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Memorandum 

 
To:  Vivek Menezes 
 
From:  Richard Wu 
 
Date:  December 16, 2017 
 
RE: Work Report: SQL Joins with Interleaved Tables: A Natural Extension of 

NewSQL Databases 
 
 
Herein I have enclosed the technical report SQL Joins with Interleaved Tables: A Natural 
Extension of NewSQL Databases for my 2B work report and for the distributed SQL 
execution engine team at Cockroach Labs. This is the third of four work reports that I 
must successfully draft and complete as part of my BCS Co-op degree requirements 
mandated by the Co-operative Education Program. 
 
The distributed SQL execution engine (DistSQL) team, for which you are one of the 
engineering managers, works on the distributed batch processing framework that underlies 
CockroachDB’s SQL layer. My role as a Software Engineering Intern was to implement 
outstanding features outlined in project manifestos on the company’s issues board for the 
DistSQL project. Additionally, I designed and drafted an RFC for improved SQL joins 
with interleaved tables, a special variant of SQL tables that CockroachDB provides. This 
report discusses the evolution of large-scale and distributed data applications, and how 
interleaved tables are a natural extension of the DistSQL framework. It also highlights 
the implementation of “interleaved table joins” in CockroachDB, for which I was 
responsible. 
 
The Faculty of Mathematics requests that you evaluate this report for coverage and 
precision of the technical content and analysis. Following your assessment of this report, 
a performance evaluation of my work will also need to be completed. The two evaluations 
will be used to determine whether I receive credit for my co-op term. 
 
I thank you for your assistance in preparing this report. 
 
  
 
Richard Wu 
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Executive Summary 

This report first introduces the business and technical motivations of distributed data 

applications.  The motivations underpin the genesis of CockroachDB, a distributed SQL 

database that provides distributed Structured Query Language (SQL) transactions. This 

report introduces properties of the distributed batch processing framework (DistSQL) as 

well as interleaved tables¾a variant of SQL tables. Finally, the analysis highlights a more 

efficient implementation of SQL joins specific to interleaved tables. 

 

Distributed databases need to be tolerant to Byzantine failures and serve an crucial role 

in addressing an organization’s need for a scalable solution to organizing data. 

CockroachDB is one such horizontally-scalable databases that supports SQL semantics. 

 

The distributed batch processing framework in CockroachDB transforms a logical SQL 

plan into “physical” components that carry out data operations on the nodes where each 

piece of data lives. While it may be distributed, CockroachDB offers the familiar SQL 

table interface for organizing data. An extension of distributed SQL tables are interleaved 

tables, which improves performance for locality-sensitive SQL queries, like joins. 

 

interleaved SQL tables in theory permit more efficient SQL joins due to data locality. An 

initial implementation of improved SQL joins with interleaved tables are up to 74.3% 

more performant than SQL joins between regular, non-interleaved tables.
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1.0 Introduction 

1.1 The History of Data Applications 

The popularization of the Structured Query Language (SQL) and the evolution of 

relational databases did not come to fruition until after numerous iterations of ineffective 

data models and databases. In the 1960s and 1970s, large businesses handling enormous 

amounts of data transitioned from the traditional pen and paper form of bookkeeping to 

processing data on what we know today as mainframes (this was, of course, when IBM, 

the purveyors of mainframes, formed as a corporation and became one of the trailblazers 

of modern computing). Businesses demanded for more and more effective ways to organize 

and retrieve data from computers, a still very novel concept at the time. 

 

 

Figure 1 – A typical organization chart of a company. An org chart illustrates how data may be 
organized in a hierarchy.                       › 
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Cue hierarchal modelling, the method by which data is organized in hierarchies or “levels”. 

The most familiar representation of hierarchies in our everyday lives is a company’s 

organizational chart: the staggered tree of executives, managers, and employees. If 

employee A reports to manager B, then the two have a one-to-one relationship with each 

other in the hierarchy. 

 

This kind of modelling can be extended to an unbounded number of applications and is 

the basis for IBM’s Information Management System (IMS), the most popular database 

for business data processing in the 1970s (Long, Harrington, Hain and Nicholls, 2000). 

There were many problems uncovered with hierarchal modelling over the years: one such 

problem is fitting in many-to-many relationships (where an employee C may have multiple 

managers and the respective managers have multiple employees). Employee C’s data could 

be copied under each of the managers, but that introduced the complexity of keeping 

employee C’s data updated between the various copies (keeping multiple copies of the 

“same” data is a process called “denormalization”).  

