years both in the SQL standard and in specific SQL

implementations.

Figure 4 – Representation of a logical plan that is derived from a SQL query. Logical plans in
CockroachDB resemble n-ary tree structures with each operation represented as a node in the tree.

9

The logical plan resembles a tree structure with nodes as logical operations and edges as

input-output relationships. The logical plan then needs to be mapped to actual structures

in the code that “physically” iterate through the data and perform their respective

operations, whether it be filtering for SQL rows that have a certain value in a field or

selecting a subset of fields from each row. CockroachDB’s initial implementation of an

execution engine is modelled after the Volcano model (Graefe, 1990). The Volcano query

processing model takes the logical plan as-is and defines a few methods on each node:

namely Next(). Next() retrieves the next logical row of the operation at that node. The

node then retrieves its input rows by invoking Next() on its children nodes. This

propagates down to the leaf nodes, which pull data from the actual disk or SSD drives.

The rows propagate back up the tree like how lava erupts from inside a volcano.

This form of query execution is simple to imagine on a single node, but gets more

complicated when data could be flowing from multiple servers storing individual shards

of the relevant data. One could stream all relevant rows onto one node and apply the

Volcano model, but this is rather inefficient especially if many rows are filtered out or

only a subset of fields are used. It would be more performant to execute as many

operations on the data nodes before sending the intermediary rows to the gateway node

for final processing.

10

Figure 5 – A distributed execution plan in CockroachDB. Each individual logical plan node is
transformed or mapped to physical processors. These processors iterate through the data and performs
certain operations like joining rows from two tables. Some of the operations can be performed on the
node containing the data (e.g. node 3 in the diagram). Intermediary rows are sent back to the final
node (node 1) for final processing.

This is the philosophy of the distributed execution engine (colloquially DistSQL) whereby

the logical SQL plan is transformed into a dataflow of processors, routers, and streams.

2.2 Interleaved Tables

Figure 6 – A SQL table for all employees of a company. Each row corresponds to one record of one
employee. The columns contain fields relevant to each employee such as phone numbers and salary
figures.

11

In SQL, there are tables and rows: a table contains a collection of rows that all have the

same columns or fields. In the context of sharding, many distributed databases arbitrarily

break apart and re-balance data across the machines specified in the cluster. For example,

Apache Cassandra, a NoSQL2 distributed database that operates on tables with rows and

columns much like SQL tables, arbitrarily partitions data in the cluster into individual

parts or “ranges” (DataStax, 2014). Through an efficient load balancing algorithm called

“consistent hashing”, the ranges are assigned to nodes in the cluster. A given table occupies

a range or adjacent ranges such that even in the event of re-balancing, the rows for a

table tend to stay together on a node or on a couple of nodes. This partitioning scheme is

similar to the partitioning policy CockroachDB employs to distribute data by breaking

apart tables into chunks also called “ranges”.

Figure 7 – Two SQL tables, Users (left) and Posts (right), where each row corresponds to one user or
blog post, respectively. In this example, blog Post 1 belongs to User 1 and similarly for Post 2 & 3.
The two tables have a one-to-one relationship.

2 NoSQL is a slight misnomer: Cassandra does offer a SQL-like query grammar. The NoSQL categorization namely
refers to the fact that it does not support distributed ACID transactions.

12

The core philosophy of SQL and relational databases is “normalizing” data as much as

possible: keeping only one copy of a related set of data in self-contained tables. For

example, if we wanted to store data for a blog where we have users who make posts, we

would like to separate the user data into one table called Users and the blog post data in

another table called Posts. Whenever we want to find the corresponding blog posts for a

given set of users, we can perform an SQL join. Similarly, if users also had comments

stored in a table Comments, we can join Users with Comments to retrieve corresponding

comments for a set of users.

Figure 8 – An example of how Users and Posts tables can be partitioned and distributed across three
nodes. The red-dotted lines indicate the remote procedure calls (RPCs) required to perform a SQL join
between blog post entries and their corresponding user entries. Since RPCs are relatively slow, we’d
like to reduce the RPC traffic as much as possible for a given SQL query.