 

To address this, network models became topically mainstream, mapping data in a 

comparable way to hierarchal models, and solving the above issue as well as a subset of 

other problems with hierarchal-models. These models were known as CODASYL models 

because they were standardized by the Conference on Data Systems Language 
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(CODASYL) committee (Knowles and Bell, 1984). However, both these models had one 

especially tragic flaw: to access the record of data for an arbitrary node in the model (in 

our example, an employee of the organizational chart), one would have to traverse from 

the root node (the CEO John Smith) all the way down to the desired record. This required 

knowledge of which branch or “access path” would lead to the correct record and was a 

huge burden on developers managing these systems. 

 

Figure 2 – A code snippet of Microsoft’s SQL implementation. SQL (read: relational databases) was 
originally described in Edgar Codd’s 1970 report on A Relational Model of Data for Large Shared 
Data Banks. 

 
In 1970 Edgar Codd, a researcher at IBM, published A Relational Model of Data for Large 

Shared Data Banks that set the stage for the largest revolution of information retrieval 

theory the industry has seen to date (Codd, 1970). The brief yet insightful 11-page report 

introduced the concept of “relational models” built on the rigorous foundations of relation 
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algebra. In short, relational models map business queries down to a few simple operations 

such as: selection (filtering data), projection (selecting only certain parts of data), and set 

operations such as unions and differences of set (to combine and disassociate multiple sets 

of data). This model of organizing and retrieving data was then mapped to actual 

implementations of databases and was later formalized as the Structured Query Language 

(SQL) standard. Since its inception forty years ago, relational databases and SQL can be 

found in almost any data system and remains one of if not the most popular data querying 

languages in the world.  

 

1.2 SQL at Scale: CockroachDB 

One of the finer nuances of the SQL standard is the notion of transactions. Much like the 

financial transactions that occur when we purchase groceries from the store or order and 

have them delivered through Amazon, a transaction guarantees that a set of actions occur 

together and without overlapping with other transactions.1 For example, if my bank 

account had $25 in it and I tried to buy $25 worth of goods from each of two separate 

merchants, my bank would decline the second transaction. In the context of a database 

managing both the bank account of the merchants and my own, the system would realize 

that an update in the balance of my bank account is occurring in two transactions and 

                                     
1 This is a rather partial and informal definition of SQL transactions: the more complete picture of transactions is 
encapsulated as ACID-compliance.   
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would only permit one to fully execute (or “commit”) to maintain the invariant of a non-

negative account balance. 

 

There are several proprietary and open-sourced SQL databases that have widespread 

adoption for production. Oracle SQL and Microsoft SQL Server are two of the largest 

proprietary Relational Database Management Systems (RDBMS). Postgres and MySQL 

are some the front-runners on the open-sourced side. Note that these are all “management 

systems”: the value provided is the software and software license, although companies such 

as Oracle offer some specialized hardware that work “better” with their systems. 

 

Until the last decade or two, most businesses would vertically scale their databases to 

handle increasing numbers of requests by running larger and more powerful machines. As 

the industry matured, companies that simply out-scaled the largest possible machines had 

to look for new ways to handle the exponential growth in user traffic. Google, the 

enormous tech giant that has some of the highest number of daily-active users in the 

world across all their products, initially used MySQL as the primary RDBMS for their 

advertising backend (Corbett, Dean, Epstein et al., 2012). Once they could no longer 

handle the sheer traffic with just one instance of MySQL running on one machine, they 

had to “shard” their MySQL database onto multiple machines. This is referred to as 

“horizontal scaling”. 
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Sharding is a common way to deal with scaling out a database that is designed to run on 

single server machines: at a high level, the data is partitioned into multiple shards and 

each shard lives on a separate instance of MySQL (or whichever RDBMS) running on 

individual machines. This form of sharding, which can become a significant complexity 

burder on developers, is implemented in the application’s code. Furthermore, transaction 

semantics discussed previously will need to be implemented by the developers outside the 

scope of the RDBMS. There is an endless list of inherent architectural problems 

application-level sharding introduces that needless to say: very few if none have managed 

to perfect it, including Google. 

 

In Google’s 2012 seminal paper on Spanner: Google’s Globally-Distributed Database, the 

researchers and engineers reveal to the industry their implementation of a database that 

handles all the complexities of sharding, replication (for machine failures), and transaction 

guarantees in a distributed environment (Corbett, Dean, Epstein et al., 2012). There is 

also Google F1, which is a layer built on top of Spanner that permits distributed SQL 

queries and joins. Together they are a robust solution to an ACID-transactional SQL 

database (coined as “NewSQL”) that scales as a linear function of the hardware provided.  
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Figure 3 – One-line deployment of a CockroachDB instance with command output. Introducing 
additional nodes to the cluster also consists of one-line shell commands. 

 
While Google does offer a cloud-hosted version of Spanner and F1 (Cloud Spanner), 

companies that wish to retain full control over their customers’ data in their own 

datacenters have very few options. CockroachDB is an open-sourced distributed NewSQL 

RDBMS that is heavily influenced by Spanner and F1 and supports the Postgres dialect 

of SQL out of the box. Since distributed databases are inherently cumbersome, 

CockroachDB puts heavy emphasis on the ease of deployment: CockroachDB is 

encapsulated in a single executable binary whereby a cluster across multiple machines can 

be started with a few simple shell commands. 

 

2.0 Analysis 

The remainder of this report and the primary content in the Analysis section will highlight 

the distributed batch processing framework (the DistSQL engine) that allows SQL queries 
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to be efficiently parallelized onto the numerous machines that store individual “shards” of 

the relevant data. An inherent property of the DistSQL engine is improved performance 

from data locality at a cluster level: pieces of data that live together on the same machine 

can be processed immediately. This is especially relevant for SQL joins, a fundamental 

aspect of all SQL-compliant RDBMSes. 

 

2.1 Distributed Execution Engine 

A SQL query can be broken down into a logical plan: an abstraction of the query that 

breaks it down into its fundamental components. These components include the relational 

algebra operations discussed earlier (e.g. selection and projection) as well as other 

semantics introduced over the years both in the SQL standard and in specific SQL 

implementations. 

 

Figure 4 – Representation of a logical plan that is derived from a SQL query. Logical plans in 
CockroachDB resemble n-ary tree structures with each operation represented as a node in the tree. 
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The logical plan resembles a tree structure with nodes as logical operations and edges as 

input-output relationships. The logical plan then needs to be mapped to actual structures 

in the code that “physically” iterate through the data and perform their respective 

operations, whether it be filtering for SQL rows that have a certain value in a field or 

selecting a subset of fields from each row. CockroachDB’s initial implementation of an 

execution engine is modelled after the Volcano model (Graefe, 1990). The Volcano query 

processing model takes the logical plan as-is and defines a few methods on each node: 

namely Next(). Next() retrieves the next logical row of the operation at that node. The 

node then retrieves its input rows by invoking Next() on its children nodes. This 

propagates down to the leaf nodes, which pull data from the actual disk or SSD drives. 

The rows propagate back up the tree like how lava erupts from inside a volcano.  

 

This form of query execution is simple to imagine on a single node, but gets more 

complicated when data could be flowing from multiple servers storing individual shards 

of the relevant data. One could stream all relevant rows onto one node and apply the 

Volcano model, but this is rather inefficient especially if many rows are filtered out or 

only a subset of fields are used. It would be more performant to execute as many 

operations on the data nodes before sending the intermediary rows to the gateway node 

for final processing.  
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Figure 5 – A distributed execution plan in CockroachDB. Each individual logical plan node is 
transformed or mapped to physical processors. These processors iterate through the data and performs 
certain operations like joining rows from two tables. Some of the operations can be performed on the 
node containing the data (e.g. node 3 in the diagram). Intermediary rows are sent back to the final 
node (node 1) for final processing. 

 
This is the philosophy of the distributed execution engine (colloquially DistSQL) whereby 

the logical SQL plan is transformed into a dataflow of processors, routers, and streams.  

 

2.2 Interleaved Tables 

 

Figure 6 – A SQL table for all employees of a company. Each row corresponds to one record of one 
employee. The columns contain fields relevant to each employee such as phone numbers and salary 
figures. 
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In SQL, there are tables and rows: a table contains a collection of rows that all have the 

same columns or fields. In the context of sharding, many distributed databases arbitrarily 

break apart and re-balance data across the machines specified in the cluster. For example, 

Apache Cassandra, a NoSQL2 distributed database that operates on tables with rows and 

columns much like SQL tables, arbitrarily partitions data in the cluster into individual 

parts or “ranges” (DataStax, 2014). Through an efficient load balancing algorithm called 

“consistent hashing”, the ranges are assigned to nodes in the cluster. A given table occupies 

a range or adjacent ranges such that even in the event of re-balancing, the rows for a 

table tend to stay together on a node or on a couple of nodes. This partitioning scheme is 

similar to the partitioning policy CockroachDB employs to distribute data by breaking 

apart tables into chunks also called “ranges”. 