13

Since the sharding layer of CockroachDB is agnostic of SQL tables (instead a SQL table

occupies a contiguous section of the underlying storage as described before) Users and

Posts may be unfavorably partitioned such that many inter-node Remote Procedure Calls

(RPCs) are required to match up corresponding rows from both tables (see Figure 8).

While an individual table is grouped together with high data locality (e.g. Users 1 to 50

are grouped together in one range on node 2 in Figure 8), there is no such guarantee

between multiple tables.

Figure 9 – The same Users and Posts table in CockroachDB but with Posts interleaved into Users.
Effectively, Posts and Users are grouped together such that they conceptually form one table.
CockroachDB partitions and distributes the two tables such that SQL joins between corresponding
entries require few RPCs (green-dotted lines) relative to non-interleaved tables in Figure 8.

Interleaving tables introduce the idea of storing rows from some table after a row (or some

rows) of another table (see Figure 9). Both CockroachDB and Cloud Spanner allow

Database Admins (DBAs) to create interleaved tables to improve data locality and

performance for SQL operations such as joins. Oracle has something similar called “multi-

14

table cluster indexes” (Burleson, n/d). The join logic for interleaved tables will need to be

slightly modified to take advantage of the convenient lockstep-like (read: interleaved)

arrangement of rows between two interleaved tables.

2.3 Interleaved Table Joins

In the example between Users and Posts in Figure 9, joining rows from the two interleaved

tables is rather trivial; every row of Posts is nested immediately after its corresponding

row in Users. However, this becomes more complicated once you have multiple tables

interleaved into each other.

Figure 10 – (Left) How interleaved tables are declared and created in CockroachDB. (Right) The
interleaved tables represented in its tree form. Note that there is a strong resemblance between this
tree structure and hierarchies in hierarchal modelling: this is because interleaved tables form an
“interleaved hierarchy” (in graph theory, an interleaved hierarchy is an “arborescence”).

Interleaved tables work exceptionally well in practice with data that naturally forms a

hierarchy, and are often queried together. In traditional SQL databases like Postgres or

MySQL, one would have to perform several joins (multi-table joins) to match up data

from multiple related tables. In the example from Figure 10, someone who wants to

15

retrieve all Doctors, Patients, and Claims for some Hospitals would have to perform a 4-

way join. This can become rather costly in a distributed database without interleaving as

demonstrated with the simple two-table case in Figure 8.

Figure 11 – (Top) Example of how rows from the interleaved tables in the example from Figure 10
may be stored together. (Bottom) A visualization of how a query that wants to join rows between
Doctors and Claims is conceptually executed.

In Figure 11, a set of data with the same schema as the example from Figure 10 is shown

with an abstract representation of how a join query between rows from Doctors and

16

Claims is executed with interleaved table joins. Since interleaved tables form an

arborescence, there are certain invariants we can apply to create a more efficient join

algorithm than naïve implementations of nested loop, hash and/or merge joins. The

narrowness of this margin does not permit me to include the precise details3, but the full

Request For Comments (RFC) for interleaved table joins can be accessed in the publicly-

available repository.4

2.4 Performance of Interleaved Table Joins

Figure 12 – DistSQL execution plans for before and after comparison. (Top) Naive merge joins between
two interleaved tables. (Bottom) More efficient interleaved table joins between the same two
interleaved tables. It is obvious that there is a drastic reduction in RPC traffic in the latter which
clearly manifests itself in the performance numbers.

3 https://en.wikipedia.org/wiki/Fermat's_Last_Theorem
4 https://github.com/cockroachdb/cockroach/blob/master/docs/RFCS/20171025_interleaved_table_joins.md

17

An integral part of systems software development is measuring how an implementation

improves the product or feature. In this case, it is important to compare how the

implementation of interleaved table joins compare to joins between non-interleaved tables

and naïve joins (i.e. joins that are agnostic of the interleaving property) between

interleaved tables. From intuition, we hypothesize and expect that our improved

implementation of joins in the context of interleaved tables should meet the following

criteria:

1. Interleaved table joins should be comparable to joins on non-interleaved tables in

slightly pessimistic cases.

2. Interleaved table joins should be strictly better than naïve joins for interleaved

tables.