 

Figure 7 – Two SQL tables, Users (left) and Posts (right), where each row corresponds to one user or 
blog post, respectively. In this example, blog Post 1 belongs to User 1 and similarly for Post 2 & 3. 
The two tables have a one-to-one relationship. 

 

                                     
2 NoSQL is a slight misnomer: Cassandra does offer a SQL-like query grammar. The NoSQL categorization namely 
refers to the fact that it does not support distributed ACID transactions. 
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The core philosophy of SQL and relational databases is “normalizing” data as much as 

possible: keeping only one copy of a related set of data in self-contained tables. For 

example, if we wanted to store data for a blog where we have users who make posts, we 

would like to separate the user data into one table called Users and the blog post data in 

another table called Posts. Whenever we want to find the corresponding blog posts for a 

given set of users, we can perform an SQL join. Similarly, if users also had comments 

stored in a table Comments, we can join Users with Comments to retrieve corresponding 

comments for a set of users. 

 

Figure 8 – An example of how Users and Posts tables can be partitioned and distributed across three 
nodes. The red-dotted lines indicate the remote procedure calls (RPCs) required to perform a SQL join 
between blog post entries and their corresponding user entries. Since RPCs are relatively slow, we’d 
like to reduce the RPC traffic as much as possible for a given SQL query. 
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Since the sharding layer of CockroachDB is agnostic of SQL tables (instead a SQL table 

occupies a contiguous section of the underlying storage as described before) Users and 

Posts may be unfavorably partitioned such that many inter-node Remote Procedure Calls 

(RPCs) are required to match up corresponding rows from both tables (see Figure 8). 

While an individual table is grouped together with high data locality (e.g. Users 1 to 50 

are grouped together in one range on node 2 in Figure 8), there is no such guarantee 

between multiple tables. 

 

Figure 9 – The same Users and Posts table in CockroachDB but with Posts interleaved into Users. 
Effectively, Posts and Users are grouped together such that they conceptually form one table. 
CockroachDB partitions and distributes the two tables such that SQL joins between corresponding 
entries require few RPCs (green-dotted lines) relative to non-interleaved tables in Figure 8. 

 
Interleaving tables introduce the idea of storing rows from some table after a row (or some 

rows) of another table (see Figure 9). Both CockroachDB and Cloud Spanner allow 

Database Admins (DBAs) to create interleaved tables to improve data locality and 

performance for SQL operations such as joins. Oracle has something similar called “multi-
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table cluster indexes” (Burleson, n/d). The join logic for interleaved tables will need to be 

slightly modified to take advantage of the convenient lockstep-like (read: interleaved) 

arrangement of rows between two interleaved tables. 

 
2.3 Interleaved Table Joins 

In the example between Users and Posts in Figure 9, joining rows from the two interleaved 

tables is rather trivial; every row of Posts is nested immediately after its corresponding 

row in Users. However, this becomes more complicated once you have multiple tables 

interleaved into each other. 

 
Figure 10 – (Left) How interleaved tables are declared and created in CockroachDB. (Right) The 
interleaved tables represented in its tree form. Note that there is a strong resemblance between this 
tree structure and hierarchies in hierarchal modelling: this is because interleaved tables form an 
“interleaved hierarchy” (in graph theory, an interleaved hierarchy is an “arborescence”).  

 
Interleaved tables work exceptionally well in practice with data that naturally forms a 

hierarchy, and are often queried together. In traditional SQL databases like Postgres or 

MySQL, one would have to perform several joins (multi-table joins) to match up data 

from multiple related tables. In the example from Figure 10, someone who wants to 
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retrieve all Doctors, Patients, and Claims for some Hospitals would have to perform a 4-

way join. This can become rather costly in a distributed database without interleaving as 

demonstrated with the simple two-table case in Figure 8.  

 

Figure 11 – (Top) Example of how rows from the interleaved tables in the example from Figure 10 
may be stored together. (Bottom) A visualization of how a query that wants to join rows between 
Doctors and Claims is conceptually executed. 

 
In Figure 11, a set of data with the same schema as the example from Figure 10 is shown 

with an abstract representation of how a join query between rows from Doctors and 



 

  

16 

Claims is executed with interleaved table joins. Since interleaved tables form an 

arborescence, there are certain invariants we can apply to create a more efficient join 

algorithm than naïve implementations of nested loop, hash and/or merge joins. The 

narrowness of this margin does not permit me to include the precise details3, but the full 

Request For Comments (RFC) for interleaved table joins can be accessed in the publicly-

available repository.4 

 

2.4 Performance of Interleaved Table Joins 
 

 
Figure 12 – DistSQL execution plans for before and after comparison. (Top) Naive merge joins between 
two interleaved tables. (Bottom) More efficient interleaved table joins between the same two 
interleaved tables. It is obvious that there is a drastic reduction in RPC traffic in the latter which 
clearly manifests itself in the performance numbers. 

                                     
3 https://en.wikipedia.org/wiki/Fermat's_Last_Theorem 
4 https://github.com/cockroachdb/cockroach/blob/master/docs/RFCS/20171025_interleaved_table_joins.md 
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An integral part of systems software development is measuring how an implementation 

improves the product or feature. In this case, it is important to compare how the 

implementation of interleaved table joins compare to joins between non-interleaved tables 

and naïve joins (i.e. joins that are agnostic of the interleaving property) between 

interleaved tables. From intuition, we hypothesize and expect that our improved 

implementation of joins in the context of interleaved tables should meet the following 

criteria: 

1. Interleaved table joins should be comparable to joins on non-interleaved tables in 

slightly pessimistic cases. 

2. Interleaved table joins should be strictly better than naïve joins for interleaved 

tables. 

3. Interleaved table joins should perform 1.5x – 2.0x better than regular tables in 

ideal use cases (i.e. joins with highly-hierarchal data). 

A benchmark5 was written to exercise join queries on non-interleaved and interleaved 

tables in CockroachDB both before and after the implementation of interleaved table 

joins. Several different scenarios were proposed and benchmarked to establish lower and 

upper bounds across a variety of settings. 

 

 

                                     
5 https://github.com/cockroachdb/loadgen#interleave 
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Scenario Non-interleaved 
tables 

Interleaved tables 
(naïve) 

Interleaved tables 
(improved) 

QPS 99th %tile 
latency (ms) 

QPS 99th %tile 
latency (ms) 

QPS 99th %tile 
latency (ms) 

Simple 
2 tables 
1 range 

5.5 1610 4.0 2282 5.3 1745 

Pessimistic 
4 tables 

>1 ranges 

7.55 1779 0.4 17450 0.9 8590 

Typical 
4 tables 

>1 ranges 

1.35 6443 1.1 8724 2.0 4429 

Ideal 
2 tables 

>1 ranges 

3.5 2684 3.1 3423 6.1 1712 

 
Scenario Vs non-interleaved 

(% change) 
Vs naïve interleaved 

(% change) 
QPS 99th %tile latency 

(ms) 
QPS 99th %tile latency 

(ms) 
Simple -3.6% +8.4% +32.5% -23.5% 

Pessimistic -88% +382.9% +125% -50.8% 

Typical +48% -31.3% +81.8% -49.2% 

Ideal +74.3% -36.2% +96.8% -50% 

 

Figure 13 – Tables summarizing throughput (in queries per second or QPS) and tail latency 
performance numbers across non-interleaved tables, interleaved tables with naive joins, and interleaved 
tables with the improved implementation. Equivalent queries were concurrently executed against the 
3-node CockroachDB cluster by eight workers on a machine with four CPU cores.  

 
From our performance experiments6, we see that our initial hypotheses hold true. That 

is, the new implementation is strictly better than a naïve approach to joining between 

                                     
6 https://github.com/cockroachdb/cockroach/issues/20586 
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interleaved tables. In typical and ideal cases where data forms a natural hierarchy, 

interleaved tables with the improved join logic outperforms non-interleaved tables. 

 

3.0 Conclusions 

The history of how large-scale data intensive applications transitioned from hierarchal 

modelling to relational modelling to a hybrid of both helps us continue innovating in the 

information retrieval space. In some sense, the industry has come full circle back to 

hierarchal modelling where data locality is important in the context of sharding. An 

example of a hybrid approach that takes aspects from the 1960s hierarchal models of data 

and from the time-tested relational movement are interleaved tables. Interleaved tables 

in CockroachDB as well as in other distributed NewSQL databases like Cloud Spanner 

offer greater performance for certain topologies of data by grouping data together when 

data is distributed across many nodes. Interleaved tables also permit some subset of 

relational operations that are much more efficient than a pure hierarchal model.  
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