3. Interleaved table joins should perform 1.5x – 2.0x better than regular tables in

ideal use cases (i.e. joins with highly-hierarchal data).

A benchmark5 was written to exercise join queries on non-interleaved and interleaved

tables in CockroachDB both before and after the implementation of interleaved table

joins. Several different scenarios were proposed and benchmarked to establish lower and

upper bounds across a variety of settings.

5 https://github.com/cockroachdb/loadgen#interleave

18

Scenario Non-interleaved
tables

Interleaved tables
(naïve)

Interleaved tables
(improved)

QPS 99th %tile
latency (ms)

QPS 99th %tile
latency (ms)

QPS 99th %tile
latency (ms)

Simple
2 tables
1 range

5.5 1610 4.0 2282 5.3 1745

Pessimistic
4 tables

>1 ranges

7.55 1779 0.4 17450 0.9 8590

Typical
4 tables

>1 ranges

1.35 6443 1.1 8724 2.0 4429

Ideal
2 tables

>1 ranges

3.5 2684 3.1 3423 6.1 1712

Scenario Vs non-interleaved

(% change)
Vs naïve interleaved

(% change)
QPS 99th %tile latency

(ms)
QPS 99th %tile latency

(ms)
Simple -3.6% +8.4% +32.5% -23.5%

Pessimistic -88% +382.9% +125% -50.8%

Typical +48% -31.3% +81.8% -49.2%

Ideal +74.3% -36.2% +96.8% -50%

Figure 13 – Tables summarizing throughput (in queries per second or QPS) and tail latency
performance numbers across non-interleaved tables, interleaved tables with naive joins, and interleaved
tables with the improved implementation. Equivalent queries were concurrently executed against the
3-node CockroachDB cluster by eight workers on a machine with four CPU cores.

From our performance experiments6, we see that our initial hypotheses hold true. That

is, the new implementation is strictly better than a naïve approach to joining between

6 https://github.com/cockroachdb/cockroach/issues/20586

19

interleaved tables. In typical and ideal cases where data forms a natural hierarchy,

interleaved tables with the improved join logic outperforms non-interleaved tables.

3.0 Conclusions

The history of how large-scale data intensive applications transitioned from hierarchal

modelling to relational modelling to a hybrid of both helps us continue innovating in the

information retrieval space. In some sense, the industry has come full circle back to

hierarchal modelling where data locality is important in the context of sharding. An

example of a hybrid approach that takes aspects from the 1960s hierarchal models of data

and from the time-tested relational movement are interleaved tables. Interleaved tables

in CockroachDB as well as in other distributed NewSQL databases like Cloud Spanner

offer greater performance for certain topologies of data by grouping data together when

data is distributed across many nodes. Interleaved tables also permit some subset of

relational operations that are much more efficient than a pure hierarchal model.

20

References

Donald K. Burleson: “Reduce I/O with Oracle Cluster Tables,” dba-oracle.com.

Edgar F. Codd: “A Relational Model of Data for Large Shared Data Banks,”

Communications

of the ACM, volume 13, number 6, pages 377–387, June 1970. doi:

10.1145/362384.362685

James C. Corbett, Jeffrey Dean, Michael Epstein, et al.: “Spanner: Google’s

Globally-Distributed Database,” at 10th USENIX Symposium on Operating System

Design and Implementation (OSDI), October 2012.

“Apache Cassandra 2.0 Documentation,” DataStax, Inc., 2014.

Graefe, G. (1990). Encapsulation of parallelism in the Volcano query processing system

(Vol. 19, No. 2, pp. 102-111). ACM.

J. S. Knowles and D. M. R. Bell: “The CODASYL Model,” in Databases—Role

and Structure: An Advanced Course, edited by P. M. Stocker, P. M. D. Gray, and M. P.

Atkinson, pages 19–56, Cambridge University Press, 1984. ISBN: 978-0-521-25430-4

21

Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls: IMS Primer.

IBM Redbook SG24-5352-00, IBM International Technical Support Organization,

January 2000.

Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey, C., Rollins, E., ... & Cieslewicz,

J. (2013). F1: A distributed SQL database that scales. Proceedings of the VLDB

Endowment, 6(11), 1068-1079.

